Advanced Search
Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents

YUAN Jing, ZHOU Tao, JING AnYu, SUN Chao, MA LiChi, WU GenJie. Differential Diagenesis-reservoir Formation Model of the Slope Belt of a Faulted Lacustrine Basin: Case study of the Dongying Formation in the eastern slope belt of the Chengbei low uplift, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 804-817. doi: 10.14027/j.issn.1000-0550.2021.165
Citation: YUAN Jing, ZHOU Tao, JING AnYu, SUN Chao, MA LiChi, WU GenJie. Differential Diagenesis-reservoir Formation Model of the Slope Belt of a Faulted Lacustrine Basin: Case study of the Dongying Formation in the eastern slope belt of the Chengbei low uplift, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 804-817. doi: 10.14027/j.issn.1000-0550.2021.165

Differential Diagenesis-reservoir Formation Model of the Slope Belt of a Faulted Lacustrine Basin: Case study of the Dongying Formation in the eastern slope belt of the Chengbei low uplift, Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2021.165
Funds:

National Natural Science Foundation of China 42072134

  • Received Date: 2021-07-09
  • Accepted Date: 2021-12-30
  • Rev Recd Date: 2021-12-06
  • Available Online: 2021-12-30
  • Publish Date: 2023-06-10
  • The diagenesis of the major oil-bearing strata in the main tectonic units of the Paleogene Dongying Formation in the eastern slope belt of the Chengbei low uplift in the Bozhong Depression, Bohai Bay Basin, was studied as an example of the relationship between reservoir properties in the slope belt of a faulted lacustrine basin. The main methods included thin-section identification, physical property analysis, scanning electron microscopy, X-ray diffraction analysis and vitrinite reflectance analysis, in combination with regional geological research results. It was found that, from sand group Ed32 to member 3 of the Dongying Formation, this area is generally at the middle diagenetic stage A. Four secondary pore development zones are present from shallow to deep. The main reservoir space types are secondary pores and micro-fractures. The diagenesis and pore evolution of reservoirs in the different tectonic units are clearly different. Acidic dissolution has been an important factor in improving reservoir physical properties in the first slope-break belt. In the second slope-break belt, acidic dissolution in the A1 sub-stage of the middle diagenetic stage was the main factor. Interlayer fracturing improves the physical properties of the reservoir in the A2 sub-stage. The connected dissolution pores formed by alkaline dissolution is an important factor in the improvement of physical properties of deep reservoirs in fault step zones. In the sag area, a complex pore/fracture system is the most important reservoir space. The carbonate content restricts the improvement of reservoir physical properties. The physical properties of shallow-to-middle depth (pebbly) sandstone reservoir negatively correlate with its thickness: single layers less than 4 m thick have the better physical properties. Layers thicker than 4 m have better physical properties than normal (non-pebbly) sandstone of the same thickness, although normal sandstone still has reservoir capacity with main reservoir space consisting of compression and overpressure fractures connected to dissolution pores. Reservoir capacity in deep reservoirs is also improved by extensive compaction and overpressure fractures connected to dissolution pores.
  • [1] Ajdukiewicz J M, Lander R H. Sandstone reservoir quality prediction: The state of the art[J]. AAPG Bulletin, 2010, 94(8): 1083-1091.
    [2] Bjørlykke K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14.
    [3] Li L Y, Wei J C, Yin H Y, et al. Influence of sedimentary facies on reservoir quality and distribution of diagenetic features in the Funing Formation, Wanglongzhuang oilfield, Subei Basin, eastern China[J]. Arabian Journal of Geosciences, 2018, 11(15): 432.
    [4] Wolela A M, Gierlowski-Kordesch E H. Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin (Triassic-Jurassic), Newark Supergroup, USA[J]. Sedimentary Geology, 2007, 197(1/2): 99-126.
    [5] Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
    [6] Ali S A, Clark W J, Moore W R, et al. Diagenesis and reservoir quality[J]. Oilfield Review, 2010, 22(2): 14-27.
    [7] Mahmi O, Dypvik H, Hammer E. Diagenetic influence on reservoir quality evolution, examples from Triassic conglomerates/arenites in the Edvard Grieg field, Norwegian North Sea[J]. Marine and Petroleum Geology, 2018, 93: 247-271.
    [8] 曹天宇,钟大康,牛胜利,等. 惠州凹陷东部珠海组储层碱性成岩作用及孔隙演化[J]. 沉积学报,2020,38(6):1327-1337.

    Cao Tianyu, Zhong Dakang, Niu Shengli, et al. Alkaline diagenesis and porosity evolution of Zhuhai Formation reservoirs in eastern Huizhou Sag[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1327-1337.
    [9] 操应长,杨田,宋明水,等. 陆相断陷湖盆低渗透碎屑岩储层特征及相对优质储层成因:以济阳坳陷东营凹陷古近系为例[J]. 石油学报,2018,39(7):727-743.

    Cao Yingchang, Yang Tian, Song Mingshui, et al. Characteristics of low-permeability clastic reservoirs and genesis of relatively high-quality reservoirs in the continental rift lake basin: A case study of Paleogene in the Dongying Sag, Jiyang Depression[J]. Acta Petrolei Sinica, 2018, 39(7): 727-743.
    [10] 操应长,燕苗苗,葸克来,等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素[J]. 沉积学报,2019,37(5):945-956.

    Cao Yingchang, Yan Miaomiao, Xi Kelai, et al. The characteristics and controlling factors of glutenite reservoir in the Triassic Baikouquan Formation, Xiazijie area, Mahu Depression[J]. Acta Sedimentologica Sinica, 2019, 37(5): 945-956.
    [11] Dutton S P. Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties[J]. AAPG Bulletin, 2008, 92(6): 765-787.
    [12] Khan E U, Saleem M, Naseem A A, et al. Microfacies analysis, diagenetic overprints, geochemistry, and reservoir quality of the Jurassic Samanasuk Formation at the Kahi Section, Nizampur Basin, NW Himalayas, Pakistan[J]. Carbonates and Evaporites, 2020, 35(3): 95.
    [13] Haile B G, Klausen T G, Czarniecka U, et al. How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard[J]. Marine and Petroleum Geology, 2018, 92: 519-546.
    [14] 谭先锋,冉天,罗龙,等. 滨浅湖环境中“砂—泥”沉积记录及成岩作用系统:以济阳坳陷古近系孔店组为例[J]. 地球科学进展,2016,31(6):615-633.

    Tan Xianfeng, Ran Tian, Luo Long, et al. The “sand-mud” sedimentary record and its diagenetic system in shore-shallow lacustrine: A case study of Eocene Kongdian Formation in Jiyang Depression[J]. Advances in Earth Science, 2016, 31(6): 615-633.
    [15] 谭先锋,黄建红,李洁,等. 深部埋藏条件下砂岩中碳酸盐胶结物的成因及储层改造:以济阳坳陷始新统孔店组为例[J]. 地质论评,2015,61(5):1107-1120.

    Tan Xianfeng, Huang Jianhong, Li Jie, et al. Origin of carbonate cements and the transformation of the reservoir in sandstone under the deep burial condition: A case study on Eocene Kongdian Formation in Jiyang Depression, Bohai Bay Basin[J]. Geological Review, 2015, 61(5): 1107-1120.
    [16] 杨佳奇,纪友亮,吴浩,等. 南堡凹陷深层储层成岩作用与孔隙演化:以3号构造带古近系沙一段为例[J]. 沉积学报, 2022,40(1):203-216.

    Yang Jiaqi, Ji Youliang, Wu Hao, et al. Diagenesis and porosity evolution of deep reservoirs in the Nanpu Sag: A case study of Sha 1 member of the Paleogene in No. 3 structural belt[J]. Acta Sedimentologica Sinica, 2022,40(1):203-216.
    [17] 曹刚,王星星,朱筱敏,等. 车西洼陷陡坡带沙三下亚段近岸水下扇储层成岩演化及其对储层物性影响[J]. 沉积学报,2016,34(1):158-167.

    Cao Gang, Wang Xingxing, Zhu Xiaomin, et al. Diagenetic evolution of Es3 x nearshore subaqueous fan reservoir and its influence on property in the steep slope zone of western Chezhen sub-sag[J]. Acta Sedimentologica Sinica, 2016, 34(1): 158-167.
    [18] Bello A M, Jones S, Gluyas J, et al. Role played by clay content in controlling reservoir quality of submarine fan system, Forties Sandstone member, Central Graben, North Sea[J]. Marine and Petroleum Geology, 2021, 128: 105058.
    [19] 罗静兰,李弛,雷川,等. 碎屑岩储集层成岩作用研究进展与热点问题讨论[J]. 古地理学报,2020,22(6):1021-1040.

    Luo Jinglan, Li Chi, Lei Chuan, et al. Discussion on research advances and hot issues in diagenesis of clastic-rock reservoirs[J]. Journal of Palaeogeography, 2020, 22(6): 1021-1040.
    [20] 操应长,姜在兴. 渤海湾盆地埕岛东斜坡地区东三段油气成岩成藏模式[J]. 矿物岩石,2002,22(2):64-68.

    Cao Yingchang, Jiang Zaixing. Diagenesis-pool forming model of the lower member of Dongying Formation in the eastern slope area of Chengdao, Bohai Bay Basin, China[J]. Mineralogy and Petrology, 2002, 22(2): 64-68.
    [21] 时丕同,高喜龙,杨鹏飞,等. 渤海湾埕北低凸起东斜坡东营组储层特征及其控制因素[J]. 沉积与特提斯地质,2009,29(3):47-55.

    Shi Pitong, Gao Xilong, Yang Pengfei, et al. Reservoir quality and controlling factors of the Dongying Formation sandstone reservoirs in the eastern slope zone of the Chengbei low uplift in the Bohai Bay[J]. Sedimentary Geology and Tethyan Geology, 2009, 29(3): 47-55.
    [22] 宋明水. 渤海海域埕岛东坡东营组砂体成因及油气富集特征[J]. 中国石油勘探,2020,25(4):31-42.

    Song Mingshui. Sand body genesis and hydrocarbon accumulation characteristics of Dongying Formation in the east slope of Chengdao area, Bohai Sea[J]. China Petroleum Exploration, 2020, 25(4): 31-42.
    [23] 杨棵,董艳蕾,朱筱敏,等. 渤海湾盆地渤中凹陷埕岛东坡古近系东营组二段下部源—汇系统[J]. 石油与天然气地质,2018,39(6):1280-1292.

    Yang Ke, Dong Yanlei, Zhu Xiaomin, et al. Analysis of the “source-to-sink” system in the 2nd member of the Paleogene Dongying Formation in the eastern slope of Chengdao in Bozhong Say, Bohai Bay Basin[J]. Oil & Gas Geology, 2018, 39(6): 1280-1292.
    [24] 王绍忠,周红科,杨启浩. 渤海湾埕岛东部古近系层序地层及沉积特征研究[J]. 中国地质,2010,37(2):404-413.

    Wang Shaozhong, Zhou Hongke, Yang Qihao. Sequence stratigraphy and sedimentary characteristics of Paleogene hydrocarbon reservoirs in eastern Chengdao offshore oilfield of Bohai gulf[J]. Geology in China, 2010, 37(2): 404-413.
    [25] 周士科,魏泽典,邓宏文,等. 渤中凹陷古近系构造层序研究[J]. 中国海上油气,2006,18(4):236-240,254.

    Zhou Shike, Wei Zedian, Deng Hongwen, et al. A study on Paleogene tectonic sequences in Bozhong Sag[J]. China Offshore Oil and Gas, 2006, 18(4): 236-240, 254.
    [26] 马立驰,王永诗,杨贵丽. 垦东—埕岛构造带古近纪断层活动特征[J]. 油气地质与采收率,2015,22(3):42-46,51.

    Ma Lichi, Wang Yongshi, Yang Guili. Features of Paleogene fault activity in the Kendong-Chengdao structural belt[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 42-46, 51.
    [27] 袁静,李春堂,杨学君,等. 东营凹陷盐家地区沙四段砂砾岩储层裂缝发育特征[J]. 中南大学学报(自然科学版),2016,47(5):1649-1659.

    Yuan Jing, Li Chuntang, Yang Xuejun, et al. Development characteristics of glutenite reservoir fractures of the Fourth member of Shahejie Formation in Yanjia area, Dongying Sag[J]. Journal of Central South University (Science and Technology), 2016, 47(5): 1649-1659.
    [28] 郭沫贞,朱国华,寿建峰,等. 碎屑岩压裂缝的特征、成因与油气勘探意义[J]. 沉积学报,2006,24(4):483-487.

    Guo Mozhen, Zhu Guohua, Shou Jianfeng, et al. Features, origin and petroleum explorative significance of crushed fracture in clastic rock[J]. Acta Sedimentologica Sinica, 2006, 24(4): 483-487.
    [29] 袁静,成荣红,朱忠谦,等. 库车坳陷DB气田白垩系巴什基奇克组砂岩的多期溶蚀[J]. 石油与天然气地质,2016,37(4):546-555.

    Yuan Jing, Cheng Ronghong, Zhu Zhongqian, et al. Multi-staged dissolution of sandstone in Cretaceous Bashijiqike Formation in DB gas field of Kuqa Depression, Tarim Basin[J]. Oil & Gas Geology, 2016, 37(4): 546-555.
    [30] Scherer M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction[J]. AAPG Bulletin, 1987, 71(5): 485-491.
    [31] 袁静,李欣尧,李际,等. 库车坳陷迪那2气田古近系砂岩储层孔隙构造—成岩演化[J]. 地质学报,2017,91(9):2065-2078.

    Yuan Jing, Li Xinyao, Li Ji, et al. Tectonic-diagenetic evolution of Paleocene tight sandstone reservoir pores in the DN2 gas field of Kuqa Depression[J]. Acta Geologica Sinica, 2017, 91(9): 2065-2078.
    [32] 万友利,丁晓琪,白晓亮,等. 塔中地区志留系海相碎屑岩储层石英溶蚀成因及影响因素分析[J]. 沉积学报,2014,32(1):138-147.

    Wan Youli, Ding Xiaoqi, Bai Xiaoliang, et al. Quartz dissolution causes and influencing factors in the Silurian marine clastic reservoir rocks in central Tarim Basin[J]. Acta Sedimentologica Sinica, 2014, 32(1): 138-147.
    [33] 肖焕钦,刘震,赵阳,等. 济阳坳陷地温—地压场特征及其石油地质意义[J]. 石油勘探与开发,2003,30(3):68-70.

    Xiao Huanqin, Liu Zhen, Zhao Yang, et al. Characteristics of geotemperature and geopressure fields in the Jiyang Depression and their significance of petroleum geology[J]. Petroleum Exploration and Development, 2003, 30(3): 68-70.
    [34] 龚育龄,王良书,刘绍文,等. 济阳坳陷地温场分布特征[J]. 地球物理学报,2003,46(5):652-658.

    Gong Yuling, Wang Liangshu, Liu Shaowen, et al. Distribution characteristics of geotemperature field in Jiyang Depression, Shandong, North China[J]. Chinese Journal of Geophysics, 2003, 46(5): 652-658.
    [35] 苏向光,邱楠生,柳忠泉,等. 沾化凹陷构造—热演化研究[J]. 西安石油大学学报(自然科学版),2006,21(3):9-12.

    Su Xiangguang, Qiu Nansheng, Liu Zhongquan, et al. Tectonic-thermal evolution of Zhanhua Sag[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2006, 21(3): 9-12.
    [36] 于炳松,赖兴运,高志前. 克拉2气田砂岩储层中成岩方解石—白云石的平衡及其对储层质量的影响[J]. 自然科学进展,2007,17(3):339-345.

    Yu Bingsong, Lai Xingyun, Gao Zhiqian. The equilibrium between calcite and dolomite during diagenesis in sandstone reservoir in Kela 2 gas field and the influence to quality of reservoir[J]. Progress in Natural Science, 2007, 17(3): 339-345.
    [37] 郑庆华,柳益群. 鄂尔多斯盆地镇北地区延长组长4+5致密油层成岩作用及成岩相[J]. 沉积学报,2015,33(5):1000-1012.

    Zheng Qinghua, Liu Yiqun. Diagenesis and diagenetic lithofacies of tight reservoir of Chang 4+5 member of Yanchang Formation in Zhenbei, Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 1000-1012.
    [38] 袁静,张善文,乔俊,等. 东营凹陷深层溶蚀孔隙的多重介质成因机理和动力机制[J]. 沉积学报,2007,25(6):840-846.

    Yuan Jing, Zhang Shanwen, Qiao Jun, et al. Cause of formation and dynamic mechanisms in multiply medium of dissolved pores in deep formation of Dongying Sag[J]. Acta Sedimentologica Sinica, 2007, 25(6): 840-846.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(1)

Article Metrics

Article views(341) PDF downloads(90) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-07-09
  • Revised:  2021-12-06
  • Accepted:  2021-12-30
  • Published:  2023-06-10

Differential Diagenesis-reservoir Formation Model of the Slope Belt of a Faulted Lacustrine Basin: Case study of the Dongying Formation in the eastern slope belt of the Chengbei low uplift, Bohai Bay Basin

doi: 10.14027/j.issn.1000-0550.2021.165
Funds:

National Natural Science Foundation of China 42072134

Abstract: The diagenesis of the major oil-bearing strata in the main tectonic units of the Paleogene Dongying Formation in the eastern slope belt of the Chengbei low uplift in the Bozhong Depression, Bohai Bay Basin, was studied as an example of the relationship between reservoir properties in the slope belt of a faulted lacustrine basin. The main methods included thin-section identification, physical property analysis, scanning electron microscopy, X-ray diffraction analysis and vitrinite reflectance analysis, in combination with regional geological research results. It was found that, from sand group Ed32 to member 3 of the Dongying Formation, this area is generally at the middle diagenetic stage A. Four secondary pore development zones are present from shallow to deep. The main reservoir space types are secondary pores and micro-fractures. The diagenesis and pore evolution of reservoirs in the different tectonic units are clearly different. Acidic dissolution has been an important factor in improving reservoir physical properties in the first slope-break belt. In the second slope-break belt, acidic dissolution in the A1 sub-stage of the middle diagenetic stage was the main factor. Interlayer fracturing improves the physical properties of the reservoir in the A2 sub-stage. The connected dissolution pores formed by alkaline dissolution is an important factor in the improvement of physical properties of deep reservoirs in fault step zones. In the sag area, a complex pore/fracture system is the most important reservoir space. The carbonate content restricts the improvement of reservoir physical properties. The physical properties of shallow-to-middle depth (pebbly) sandstone reservoir negatively correlate with its thickness: single layers less than 4 m thick have the better physical properties. Layers thicker than 4 m have better physical properties than normal (non-pebbly) sandstone of the same thickness, although normal sandstone still has reservoir capacity with main reservoir space consisting of compression and overpressure fractures connected to dissolution pores. Reservoir capacity in deep reservoirs is also improved by extensive compaction and overpressure fractures connected to dissolution pores.

YUAN Jing, ZHOU Tao, JING AnYu, SUN Chao, MA LiChi, WU GenJie. Differential Diagenesis-reservoir Formation Model of the Slope Belt of a Faulted Lacustrine Basin: Case study of the Dongying Formation in the eastern slope belt of the Chengbei low uplift, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 804-817. doi: 10.14027/j.issn.1000-0550.2021.165
Citation: YUAN Jing, ZHOU Tao, JING AnYu, SUN Chao, MA LiChi, WU GenJie. Differential Diagenesis-reservoir Formation Model of the Slope Belt of a Faulted Lacustrine Basin: Case study of the Dongying Formation in the eastern slope belt of the Chengbei low uplift, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 804-817. doi: 10.14027/j.issn.1000-0550.2021.165
  • 储层物性通常由沉积环境、沉积物组成和成岩作用共同决定[13]。成岩作用贯穿储层发育演化的全过程并对储层现今特征的影响历久弥深、历深弥强。前人从各类成岩作用对物性的控制[410],泥质杂基和沉积相带等因素对成岩作用及随之而来的物性演化的影响等角度展开了系统研究[1118]。考虑沉积环境、构造背景对成岩作用的制约,研究沉积—成岩—成储的系统过程已成为当前的研究热点[19]

    渤海湾盆地渤中凹陷埕北低凸起东部斜坡带东营组油气资源丰富,有研究认为压实作用与胶结作用破坏其主力含油层位储层物性,溶蚀作用建设储层物性[2021]。然而斜坡带不同构造单元埋深相差千余米,沉积相类型不同,成岩环境和演化过程复杂多样,对其成岩—成储特征一概而论未免过于笼统;同时,该区东北部深洼陷带为各期重力流沉积汇聚卸载区,有较厚砂体发育,可能形成大规模油气藏[22],但尚未对其中埋深3 600 m以下的较厚砂(砾)岩体储层开展研究,制约了该区下一步油气勘探部署和新增储量的发现。

    笔者从岩心薄片鉴定、扫描电镜分析、物性分析出发,结合粒度分析、X射线衍射分析和镜质体反射率分析等技术手段,充分利用区域构造、沉积和油气成藏研究成果,对埕北低凸起东部斜坡带东营组不同构造单元、不同埋藏深度、不同沉积相类型的砂(砾)岩开展成岩作用及其与物性关系的研究,探讨深层砂体的储集能力,构建差异性成岩—成储模式,不仅可以深化陆相盆地斜坡带碎屑岩储层成岩—孔隙演化的认识,对落实其深层勘探潜力和目标也具有重要的现实意义。

  • 渤海湾盆地渤中凹陷埕北低凸起东部斜坡带属于济阳坳陷和渤中坳陷交汇处的垦东—孤东—长提—埕岛潜山构造披覆带北段。其南以埕北断层为边界与埕北凹陷相邻,东南方向与桩东凹陷紧邻,东北方向以斜坡带与渤中凹陷相邻[23]图1a),勘探面积约为300 km2。作为埕北低凸起向渤中凹陷延伸的部分,研究区构造相对简单,构造格局具有明显的继承性,发育五个次级构造单元,分别为边缘超覆带、斜坡带(第一和第二坡折带)、东北部较深部位的洼陷带及东南部埕北30北断层下降盘(上升盘为潜山带)的断阶带(图1b)。边缘超覆带在东营组沉积时期主要为剥蚀区,与埕北低凸起同为物源区;埕北30潜山带在东营组早期向断阶带和洼陷带提供物源;其余次级构造单元在东营组时期皆为沉积区。

    Figure 1.  Study area: (a) tectonic location; (b) division of tectonic units; and (c) strata and sedimentary facies (modified from references [24⁃25])

    埕北低凸起东部斜坡带超覆沉积了沙三段—东营组[26],其中东营组已探明储量2 284.6×104 t,是胜利探区埕岛油田重要的勘探潜力区和含油层系[22]。按照岩性—电性组合和沉积旋回东营组由上至下可划分为东一段、东二段、东三段,各段分别划分为两个亚段,由上而下记为Ed1、Ed2、Ed3、Ed4、Ed5和Ed6亚段,并将Ed3亚段细分为Ed31Ed32两个砂组,Ed4亚段细分为Ed41Ed42Ed43三个砂组。其中Ed32砂组至Ed43砂组为研究区主力含油层位,发育湖泊背景下的扇三角洲、湖底扇和近岸水下扇相(图1c)。

  • 对研究区东营组286 m岩心的精细观察描述和164块岩石样品的薄片鉴定表明,埕北低凸起东部斜坡带Ed32砂组至Ed43砂组储层岩石类型主要包括各粒级砂岩和细砾岩。其中砂岩为岩屑长石砂岩和长石岩屑砂岩(图2),岩屑类型以中酸性喷出岩岩屑和变质岩岩屑为主;颗粒分选和磨圆差—中等,接触关系多样。杂基多为泥质,洼陷带内砂岩含数量不等的灰泥;胶结物以碳酸盐和黏土矿物为主,多为孔隙式—接触式胶结。

    Figure 2.  Rock types and composition maps in the eastern slope belt of Chengbei low uplift, sand group Ed32 and sub⁃member 4 of Dongying Formation

  • 对埕北低凸起东部斜坡25口取心井东营组Ed32砂组至东三段共计1 327个样品进行了物性分析。结果表明,纵向上,研究区东营组发育4个次生孔隙发育带,埋深分别在2 250~2 500 m,2 650~3 350 m,3 450~3 850 m和4 250 m附近(图3)。

    Figure 3.  Variation diagrams of changes in reservoir physical properties with depth in the eastern slope belt of the Chengbei low uplift, from sand group Ed32 to member 3 of Dongying Formation

    平面上,研究区不同构造单元东营组主力含油层位储层物性具有明显差异(表1)。由表1可知,第一坡折带和断阶带物性最好,为中孔—中渗,且渗透率和孔隙度相关性最为显著(图4a,c),反映连通孔隙为其主要储集空间;第二坡折带物性较差,为低孔—(中)低渗,且渗透率随孔隙度变化分为两支(图4b),推测斜率高者与微裂缝发育有关;洼陷带物性为中孔—低渗,在各构造单元中最低,且渗透率和孔隙度相关性在各构造单元中最不明显(图4d),反映其储集空间类型和孔隙结构最为复杂,微裂缝可能相较于其他构造单元更发育。

    构造单元样品数量/个平均 孔隙度/%平均渗透率/ ×10-3μm2储层类别
    第一坡折带45619.56138.95中孔—中渗
    第二坡折带5114.3433.12低孔—(中)低渗
    断阶带16315.83228.47中孔—中渗
    洼陷带6115.6011.58中孔—低渗

    Figure 4.  Scattergrams of permeability⁃porosity relationship in the eastern slope belt of Chengbei low uplift, from sand group Ed32 to member 3 of Dongying Formation

  • 薄片鉴定和扫描电镜观察表明,埕北低凸起东部斜坡带东营组Ed32砂组至东三段遭受了较强的成岩作用,主要储集空间为各类次生孔隙和微裂缝(图5),原生孔隙较少。

    Figure 5.  Reservoir space types in the eastern slope belt of Chengbei low uplift, from sand group Ed32 to member 3 of the Dongying Formation

    统计结果表明,次生孔隙约占总面孔率的66.07%,以在坡折带和断阶带较为发育的粒间溶蚀孔隙和粒内溶蚀孔隙为主(图5a,b,d)。微裂缝约占总面孔率的10.10%,包括层间裂缝、压裂缝、超压裂缝和溶蚀裂缝。层间裂缝常见于坡折带Ed4亚段砂泥岩互层的岩性界面处(图5c),多成因于黏土矿物在成岩过程中的脱水收缩。压裂缝和超压裂缝在洼陷带Ed4亚段和东三段中较为发育。其中压裂缝主要位于较粗颗粒内部和颗粒间的接触处[27],在颗粒相对较薄的边缘处尤为显著;超压裂缝则成因于地层超压,在颗粒内部向边缘呈无方向性的炸裂状[2829]图5e)。成岩流体沿碎屑颗粒边缘流动使沿途易溶颗粒和填隙物发生不同程度的溶解形成溶蚀裂缝,溶蚀作用强烈时溶蚀裂缝连通溶蚀孔隙形成孔隙—裂缝复合储集空间(图5f),有效提高储层储集和渗透能力。

  • 压实作用贯穿埕北低凸起东部斜坡带各构造单元东营组储层的成岩演化过程。显微镜下可见云母等塑性组分受压实作用扭曲变形,随埋深增加,颗粒接触关系逐渐紧密。石英、长石等脆性颗粒受压实作用沿薄弱面或在颗粒接触处发生破裂,形成压裂缝(图5d,f)。

    利用粒度分析测试数据,以第一坡折带为例,据Scherer[30]原始孔隙度恢复公式计算出砂岩平均原始孔隙度为36.10%,经过压实作用孔隙度平均值为9.40%,视压实减孔率为73%,表明储层经受了较强压实作用[31]

  • 埕北低凸起东部斜坡带东营组储层经历的胶结作用类型主要有黏土矿物胶结、碳酸盐胶结和硅质胶结,偶见黄铁矿胶结。

    研究区东营组黏土矿物胶结物以高岭石为主,约占自生黏土矿物总含量的50%~85%,余者为伊/蒙混层、伊利石和绿泥石。扫描电镜下常见表面光洁的片状自生高岭石呈书页状集合体充填孔隙(图5b、图6a,b)。伊/蒙混层黏土矿物作为蒙脱石向伊利石转化的中间产物,其形态介于伊利石和蒙脱石。自生伊利石常呈片状、丝缕状充填粒间孔隙或附着在颗粒表面(图6a~c)。自生绿泥石多呈叶片状充填粒间孔隙(图5b、图6b)。

    Figure 6.  Typical diagenesis characteristics in the eastern slope belt of Chengbei low uplift, from sand group Ed32 to member 3 of the Dongying Formation

    研究区东营组碳酸盐胶结物主要为方解石、(含)铁方解石、白云石和(含)铁白云石,显微镜下可见铁方解石呈连晶状,白云石呈半自形晶粒填充孔隙(图6d,e)。硅质胶结在研究区主要表现为石英次生加大(图6b,h),发育程度不及碳酸盐胶结物。

    计算表明,第一坡折带储层经历胶结作用后孔隙度降低1.3%~10.4%,平均为4.30%,平均视胶结减孔率约为14.5%,反映储层经历的胶结作用相对较弱。

  • 研究区东营组常见碳酸盐矿物和黏土矿物对碎屑颗粒的交代作用(图6c~e)。交代颗粒的碳酸盐矿物可以是(含)铁方解石、方解石,也可是(含)铁白云石,尤其以(含)铁方解石最常见,可见其对石英、长石、岩屑等沿颗粒边缘进行交代,形成港湾状边缘(图6d,e)。

  • 溶蚀作用作为埕北低凸起东部斜坡带东营组储层物性的建设性成岩作用,主要表现为碎屑组分出现不同程度的溶蚀。显微镜下可见石英颗粒、石英加大边以及石英质岩屑等石英组分发生直接溶解形成港湾状边缘,产生粒间和(或)粒内溶孔(图5d、图6g);斜长石、钾长石及岩屑溶蚀孔隙的边缘常见自生高岭石富集(图6i);也可见碳酸盐胶结物和黏土杂基遭受溶蚀形成填隙物内溶孔和粒间溶孔(图6f,h);上述溶解和溶蚀现象反映研究区东营组曾经历酸性和碱性多重成岩环境[3132]

    溶蚀作用后储层增加的孔隙度大致等于现今保留的溶蚀次生孔隙。经计算,第一坡折带经溶蚀作用增加孔隙度1.1%~16.4%,平均溶蚀增孔率为53.1%,有效地改善了储层物性,溶蚀作用后平均孔隙度约为19.12%,与现今孔隙度相接近。

  • 在对埕北低凸起东部斜坡带东营组Ed32砂组至东三段的成岩作用特征进行系统研究的基础上,根据中华人民共和国石油天然气行业标准碎屑岩成岩阶段划分(SY/T 5477—2003),以镜质体反射率(Ro)、伊/蒙混层比值(I/S值)、特征自生矿物和黏土矿物组合为主要依据,并结合古地温恢复对各主要构造单元分别进行了成岩阶段划分(图7,8)。

    Figure 7.  Variation of authigenic mineral such as clay minerals, and Ro with depth in the eastern slope belt of Chengbei low uplift, Dongying Formation

    Figure 8.  Diagenetic stage division and evolution characteristics in the eastern slope belt of Chengbei low uplift, from sand group Ed32 to member 3 of the Dongying Formation

    研究区Ed32砂组至东三段Ro介于0.5%~0.9%,处于成熟—高成熟阶段;I/S值基本在50%~15%之间,位于有序混层带内;有铁白云等晚期碳酸盐胶结物出现(图7,8);另外,研究区新生代平均古地温梯度与现今地温梯度接近,用现今地温梯度恢复古地温[22,3334],结果表明其整体低于140 ℃。综上所述,认为研究区东营组Ed32砂组至东三段处于中成岩A期,以Ro=0.7%和古地温120 ℃为界,将其进一步划分为中成岩A1和中成岩A2两个亚期,各构造单元储层成岩演化过程简述如下。

  • 边缘超覆带、第一坡折带和断阶带于埋深2 500 m,第二坡折带于2 750 m,洼陷带于3 600 m古地温介于85 ℃~120 ℃,Ro=0.5%~0.7%,I/S值介于50%~30%,储层进入中成岩A1亚期。此时,有机质成熟产生的有机酸注入储层,受有机酸浓度的影响,成岩介质以酸性为特征,形成大量酸溶性孔隙。在中成岩A1亚期末,由于对酸溶性组分的持续溶蚀造成有机酸过量消耗,使距离有机酸来源较远的坡折带成岩环境开始由酸性向碱性转化,表现为自生伊利石含量增高(图7),石英颗粒和自生高岭石部分遭受溶蚀。

    边缘超覆带、第一坡折带和断阶带于埋深3 000 m,第二坡折带于3 250 m,洼陷带于4 100 m 古地温介于120 ℃~140 ℃,Ro=0.7%~0.9%,I/S值降为30%~15%,储层进入中成岩A2亚期。此时有机质进入高成熟阶段,有机酸浓度下降,成岩介质pH值有所升高,但第一坡折带仍以酸性为主导,高岭石大量产出,使得该阶段早期普遍发育酸溶性孔隙带。中成岩A2亚期末期,断阶带储层中白云石和伊利石含量增高,碳酸盐矿物大量沉淀,高岭石含量降低(图7),石英组分直接溶解,形成次生孔隙发育带,反映成岩流体趋向碱性的转变。

    研究区各构造单元进入中成岩A1和A2时期的埋藏深度不同,主要原因在于该地区地温梯度变化受构造格局控制,从边缘超覆带和断阶带向洼陷带降低[21,3335],造成不同构造单元成岩演化进程存在明显差异。此外,研究区中深层普遍存在超压现象,埋深大于3 000 m地层压力系数介于0.9~1.7,3 300 m以深压力系数可达2.0[21],而异常高压的存在通常会减缓有机质成熟,抑制黏土矿物转化,使得洼陷带成岩演化进程明显慢于其他构造单元。

  • 第一坡折带取心深度基本在2 900~3 300 m之间,处于中成岩A1亚期末至A2亚期,经过强压实、弱胶结和强溶蚀过程,在埋深2 900~3 050 m和3 300 m附近发育次生孔隙带。

    微观观察发现,第一坡折带储层中长石颗粒强烈溶解,长英质岩屑、杂基和早期碳酸盐胶结物也有不同程度的溶蚀,形成广泛发育的粒内、粒间溶蚀孔隙,尤其在2 900~3 050 m的次生孔隙发育带常见超粒大孔隙(图6f,i),并有自生高岭石在粒间沉淀。由此可见,酸性成岩环境下酸溶性矿物的溶蚀是该构造单元储层物性改善的关键。

    第一坡折带在埋深3 300 m处储层中自生黏土矿物表现为高岭石含量高、绿泥石和伊利石含量低,与第一个次生孔隙发育带高岭石和绿泥石含量高、伊利石含量低不同,且呈现方解石含量低、白云石含量高的特点(图7),反映该深度的次生孔隙发育带与白云石化和去绿泥石化作用关系密切[3637](式1,2)。

    2CaCO3+Mg2+=CaMg(CO32+Ca2+ (1)

    方解石 白云石

    3Al2Si2O5(OH)4+3.5Fe2++3.5Mg2++9H2O=Fe3.5Mg3.5Al6O20(OH)16+14H+ (2)

    高岭石 绿泥石

  • 第二坡折带样品深度介于2 700~3 500 m,在埋深2 750~2 900 m、3 050~3 150 m、3 300 m和3 450 m以深发育四个次生孔隙带,其中前两个次生孔隙带处于中成岩A1亚期,后两个次生孔隙带处于中成岩A2亚期。

    第二坡折带中成岩A1亚期储层成岩作用和储集空间特征与第一坡折带类似,发育在埋深2 750~2 900 m和3 050~3 150 m的次生孔隙带对应着低的伊利石含量和高的高岭石含量(图7),反映这两个次生孔隙带形成于酸性成岩环境中的溶蚀作用。

    该带埋深3 300 m处伊利石含量增高,埋深3 450 m处发育的次生孔隙带对应高的伊利石含量和低的高岭石含量(图7),表明这两个次生孔隙带与碱性成岩环境下的溶蚀作用相关。此时高岭石若仍有大量沉淀,则反映碱性成岩介质不足以将其彻底溶蚀,储层孔渗性得不到有效改善。

    同时,第二坡折带处于中成岩A2亚期的地层为东四亚段时期周期性洪水重力流形成的湖底扇沉积,其粒度和杂基含量呈现韵律性变化,砂泥岩界面常发育成岩收缩成因的层间裂缝(图5c),有效改善了储层的渗透性,在渗透率—孔隙度关系图(图4b)中表现为斜率高的分支。

  • 断阶带取心深度在2 450~3 600 m之间,在埋深2 500~2 750 m、3 100~3 250 m和3 600 m附近发育三个次生孔隙带。前两个次生孔隙带处于A1亚期,次生孔隙的发育程度与高岭石含量呈正比,反映其成因于酸性成岩环境下的溶蚀作用。

    埋深3 600 m附近的次生孔隙发育带处于A2亚期,该深度伊利石和绿泥石含量增高,高岭石和自生石英含量降低(图7),显示此处成岩环境已从酸性向碱性转化,高岭石和石英质组分的溶蚀程度是形成次生孔隙的关键。微观观察可见此深度段碳酸盐矿物以铁白云石和铁方解石为主,石英颗粒、石英次生加大边及充填于粒间的自生高岭石受到溶蚀,形成碱性成岩作用下的溶蚀孔隙(图6g)。另外,断阶带自生高岭石含量在各构造单元中最高,反映大气水沿断裂下渗对储层成岩作用的影响[38]

  • 洼陷带东营组样品集中的3 760~3 830 m和4 230~4 270 m两个深度段平均孔隙度为15.6%,次生孔隙发育,统计结果表明,各类微裂缝约占总面孔率的18.12%,在各构造单元中占比最高,对物性改善具有重要意义。

    具体来说,洼陷带东营组在埋深3 760~3 830 m处的次生孔隙带处于中成岩A1亚期,常见石英次生加大,长石颗粒溶蚀形成粒内和粒间溶蚀孔隙(图5b、图6b),且颗粒支撑的中细砂岩中压裂缝普遍发育,与溶蚀孔隙构成孔—缝复合储集空间,有效地改善了储层物性,使其渗透率可达55×10-3 μm2

    埋深4 230~4 270 m的次生孔隙带处于中成岩A2亚期,沉积地层为东三段碳酸盐岩屑和灰泥基质含量较高的近岸水下扇沉积。受原始成分的影响,该段常见铁方解石嵌晶式胶结,且自生伊利石非常发育,并交代自生石英(图6e),反映较明显的碱性成岩环境;同时可见(铁)白云石被溶解,表明该段次生孔隙的形成与去白云化作用有关。此外,该次生孔隙带中超压裂缝和压裂缝较埋深3 760~3 830 m的更为发育,各种微裂缝占比可达总面孔率的20.12%,对储层渗透率的贡献进一步增大。

  • 为了探讨不同埋深条件下成岩作用对储层岩性—物性关系的影响,选取埕北低凸起东部斜坡带东营组埋藏最浅的第一坡折带和埋藏最深的洼陷带储层进行对比分析。

  • 位于第一坡折带的CBG4井和CB805井取心深度分别集中于2 950~3 010 m和3 000~3 100 m(图9a~c),埋藏深度相当,同属于Ed32砂组,均为扇三角洲前缘水下辫状河道微相,储层岩石类型为含砾砂岩、中砂岩和细砂岩,储层单层厚度较大,CBG4井在CB805井上游约1.5 km处。

    Figure 9.  Lithological assemblage, diagenesis and physical characteristics of the first slope⁃break belt and sag area in the eastern slope belt of Chengbei low uplift, Dongying Formation

    CBG4井埋深2 950~2 960 m为厚层泥岩上覆的厚约6.5 m的砂岩层,平均孔隙度为19.98%,渗透率为123.99×10-3 μm2,除发育溶蚀孔外可见不同粒级岩性界面处发育层间裂缝(图9ⅰ)。2 978~3 008 m深度段发育多套厚度7~12 m的砂岩层,包括厚层含砾砂岩、细砂岩和砂泥岩互层等岩性(组合)(图9bⅡ,Ⅲ,Ⅳ),其孔隙度介于18.13%~19.3%,平均渗透率范围为(64.45~98.28)×10-3 μm2,砂岩内部碳酸盐胶结物含量较高,常见白云石充填孔隙(图9ⅱ)。

    CB805井在埋深3 000 m附近为单层厚度介于2~4 m的砂岩和含砾砂岩,孔隙度和渗透率平均值分别为20.77%和241.9×10-3 μm2;3 020~3 060 m深度段发育总厚度约为28.79 m的细砂岩夹薄层泥质砂岩,其中细砂岩单层厚度介于1~4 m,平均孔隙度和渗透率分别为20.78%和148.54×10-3 μm2图9c)。微观观察显示,CB805井溶蚀作用比CBG4井更为强烈(图9ⅲ,ⅳ)。

    上述埋藏深度处于中成岩A1亚期和中成岩A2亚期的界限附近,酸性成岩环境下形成的溶蚀孔隙为储层主要储集空间;相似埋深、相同层位和沉积微相条件下砂(砾)岩厚度与物性成反比,反映自洼陷带远距离运移而来的有机酸性流体不易彻底渗透并改造厚度大的储层,使得单层厚度小于4 m的砂(砾)岩储层物性更好。

  • 位于洼陷带的CB323井取心段为Ed4亚段的3 820~3 830 m、东三段的4 230~4 241 m和4 260~4 270 m(图9d,e)。

    该井3 820 m~3 830 m深度处发育湖底扇中扇亚相辫状水道微相,为含砾砂岩和细砂岩(图9dⅠ~Ⅲ),单层厚度为2~2.58 m,平均孔隙度为15.39%~16.56%,平均渗透率为(22.72~40.15)×10-3 μm2,单层厚度和物性均相近。微观观察发现其储集空间以溶蚀填隙物内孔隙为主,连通性一般,碳酸盐胶结物呈自形—半自形粒状分散分布(图9ⅴ,ⅵ)。

    CB323井4 230~4240 m深度为近岸水下扇扇中亚相,连续发育单层厚度约为4.5 m的细砂岩和粗砂岩各一套(图9eⅣ,Ⅴ),其平均孔隙度分别为14.80%和13.77%,平均渗透率分别为1.39×10-3 μm2和1.62×10-3 μm2。4 260 m深度亦为近岸水下扇扇中亚相,岩性为含砾砂岩,单层厚度约为4 m,平均孔隙度为15.89%,平均渗透率为3.05×10-3 μm2图9eⅥ),物性较上述厚度相似的细砂岩和粗砂岩略好,渗透率从岩性界面处向储层内部增高(图9e)。微观观察发现,岩性界面处(含)铁方解石和白云石胶结物多为分散粒状,向储层内部常为(含)铁方解石嵌晶式胶结,同时压裂缝和超压裂缝增多;压裂缝和超压裂缝在含砾砂岩中比在粗砂岩和细砂岩中更为发育(图5e,f)。

    综上所述,相似埋深下的洼陷带储层物性与岩性(组合)无明显关系。当层厚超过4 m时,含砾砂岩储层物性好于砂岩储层,且从砂泥岩界面向储层内部,由于微裂缝更为发育,渗透率增大。

    究其原因,3 820~3 830 m深度处于中成岩A1亚期的洼陷带储层,受有机酸及黏土矿物向高岭石转化产生的无机酸的影响,集中于砂泥岩界面附近形成较多溶蚀孔隙。随深度增加有机酸浓度降低,碳酸盐矿物含量增加,在4 230~4 241 m和4 260~4 270 m深度的砂岩中铁方解石嵌晶状胶结,铁白云石含量增多,丝状伊利石和自生石英含量增多(图9ⅶ),孔隙度降低;而受地层超压和碳酸盐矿物嵌晶式胶结的影响,砂岩内部微裂缝增多并连通溶蚀孔隙,使渗透性得到改善(图5f、图9ⅷ)。综合分析认为,靠近烃源岩的洼陷带埋深大于3 600 m的储层,其物性主要因成岩裂缝发育而得到改善,压裂缝和超压裂缝连通溶蚀孔隙构成主要储集空间,4 m以上的厚层含砾砂岩好于同厚度的砂岩,仍然具备储集能力。

  • 受控于母岩性质和搬运、沉积作用的砂岩类型与岩石学组分特征,影响水—岩反应产物的类型与特征和成岩孔隙演化过程[3738],从而对储层的储集性能产生影响。在上述研究基础上,结合区域地质研究成果,建立了埕北低凸起东部斜坡带主要构造单元东营组主力含油层位的差异性成岩—成储模式(图10)。

    Figure 10.  Differential diagenesis⁃reservoir formation model in the eastern slope belt of Chengbei low uplift, from sand group Ed32 to member 3 of the Dongying Formation

  • 东营组Ed32砂组至Ed4亚段沉积时期,埕北低凸起物源通过缓坡沟谷向盆内优势可容空间搬运卸载,在第一坡折带形成扇三角洲前缘和湖底扇中扇沉积。其成岩阶段处于中成岩A1亚期,主要储集空间为酸溶性次生孔隙,形成中孔—中渗储层。

  • Ed32砂组至Ed4亚段沉积时期,埕北低凸起物源通过缓坡沟谷搬运,在第二坡折带(Ed4亚段)和洼陷带(Ed32砂组)卸载形成湖底扇中扇和扇三角洲前缘亚相。中成岩A1亚期以酸性溶蚀孔隙为主,物性可达中孔—中渗;中成岩A2亚期碱性成岩作用加强,且发育层间裂缝,物性为低孔—低渗。

  • Ed4亚段沉积时期,埕北30潜山带物源由陡坡近源搬运在断阶带堆积,形成近岸水下扇。由于此处埋深差异明显,随埋深增大,成岩演化历经中成岩A1亚期和A2亚期,成岩环境由酸性向碱性转化,发育多重溶蚀下的次生孔隙和少量微裂缝,形成中/低孔(渗)储层。

  • 东三段沉积时期,埕北30潜山带碎屑物质通过陡坡断阶搬运至洼陷沉积,发育近岸水下扇,其碳酸盐岩岩屑和灰泥杂基含量较高,且由于埋深普遍大于4 000 m,成岩阶段进入中成岩A2亚期,成岩介质酸性减弱,多见石英质组分和自生高岭石受碱性溶蚀作用形成的次生孔隙,连通性一般,物性为低孔低渗型,但微裂缝的发育使得储层物性明显改善。

  • (1) 埕北低凸起东部斜坡带Ed32砂组至东三段处于中成岩A期,可进一步划分为A1和A2两个亚期,总体上发育四个次生孔隙发育带,其主要的储集空间类型为多种溶蚀孔隙、微裂缝和孔隙—裂缝复合储集空间系统,各构造单元成岩演化差异明显。

    (2) 酸性溶蚀作用是第一坡折带储层物性改善的作用主要因素;第二坡折带处于中成岩A1亚期,储层酸性溶蚀是其物性改善的主要因素,中成岩A2亚期的储层物性改善得益于层间裂缝的发育,高岭石大量存留不利于物性改善;碱性溶蚀作用形成连通溶孔是断阶带深层储层物性改善的重要因素;洼陷带储层中的微裂缝在各构造单元中最为发育,且连通溶蚀孔隙成为重要渗流通道和储集空间。

    (3) 中浅层砂(砾)岩物性与厚度负相关,单层厚度小于4 m的砂(砾)岩储层物性较厚层更好;3 600 m以深的储层物性主要受压裂缝和超压裂缝发育程度影响,单层厚度4 m以上的含砾砂岩物性好于同厚度的砂岩,仍然具备储集能力。

    (4) 研究区东营组主力含油层位共有第一坡折带—扇三角洲/湖底扇—酸性溶蚀—中孔(渗)储层、第二坡折带/洼陷带—扇三角洲/湖底扇—酸/碱性溶蚀—中/低孔(渗)储层、断阶带—近岸水下扇—酸/碱溶蚀—中/低孔(渗)储层和洼陷带—近岸水下扇—碱性溶蚀/成缝—低孔(渗)储层四种不同的成岩—成储模式。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return