Advanced Search
Volume 40 Issue 5
Oct.  2022
Turn off MathJax
Article Contents

ZHANG Li, MA XiangXian, MA Yong, XU Wang, SHAO YuanYuan, HU GuoYi, ZHENG GuoDong. Multiple Proxies for Redox Condition Indentification Based on Sulfur Species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1427-1438. doi: 10.14027/j.issn.1000-0550.2022.002
Citation: ZHANG Li, MA XiangXian, MA Yong, XU Wang, SHAO YuanYuan, HU GuoYi, ZHENG GuoDong. Multiple Proxies for Redox Condition Indentification Based on Sulfur Species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1427-1438. doi: 10.14027/j.issn.1000-0550.2022.002

Multiple Proxies for Redox Condition Indentification Based on Sulfur Species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208

doi: 10.14027/j.issn.1000-0550.2022.002
Funds:

National Natural Science Foundation of China 41872141

National Science and Technology Major Project 2016ZX05007001

National Trans Formative Technology Project 2019YFA0708501

  • Received Date: 2021-11-15
  • Publish Date: 2022-10-10
  • Redox conditions play a vital role in the lithology and preservation of organic matter in shale rocks, which various geochemical methods can be used to identify. Many studies have showed that geochemical indicators have their own scopes, and their practical application needs to suit measurements according to local conditions. To study the applicability of geochemical indicators and obtain the redox conditions of marine sedimentary shale, the contents of total organic carbon (TOC), sulfur species, and main and trace elements of 20 core samples from the Qiongzhusi and Longmaxi Formations of well N208 were performed. The results showed that TOC in the bottom section of the Qiongzhusi and Longmaxi Formations was generally high, with averages of 3.73% and 3.50%, respectively; TOC of the upper and middle parts of the Qiongzhusi and Longmaxi Formations was generally low, with average values of 0.41% and 1.70% respectively. The sulfur species in the shales of the Qiongzhusi Formation were pimarily reduced, indicating a high degree of reduction in the sedimentary water body. In contrast, the reduced sulfur of the Longmaxi Formation shales was relatively low, which suggests that the reduction degree of the sedimentary water body of the Longmaxi Formation was lower than that of the Qiongzhusi Formation. Based on the enrichment coefficient of trace elements, the S-MoEF-TOC system indicates that the Qiongzhusi Formation shale was dominated by sulfate-poor suboxic and anoxic conditions, with an anoxic environment in the bottom and a suboxic in the middle and upper sections. The shales of the Longmaxi Formation are formed in suboxic conditions containing sulfate, with an anoxic environment in the bottom and a suboxic in the middle and upper sections. These results have a good corresponding relationship with the petrological characteristics of the Qiongzhusi and Longmaxi Formation shales and can provide a new reference for deepening the geochemical understanding of these two formations and evaluating their shale gas resource potential.
  • [1] 张金川,徐波,聂海宽,等. 中国页岩气资源勘探潜力[J]. 天然气工业,2008,28(6):136-140.

    Zhang Jinchuan, Xu Bo, Nie Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140.
    [2] 梁狄刚,郭彤楼,陈建平,等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质,2008,13(2):1-16.

    Liang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
    [3] 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报,2009,30(4):484-491.

    Nie Haikuan, Tang Xuan, Bian Ruikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4): 484-491.
    [4] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
    [5] 肖贤明,周秦,程鹏,等. 高—过成熟海相页岩中矿物—有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(D辑):地球科学,2020,50(9):1228-1241.

    Xiao Xianming, Zhou Qin, Cheng Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China (Seri. D): Earth Sciences, 2020, 50(9): 1228-1241.
    [6] Zhang Y F, Yu B S, Pan Z J, et al. Effect of thermal maturity on shale pore structure: A combined study using extracted organic matter and bulk shale from Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2020, 74: 103089.
    [7] Nie H K, Jin Z J, Zhang J C. Characteristics of three organic matter pore types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China[J]. Scientific Reports, 2018, 8(1): 7014.
    [8] Meyer K M, Kump L R. Oceanic euxinia in Earth history: Causes and consequences[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 251-288.
    [9] Summons R E, Powell T G. Identification of aryl isoprenoids in source rocks and crude oils: Biological markers for the green sulphur bacteria[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 557-566.
    [10] Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
    [11] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [12] Algeo T J, Liu J S. A re-assessment of elemental proxies for paleoredox analysis[J]. Chemical Geology, 2020, 540: 119549.
    [13] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [14] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质,2019,40(4):701-715.

    Zhao Jianhua, Jin Zhijun, Lin Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze region[J]. Oil & Gas Geology, 2019, 40(4): 701-715.
    [15] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643-645.
    [16] Deming J W, Baross J A. The early diagenesis of organic matter: Bacterial activity[M]//Engel M H, Macko S A. Organic geochemistry. Boston: Springer, 1993.
    [17] Keith S M, Herbert R A, Harfoot C G. Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments[J]. Journal of Applied Bacteriology, 1982, 53(1): 29-33.
    [18] Rice C A, Tuttle M L, Reynolds R L. The analysis of forms of sulfur in ancient sediments and sedimentary rocks: Comments and cautions[J]. Chemical Geology, 1993, 107(1/2): 83-95.
    [19] Debret B, Andreani M, Delacour A, et al. Assessing sulfur redox state and distribution in abyssal serpentinites using XANES spectroscopy[J]. Earth and Planetary Science Letters, 2017, 466: 1-11.
    [20] Surdhar P, Armstrong D A. Redox potentials of some sulfur-containing radicals[J]. Journal of Physical Chemistry, 1986, 90(22): 5915-5917.
    [21] Zheng G D, Xu W, Fortin D, et al. Sulfur speciation in marine sediments impacted by gas emissions in the northern part of the South China Sea[J]. Marine and Petroleum Geology, 2016, 73: 181-187.
    [22] 何登发,鲁人齐,黄涵宇,等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发,2019,46(5):993-1006.

    He Dengfa, Lu Renqi, Huang Hanyu, et al. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(5): 993-1006.
    [23] 童崇光. 四川盆地构造演化与油气聚集[M]. 北京:地质出版社,1992.

    Tong Chongguang. Tectonic evolution and hydrocarbon accumulation in Sichuan Basin[M]. Beijing: Geological Publishing House, 1992.
    [24] 郭正吾,邓康龄,韩永辉. 四川盆地形成与演化[M]. 北京:地质出版社,1996.

    Guo Zhengwu, Deng Kangling, Han Yonghui. The formation and development of Sichuan Basin[M]. Beijing: Geological Publishing House, 1996.
    [25] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606.

    He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606.
    [26] 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学,2019,44(3):738-755.

    Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-Early Cambrian tectonic-sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
    [27] 冯增昭,彭勇民,金振奎,等. 中国南方寒武纪岩相古地理[J]. 古地理学报,2001,3(1):1-14.

    Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Cambrian in South China[J]. Journal of Palaeogeography, 2001, 3(1): 1-14.
    [28] 王玉满,沈均均,邱振,等. 中上扬子地区下寒武统筇竹寺组结核体发育特征及沉积环境意义[J]. 天然气地球科学,2021,32(9):1308-1323.

    Wang Yuman, Shen Junjun, Qiu Zhen, et al. Characteristics and environmental significance of concretion in the Lower Cambrian Qiongzhusi Formation in the Middle-Upper Yangtze area[J]. Natural Gas Geoscience, 2021, 32(9): 1308-1323.
    [29] 尹福光,许效松,万方,等. 华南地区加里东期前陆盆地演化过程中的沉积响应[J]. 地球学报,2001,22(5):425-428.

    Yin Fuguang, Xu Xiaosong, Wan Fang, et al. The sedimentary response to the evolutionary process of Caledonian foreland basin system in South China[J]. Acta Geoscientia Sinica, 2001, 22(5): 425-428.
    [30] 罗超,王兰生,石学文,等. 长宁页岩气田宁211井五峰组—龙马溪组生物地层[J]. 地层学杂志,2017,41(2):142-152.

    Luo Chao, Wang Lansheng, Shi Xuewen, et al. Biostratigraphy of the Wufeng to Longmaxi Formation at well Ning 211 of Changning shale gas field[J]. Journal of Stratigraphy, 2017, 41(2): 142-152.
    [31] 周平,徐国盛,崔恒远,等. 沉积岩中总有机碳测定前的预处理方法[J]. 实验室研究与探索,2019,38(1):45-48.

    Zhou Ping, Xu Guosheng, Cui Hengyuan, et al. Study on pretreatment method of total organic carbon before determination in sedimentary rock[J]. Research and Exploration in Laboratory, 2019, 38(1): 45-48.
    [32] Lin J, Bao L M, Liu W, et al. Size distribution of sulfur species in fine and ultrafine aerosol particles using sulfur K-edge XANES[J]. Chinese Physics C, 2009, 33(11): 965-968.
    [33] Ravel B, Newville M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT [J]. Journal of Synchrotron Radiation, 2005, 12(4): 537-541.
    [34] Manceau A, Nagy K L. Quantitative analysis of sulfur functional groups in natural organic matter by XANES spectroscopy[J]. Geochimica et Cosmochimica Acta, 2012, 99: 206-223.
    [35] Prietzel J, Botzaki A, Tyufekchieva N, et al. Sulfur speciation in soil by S K-edge XANES spectroscopy: Comparison of spectral deconvolution and linear combination fitting[J]. Environmental Science & Technology, 2011, 45(7): 2878-2886.
    [36] Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater?[J]. Geology, 2004, 32(12): 1057-1060.
    [37] Beauchemin S, Hesterberg D, Beauchemin M. Principal component analysis approach for modeling sulfur K-XANES spectra of humic acids[J]. Soil Science Society of America Journal, 2002, 66(1): 83-91.
    [38] Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91(2): 83-97.
    [39] Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle-Upper Devonian, Appalachian Basin[J]. Chemical Geology, 2003, 195(1/2/3/4): 229-273.
    [40] Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA)[J]. Chemical Geology, 2004, 206(3/4): 373-391.
    [41] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
    [42] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [43] Raiswell R, Buckley F, Berner R A, et al. Degree of pyritisation as a paleoenvironmental indicator of bottom water oxygenation[J]. Journal of Sedimentary Research, 1988, 58(5): 812-819.
    [44] Lewan M D, Maynard J B. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1982, 46(12): 2547-2560.
    [45] Brumsack H J. The trace metal content of recent organic carbon-rich sediments: Implications for Cretaceous black shale formation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 344-361.
    [46] Little S H, Vance D, Lyons T W, et al. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings[J]. American Journal of Science, 2015, 315(2): 77-119.
    [47] Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735-1750.
    [48] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
    [49] Over D J, Hauf E, Wallace J, et al. Conodont biostratigraphy and magnetic susceptibility of Upper Devonian Chattanooga Shale, eastern United States: Evidence for episodic deposition and disconformities[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 524: 137-149.
    [50] Gregory D D, Large R R, Halpin J A, et al. Trace element content of sedimentary pyrite in black shales[J]. Economic Geology, 2015, 110(6): 1389-1410.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article Metrics

Article views(220) PDF downloads(96) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-11-15
  • Published:  2022-10-10

Multiple Proxies for Redox Condition Indentification Based on Sulfur Species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208

doi: 10.14027/j.issn.1000-0550.2022.002
Funds:

National Natural Science Foundation of China 41872141

National Science and Technology Major Project 2016ZX05007001

National Trans Formative Technology Project 2019YFA0708501

Abstract: Redox conditions play a vital role in the lithology and preservation of organic matter in shale rocks, which various geochemical methods can be used to identify. Many studies have showed that geochemical indicators have their own scopes, and their practical application needs to suit measurements according to local conditions. To study the applicability of geochemical indicators and obtain the redox conditions of marine sedimentary shale, the contents of total organic carbon (TOC), sulfur species, and main and trace elements of 20 core samples from the Qiongzhusi and Longmaxi Formations of well N208 were performed. The results showed that TOC in the bottom section of the Qiongzhusi and Longmaxi Formations was generally high, with averages of 3.73% and 3.50%, respectively; TOC of the upper and middle parts of the Qiongzhusi and Longmaxi Formations was generally low, with average values of 0.41% and 1.70% respectively. The sulfur species in the shales of the Qiongzhusi Formation were pimarily reduced, indicating a high degree of reduction in the sedimentary water body. In contrast, the reduced sulfur of the Longmaxi Formation shales was relatively low, which suggests that the reduction degree of the sedimentary water body of the Longmaxi Formation was lower than that of the Qiongzhusi Formation. Based on the enrichment coefficient of trace elements, the S-MoEF-TOC system indicates that the Qiongzhusi Formation shale was dominated by sulfate-poor suboxic and anoxic conditions, with an anoxic environment in the bottom and a suboxic in the middle and upper sections. The shales of the Longmaxi Formation are formed in suboxic conditions containing sulfate, with an anoxic environment in the bottom and a suboxic in the middle and upper sections. These results have a good corresponding relationship with the petrological characteristics of the Qiongzhusi and Longmaxi Formation shales and can provide a new reference for deepening the geochemical understanding of these two formations and evaluating their shale gas resource potential.

ZHANG Li, MA XiangXian, MA Yong, XU Wang, SHAO YuanYuan, HU GuoYi, ZHENG GuoDong. Multiple Proxies for Redox Condition Indentification Based on Sulfur Species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1427-1438. doi: 10.14027/j.issn.1000-0550.2022.002
Citation: ZHANG Li, MA XiangXian, MA Yong, XU Wang, SHAO YuanYuan, HU GuoYi, ZHENG GuoDong. Multiple Proxies for Redox Condition Indentification Based on Sulfur Species: A case study of the cored Qiongzhusi and Longmaxi Formations of well N208[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1427-1438. doi: 10.14027/j.issn.1000-0550.2022.002
  • 下寒武统筇竹寺组和下志留统龙马溪组是四川盆地两套主力烃源层系[14],许多研究已经明确了其地球化学基本特征和生烃潜力,尤其是沉积古环境氧化还原条件对页岩层系的影响[57]。然而,关于这两套烃源岩沉积古环境的氧化还原条件还有不同的认识,需要选择合适的地球化学方法对其进行深入研究,以便更为合理地判识沉积古环境的氧化还原条件及其对有机质富集和保存的影响。

    许多地球化学指标常用于判识沉积环境的氧化还原条件,例如:TOC/S、Fe元素化学种、微量元素丰度比、微量元素富集系数和生物标志化合物等[811]。其中,U/Th、V/Cr、Ni/Co等元素丰度比和V、U、Mo等元素富集系数是判识氧化还原条件最为常用的地球化学指标[1213]。早在1994年,Jones et al.[13]就提出了相关微量元素丰度比判识氧化还原条件的阈值[13],并被许多研究所采纳。但是,后续的一些研究结果表明,这些阈值很难应用于不同地质时代和不同沉积环境的沉积岩系,地质背景和沉积条件的不同都会导致微量元素丰度比等指标对氧化还原条件的判识结果出现多解性。例如,对四川盆地A井龙马溪组中上段的地层,V/(V+Ni)比值表明其氧化还原条件相对稳定,为厌氧环境,而V/Cr比值指示其氧化还原条件变化波动较大,剖面向上还原程度减弱,为贫氧到氧化环境[14]。因此,判识沉积古环境的氧化还原条件需要慎重考虑所选用地球化学指标及其阈值的适用性问题。针对具体的研究对象,选择不同类型的多指标体系可能会消除单一指标的局限性,从而能更有效地反映沉积古环境的氧化还原条件。

    硫(S)是氧化还原敏感性元素,化学性质活泼,在自然界的赋存状态多种多样,且各种硫元素化学种之间很容易发生转化[1516]。例如,硫酸根(SO42-)可以通过微生物硫酸盐还原作用(BSR)等转化为硫化物,硫化物可以被水中的溶解氧和微生物细菌所氧化而形成各种高价态的硫[17]。不同的沉积环境具有明显不同含量的硫元素化学种,氧化条件下主要为氧化态的硫,缺氧条件下埋藏沉积物的硫元素化学种以还原态为主。因此,氧化态硫和还原态硫的相对含量及其转化关系可以有效地反映沉积水体的氧化还原条件[1821]。例如,Zheng et al.[21]在利用硫元素化学种判识南海沉积物的氧化还原条件时,有效地揭示了其氧化还原条件在垂向上的变化趋势,并认为这种变化趋势可能是由甲烷渗透引起的。页岩等固体样品的硫元素化学种测试较为复杂,很难将其定性和定量化分析。然而,大型同步辐射装置提供的X-射线实验终端可以用于探测固体样品硫元素的赋存状态(即硫元素化学种)及其相对含量。因此,硫元素化学种可以为判识筇竹寺组和龙马溪组页岩沉积古环境的氧化还原条件提供新的途径。

  • 长宁地区是四川盆地页岩气的重点勘探开发区,该地区以长宁背斜为中心,于川南低陡断褶带与川西南低缓断褶带之间的交界区。该区受到四川盆地北东向西南延伸和川南低陡断褶带构造演化等地质条件的制约(图1),经历了多期构造运动的深刻影响[2226],导致该区形成了现今具有多阶段构造变形叠加特征的地质构造体系,并控制了多套复杂沉积岩系的发育和沉积相的展布[25]

    Figure 1.  Geological diagram of the Changning area in the Sichuan Basin and a section diagram of the drilling core formation of well N208

    晚震旦世—早寒武世,长宁地区受到桐湾运动的影响,依次经历了裂陷发展期(SQ1)、裂陷调整期(SQ2)和裂陷萎缩期(SQ3),SQ1时期受剧烈拉张裂陷作用控制,导致海平面上升,并接受了筇竹寺组底部页岩的沉积。在SQ2和SQ3时期,裂陷活动减弱,海平面大幅度下降,接受了大量细粒泥沙沉积,形成了筇竹寺组中上部页岩[2728]。早—晚奥陶世经历了早加里东运动,沉积地层保存完整。志留纪经历晚加里东运动,古气候转暖,消融的冰水入海造成海平面抬升,发生大规模海侵,沉积了龙马溪组底部富有机质页岩,后期海平面下降并接受了龙马溪组上部页岩的沉积[29]。N208井是工业气井,位于长宁背斜的东南翼,钻遇的寒武系和志留系地层保存相对完整。筇竹寺组厚度约118 m,上部层段岩性为黑色页岩,底部为钙质深黑色页岩,无斑脱岩夹层。龙马溪组厚度约62 m,岩性主要为含钙黑色页岩,并含笔石化石,其笔石化石大多杂乱无序,以分散式分布,反映龙马溪组的水动力不强,为局限海洋环境[30]。筇竹寺组和龙马溪组都被认为是四川盆地页岩气资源的主要烃源岩层位。

  • 研究样品采自N208井的岩心,包括下寒武统筇竹寺组和下志留统龙马溪组。为研究它们沉积古环境的氧化还原条件及其变化特征,分别选取筇竹寺组和龙马溪组页岩各10个岩心样品。选取干净的岩心样品用玛瑙研钵将其研磨至80目和200目左右的粉末,以备后续实验使用。

  • 研究样品的总有机碳和总硫含量是用80目的样品粉末在甘肃省油气资源研究重点实验室采用LECO CS900碳硫分析仪进行测定的。测试流程依据GB/T 19145—2003标准完成[31]

    硫元素近边吸收结构(X-ray Absorption Near Edge Structure,XANES)是在北京正负电子对撞机(BSRF)实验终端4B7A中能X线站进行测试的,其原理是含硫官能团吸收X光后发生电子跃迁(1s-3p)的能量变化,从而获取测试样品中硫的氧化态及其相对含量。实验过程中,将200目的样品粉末均匀地涂抹在不含硫的胶带上,以垂直于入射光的方位固定在样品室中。针对硫元素,扫描的能量段为2 450~2 510 eV,步长为0.2 eV[32]

    主微量元素测试用酸溶法进行样品前处理。首先将样品粉末(200目)放入马弗炉内在105 ℃条件下烘干3 h,烘干后在干燥器皿内冷却至室温。将聚四氟乙烯密闭溶样瓶置于精度为0.01 mg的电子天平上,并称取50.00 mg左右的烘干样品粉末,每一个溶样瓶内依次加入1.50 mL HNO3(高纯)、1.50 mL HF(高纯),然后置于电热板上,在120 ℃条件下加热消解样品,等消解溶液蒸发至湿盐状后,再加入少量的HClO4(高纯)消解有机质,置于电热板上,在150 ℃条件下加热,再次蒸发至湿盐状时停止加热,冷却后加入1.50 mL HNO3(高纯)溶液,密封放置24 h,使得样品充分消解。消解定容后的样品溶液分别利用电感耦合等离子体发射光谱仪(ICP-OES)和电感耦合等离子体质谱仪(ICP-MS)进行元素含量的测试。

  • XANES谱分析需要选择标准物质的谱图对被测样品进行拟合处理分析,所用标准化合物种类应尽可能地多,以获取包含不同种类硫的检测图谱[3334]。本研究所用标准物质包括单质硫(S)、硫化锌(ZnS)、黄铁矿(FeS2)、亚硫酸钠(Na2SO3)、硫酸钙(CaSO4)以及含硫的沥青。实验样品的XANES谱采用XAFS谱数据分析软件IFEFFIT中的Athena进行归一化处理,用标准物质图谱对其进行线性拟合[35]。所有样品的XANES谱均采用CaSO4进行能量位置校准,硫酸根的白线峰值为2 482.5 eV。

  • 为了消除陆源碎屑对沉积物中微量元素富集的影响,利用测试样品各自的Al元素含量对相关元素含量进行标准化处理,即获取相应元素的富集系数EF:

    XEF=(X/Al)/(X/Al)ucc

    式中:UCC为上地壳平均值,XEF>1表明目标元素X相对于UCC富集,XEF<1表明元素X相对于UCC亏损。XEF可以有效地用于评估沉积物中X元素的富集程度[11,36]

  • 所有测试样品的XANES谱均有两个明显的吸收峰(图2),根据标准样品FeS2和CaSO4判断,位于2.472 0 keV处的吸收峰为黄铁矿负一价硫的共振峰,2.482 5 keV处的吸收峰为硫酸根共振峰。虽然所有样品吸收峰的吸收区间非常接近,但是其形状和相对的吸收峰面积各不相同,表明不同页岩样品硫元素的赋存状态及其相对含量存在明显差异。从其分布情况来看,龙马溪组页岩的硫元素化学种以黄铁矿硫吸收峰和硫酸盐吸收峰为主,筇竹寺组页岩则以黄铁矿硫吸收峰为主(含量接近100%),硫酸根和亚硫酸根对应的吸收峰很不明显,指示其含量很低,甚至低于检出限。

    Figure 2.  Sulfur K⁃edge XANES spectrum of the Qiongzhusi and Longmaxi Formations shale in well N208

    为了获取硫元素化学种的相对含量,利用最小二乘法对硫的K边XANES光谱进行线性拟合(LCF)分析,并以R因子最小为标准选取拟合结果[37]。标准物质包括无机硫和有机硫样品,含硫有机化合物种类繁多,地质样品有机硫的检测一般用沥青硫做对照。利用标准化合物吸收谱线对筇竹寺组和龙马溪组页岩样品进行线性拟合,其中筇竹寺组还原态硫含量为95.0%~100%,龙马溪组页岩还原态硫含量为68.4%~87.6%(表1)。

    样品编号深度/m相对百分含量 /%
    沥青硫S22-S2-S0SO32-SO42-还原态S氧化态S
    N208-011 270.637.333.54.824.470.829.2
    N208-021 276.813.741.624.020.779.320.7
    N208-031 282.210.548.018.922.577.422.5
    N208-041 285.640.631.95.621.872.527.4
    N208-051 292.643.128.94.823.372.028.1
    N208-061 296.09.6068.25.916.377.822.2
    N208-071 302.638.230.25.026.668.431.6
    N208-081 309.320.446.121.112.387.612.3
    N208-091 312.737.435.61.625.573.027.1
    N208-101 320.338.742.26.512.580.919.0
    N208-113 171.024.346.025.84.096.14.00
    N208-123 184.55.8061.427.85.095.05.00
    N208-133 196.121.749.924.93.696.53.60
    N208-143 206.717.957.921.03.296.83.20
    N208-153 215.915.553.926.93.796.33.70
    N208-163 231.014.654.626.24.595.44.50
    N208-173 241.923.944.027.84.495.74.40
    N208-183 256.922.547.526.33.796.33.70
    N208-193 269.326.253.72.3017.799.9
    N208-203 273.913.641.62.9041.9100
    注:“—”未检测出。
  • N208井筇竹寺组和龙马溪组页岩样品的总有机碳含量分别为0.290%~6.91%和0.940%~4.01%,平均值分别为1.41%和2.25%(表2)。筇竹寺组底部20 m层段(井深3 253.9~3 273.9 m)页岩样品的有机碳含量较高,平均值为3.73%,向上有机碳含量变低并趋于稳定,平均值为0.41%;龙马溪组底部15 m层段(井深1 305.3~1 320.3 m)页岩样品的有机碳含量较高,平均为3.51%,向上有机碳含量变低,平均值为1.70%(图3)。这两套页岩的硫含量分别为1.70%~5.05%和1.97%~6.94%,其底部层段硫含量分别为3.72%~6.94%和2.42%~5.05%,平均值分别为5.04%和3.96%,向上硫含量都降低,分别为1.71%~3.08%和1.97%~2.74%,平均值为2.32%和2.72%。两套页岩的TOC和硫含量在垂向上具有相似的分布特征。

    样品编号深度/mTOC/%S/%V/CrV/(V+Ni)Ni/CoU/ThUauthCrEFVEFCoEFUEFMoEF
    N208-011 270.61.031.761.410.693.100.2900.6700.9601.050.9501.994.47
    N208-021 276.80.9402.311.470.723.000.4301.060.8200.9300.7702.044.82
    N208-031 282.21.352.331.560.703.900.4201.071.331.621.113.239.98
    N208-041 285.61.131.711.480.752.970.4501.091.051.210.8702.548.62
    N208-051 292.61.802.932.580.753.950.5502.280.9301.860.9802.7310.9
    N208-061 296.02.633.081.950.734.360.5702.681.121.690.9102.9610.2
    N208-071 302.63.064.912.440.753.980.8206.871.392.641.396.5218.7
    N208-081 309.33.155.052.450.646.901.377.281.152.181.128.9859.8
    N208-091 312.74.014.424.740.7511.02.0915.10.8903.270.6409.7167.6
    N208-101 320.33.362.423.620.534.632.0718.70.7202.032.4510.739.1
    N208-113 171.00.352.742.080.793.020.5201.551.502.421.312.181.70
    N208-123 184.50.2102.292.160.793.140.5501.601.192.001.081.691.40
    N208-133 196.10.3102.302.610.813.340.6802.591.372.771.232.544.99
    N208-143 206.70.2901.972.090.792.940.6102.091.191.931.131.702.18
    N208-153 215.90.3502.372.140.803.020.6302.251.382.301.232.424.61
    N208-163 231.00.5702.372.640.823.660.7002.641.322.711.022.223.56
    N208-173 241.90.8002.243.340.833.970.6602.831.012.610.8201.972.83
    N208-183 256.91.533.724.210.864.221.025.111.133.680.8702.969.02
    N208-193 269.32.756.943.760.785.372.4014.91.273.701.237.8425.0
    N208-203 273.96.924.481.510.683.842.8833.30.9501.110.86017.280.0

    Figure 3.  The trace element ratio index of the Qiongzhusi and Longmaxi Formations in well N208 as it varies with depth

  • N208井筇竹寺组页岩的V/Cr比值为1.51~4.21,V/(V+Ni)比值为0.780~0.860,Ni/Co比值为3.02~4.63,Uauth和U/Th比值分别为1.15~33.3和0.520~2.80(表2)。V/Cr、V/(V+Ni)、Ni/Co、U/Th和Uauth在这两套页岩层系垂向上的变化趋势不尽相同。龙马溪组页岩的V/Cr比值为1.41~4.74,V/(V+Ni)比值为0.530~0.750,Ni/Co比值为3.10~11.0,Uauth和U/Th比值分别为0.670~18.7和0.290~2.09(图3)。其中Uauth和U/Th在垂向上的变化趋势和TOC基本一致,V/(V+Ni)、V/Cr、Ni/Co和TOC在筇竹寺组和龙马溪组的中上部变化趋势基本相同,在底部富有机质页岩层段呈现相反的变化趋势。

  • 筇竹寺组页岩样品的微量元素富集系数VEF为1.11~3.70,CrEF为0.950~1.38,CoEF为0.820~1.31,UEF为1.69~17.2,MoEF为1.40~80.0,其中VEF、UEF和MoEF均大于1,相对UCC富集(表2)。龙马溪组页岩样品的VEF为0.930~3.27,CrEF为0.720~1.39,CoEF为0.770~2.45,UEF为1.09~10.7,MoEF为4.47~67.6,其中,UEF和MoEF整体上均大于1,相对于UCC富集(表2)。N208井筇竹寺组和龙马溪组页岩的VEF、CrEF和CoEF在垂向上波动范围较大,而且与TOC无明显的相关性,但UEF和MoEF与TOC保持相同的变化趋势,在筇竹寺组和龙马溪组底部层段相对较高,向上富集程度变低并趋于稳定(图4)。

    Figure 4.  Trace element enrichment of the Qiongzhusi and Longmaxi Formations in well N208, varying with depth

  • V、Cr、Ni、Co和U等都是氧化还原敏感性元素,在沉积物中的富集程度很容易受沉积环境氧化还原条件的制约。氧化还原反应对这些元素的赋存状态具有控制作用,不仅可以改变它们的价态,而且可以促使它们与其共生元素间发生结合或者分离[3842]。例如,U、Mo、V和S在氧化条件下呈现高价态(U6+、Mo6+、V5+、S6+)而且容易发生迁移,还原条件下呈低价态而且容易沉淀[11,13]。正因为这些元素具有上述特征,才被用于判识沉积水体的氧化还原条件。此外,有学者针对氧化还原条件判识的微量元素丰度比提出了阈值的概念,并得到广泛运用[11,42]

    根据Jones et al.[13]提出的相关阈值(表3)对N208井筇竹寺组和龙马溪组页岩进行的判识结果显示,筇竹寺组和龙马溪组页岩的V/Cr比值分别介于1.51~4.21和1.41~4.71(表2)。其中,筇竹寺组底部页岩(除N208-20外)的V/Cr比值大于4.25,应为厌氧的沉积环境,中上部页岩的V/Cr比值落为2.0~4.25,处于贫氧的沉积环境;龙马溪组底部页岩的V/Cr比值介于2.45~4.74,为厌氧—贫氧环境,中上部页岩的V/Cr比值小于2.0,应为氧化环境。然而,V/(V+Ni)比值表明,这两套黑色页岩层系总体处于厌氧的沉积环境。换言之,利用V/(V+Ni)和V/Cr对这两套黑色页岩氧化还原条件进行判识的结果不同,其原因可能是研究样品多是富有机质和黄铁矿的页岩。在沉积介质环境中,元素V容易被有机质颗粒吸附并发生沉淀,Ni是亲硫元素,容易与硫结合形成硫化物或者富集于黄铁矿中,所以,V/(V+Ni)比值会受到有机质和黄铁矿的共同影响[4344]。从Ni/Co的比值来看,筇竹寺组绝大多数页岩(除N208-19外)的Ni/Co比值小于5,应为氧化环境;龙马溪组底部页岩的Ni/Co比值大于5,为贫氧沉积环境,中上部层段页岩的Ni/Co比值小于5,表明其处于氧化环境。显然,与V/Cr比值的判识结果相矛盾,其原因可能是,Ni和Co均为亲硫元素,在含H2S的强还原条件下,容易形成NiS和CoS等不溶物,并以固溶体的形式进入黄铁矿,导致Ni和Co元素都在富含黄铁矿的沉积物中富集[11,42]。因此,Ni/Co可能不适用于判识富含H2S水体的氧化还原条件。相反,元素Th在水体中相对稳定,在细粒沉积物中与重矿物和/或黏土矿物的碎屑成分相关,其赋存状态不受硫化物的制约[11],从而在判识富含H2S水体的氧化还原条件时具有一定优势。

    沉积环境判识参数缺氧环境富氧环境
    厌氧贫氧
    V/Cr>4.252.00~4.25<2.00
    Ni/Co>7.005.00~7.00<5.00
    U/Th>1.250.75~1.25<0.75
    V/(V+Ni)>0.600.45~0.60<0.45
    Uauth>12.05.00~12.0<5.00

    一般认为U/Th比值越高(>0.75),海水的还原性越强[11]。长宁地区N208井筇竹寺组和龙马溪组页岩的U/Th分布特征是,筇竹寺组底部页岩的U/Th比值为1.02~2.88,揭示其处于厌氧—贫氧的沉积环境,中上部绝大部分页岩的U/Th比值小于0.75,为氧化的沉积环境;龙马溪组底部层段页岩的U/Th比值大于0.75,表明其处于厌氧环境,中上部层段绝大部分页岩的U/Th比值小于0.75,应为氧化环境。与U/Th的判识结果相似,筇竹寺组和龙马溪组页岩的Uauth值显示,筇竹寺组和龙马溪组底部层段为厌氧环境,中上部层段为氧化环境。N208井筇竹寺组和龙马溪组页岩的U/Th和Uauth在垂向上的变化趋势与TOC基本一致,表明其判识结果相较于V/(V+Ni)、V/Cr和Ni/Co更接近实际情况。

    综上所述,利用V/(V+Ni)、V/Cr和Ni/Co对筇竹寺组和龙马溪组古沉积水体的氧化还原条件进行判识,其结果出现多解性,尤其是V/(V+Ni)和Ni/Co的判识结果相互矛盾。究其原因,可能是研究样品为富硫页岩,有利于V、Ni和Co等微量元素在沉积物中的富集。U/Th和Uauth能反映氧化还原条件的变化趋势,但区分氧化还原条件的阈值还有待商榷。目前,最常用的阈值标准是Jones et al.[13]基于对挪威北海的下白垩统泥岩等研究后提出来的,而N208井筇竹寺组和龙马溪组页岩的岩石学特征和沉积环境与其存有明显差异,所以,对于N208井筇竹寺组和龙马溪组页岩,相应氧化还原指标的判识阈值还有待进一步研究。

  • 相对于微量元素丰度比,微量元素富集系数更能有效地反映沉积古环境的氧化还原条件[4547]。在还原条件下,相应微量元素都可能发生不同程度的富集,从而导致微量元素丰度比用于判识氧化还原条件时容易出现不一致的现象。微量元素富集系数是通过Al元素含量进行标准化处理而获取的,Al不仅能代表陆源碎屑的输入,又不易受到氧化还原条件变化的影响,所以,微量元素富集系数是判识氧化还原条件的理想指标[42]

    VEF、CrEF、CoEF、UEF和MoEF 在垂向上的变化趋势不同,其中筇竹寺组和龙马溪组页岩的VEF在垂向上波动范围较大(图4),其富集系数(除了N208-02)都大于1,表明筇竹寺组和龙马溪组页岩整体上处于缺氧的沉积环境。同样,CrEF和CoEF在垂向上的波动范围及变化频率都较大,其富集系数介于0.93~1.50,表明筇竹寺组和龙马溪组页岩的Cr和Co在垂向上的富集程度不一,反映其氧化还原条件变化较大。然而,VEF、CrEF和CoEF与TOC之间均无明显相关性(图5),可能是在还原条件下,V3+虽然容易被沉积有机质吸附,但是也会以V2O3、V(OH)3,或者替代黏土矿物中的Al3+的方式固定于沉积物中。而Co和Cr均不容易被沉积有机质所吸附,Co更倾向于以硫化物的形式固定于沉积物中,Cr3+主要以替代黏土矿物中的Al3+而固定于沉积物中[11,42]

    Figure 5.  Relationships between the enrichment coefficient of trace elements and total organic carbon (TOC)

    筇竹寺组和龙马溪组页岩的UEF和MoEF 在垂向上的变化趋势基本一致,UEF和MoEF与TOC之间呈正相关关系(图5),均表现为其底部富集程度高,中上部富集程度变低并趋于稳定,表明筇竹寺组和龙马溪组底部处于还原环境,向上还原程度逐渐降低。在不同的成岩阶段,随着氧化还原梯度的变化,U和Mo在沉积物中的富集程度存在一定差异[11]。Algeo et al.[48]提出UEF和MoEF的相对关系可以作为氧化还原条件的判识指标,UEF大于MoEF为氧化环境,UEF小于MoEF为还原环境。筇竹寺组和龙马溪组页岩的UEF均小于MoEF表1),揭示这两套黑色页岩层系总体上都处于还原环境。

    显而易见,MoEF在判识富有机质海相页岩的氧化还原条件时较为有效,可能是在海水中,Mo固定于沉积物的途径和形式较为单一,不易受到其他环境因素的干扰。另外,Mo不易被黏土矿物、CaCO3和铁的氢氧化物所吸附,更倾向于被Mn的氢氧化物所俘获[11]。随着Mn的被还原,Mo也会被解析而重新进入孔隙水,在含H2S的水体中可以形成MoSX沉淀并固定于沉积物[10]。值得注意的是,MoEF只能反映氧化还原条件的变化趋势,很难用于区分具体的氧化还原条件。因此,结合硫元素化学种分布特征综合判识筇竹寺组和龙马溪组页岩的氧化还原条件可能更接近于实际。

  • 氧化还原敏感性元素的积聚与迁移不仅受到氧化还原条件的控制,也可能会受到其他因素的影响,例如水体滞留程度和沉积速率等都可能会使元素富集程度发生改变。因此,微量元素富集系数以及微量元素丰度比等指标在判识氧化还原条件时容易出现多解性,特定条件下提出的阈值也很难应用于其他不同的沉积环境[12,4950]。为了避免相关因素对氧化还原条件判识结果的影响,在明确TOC的基础上,结合硫元素化学种和微量元素富集系数(MoEF、UEF等)对N208井筇竹寺组和龙马溪组页岩沉积环境的氧化还原条件进行判识,其结果更加切合实际。

    N208井筇竹寺组页岩还原态硫的相对含量介于95.0%~100%(表1),表明筇竹寺组页岩处于强还原的沉积环境。相较于筇竹寺组,龙马溪组页岩还原态硫的相对含量较低,为68.4%~87.6%(表1),表明龙马溪组页岩的还原程度要低于筇竹寺组,为相对的弱还原环境。以硫元素化学种的判识结果为基础,结合Mo元素的富集系数(图6),对筇竹寺组和龙马溪组页岩氧化还原条件进行判识,筇竹寺组和龙马溪组底部层段页岩的Mo元素较为富集,向上富集程度变低,指示其为还原环境,向上还原程度逐渐变低。结合硫元素化学种,N208井筇竹寺组页岩所处的沉积环境比龙马溪组的还原性更强,筇竹寺组底部页岩为贫硫酸盐的厌氧环境,向上还原性降低并逐渐变为稳定的厌氧—贫氧环境;龙马溪组底部页岩为含硫酸盐厌氧—贫氧环境,向上还原性降低,为贫氧环境。

    Figure 6.  (a) Changes of reduced sulfur content for shales from the Qiongzhusi and Longmaxi Formations along the profile, and (b) the relationship between MoEF and TOC

    总之,硫元素化学种是比较可信的氧化还原条件判识指标,能够区分筇竹寺组和龙马溪组页岩沉积环境的氧化还原条件。首先利用硫元素化学种判识其整体的氧化还原条件,再结合与TOC成正相关且不易受后期成岩作用影响的钼元素富集系数,进一步刻画垂向上的变化规律,能够有效地避免氧化还原条件判识的结果出现多解性。

  • 通过对比分析长宁地区N208井筇竹寺组和龙马溪组页岩的硫元素化学种分布特征和多元素氧化还原指标之间的相互关系,初步得出以下认识:

    利用V/Cr、V/(V+Ni)和Ni/Co对N208井筇竹寺组和龙马溪组页岩氧化还原条件进行判识出现了不一致的结果,V/Cr反映筇竹寺组页岩处于厌氧—贫氧环境,而V/(V+Ni)则表明其处于厌氧环境,Ni/Co表明其处于氧化环境。尽管U/Th和Uauth能够反应两套页岩层系垂向上的变化趋势,但利用前人提出的阈值进行氧化还原条件的判识,使得其判识结果出现一定偏离。如果优先利用氧化还原敏感性元素硫的化学种对氧化还原条件进行整体判识,再结合微量元素富集系数等指标对氧化还原条件的变化进行判识,其效果更加切合实际。

    与传统的微量元素丰度比判识指标相比,基于硫元素化学种、微量元素富集系数MoEF以及TOC构建的S-MoEF-TOC体系在对筇竹寺组和龙马溪组页岩沉积环境氧化还原条件的判识方面具有明显优势。硫元素化学种分布特征揭示,筇竹寺组页岩的还原程度比龙马溪组高。筇竹寺组整体为贫硫酸盐厌氧环境,剖面向上还原性略有降低;龙马溪组底部为含硫酸盐的厌氧—贫氧环境,向上还原性降低,表现为贫氧环境。

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return