[1] |
Tierney J E, Poulsen C J, Montañez I P, 2020: Past climates inform our future[J]. Science, 370, -.
|
[2] |
Bowen G J, Bowen B B, 2008: Mechanisms of PETM global change constrained by a new record from central Utah[J]. Geology, 36, 379-382.
|
[3] |
Sanjuan J, Eaton J G, 2016: Charophyte flora from the Claron Formation (Aquarius Plateau, southwestern Utah)-biostratigraphic implications[J]. Micropaleontology, 62, 323-330.
|
[4] |
Sanjuan J, Vicente A, Eaton J G, 2020: New charophyte flora from the Pine Hollow and Claron formations (southwestern Utah). Taxonomic, biostratigraphic, and paleobiogeographic implications[J]. Review of Palaeobotany and Palynology, 282, 104289-.
|
[5] |
Eaton J G, Korth W W, Brinkman D B, 2018: Vertebrate fossils from the Claron Formation, Sweetwater Creek area, Garfield county, Utah, U.S.A[J]. Rocky Mountain Geology, 53, 113-127.
|
[6] |
DeCourten F. Shadows of time: The geology of Bryce canyon national park[M]. Utah: Bryce Canyon Natural History Association, 1994. |
[7] |
Taylor W J. Stratigraphic and lithologic analysis of the Claron Formation in southwestern Utah[M]. Salt Lake City: Utah Geological Survey Miscellaneous Publication, 1993. |
[8] |
Goldstrand P M. Tectonostratigraphy, petrology, and paleogeography of Upper Cretaceous to Eocene rocks of southwest Utah[D]. Reno: University of Nevada, 1991. |
[9] |
Bown T M, Hasiotis S T, Genise J F, et al. Trace fossils of Hymenoptera and other insects and paleoenvironments of the Claron Formation (Paleocene and Eocene), southwestern Utah[M]. Washington: US Geological Survey Bulletin, 1997, 2153: 41-58. |
[10] |
丁仲礼, 孙继敏, 朱日祥, 1997: 黄土高原红黏土成因及上新世北方干旱化问题[J]. 第四纪研究, , 147-157.
|
Ding Zhongli, Sun Jimin, Zhu Rixiang, et al. Eolian origin of the red clay deposits in the Loess Plateau and implications for Pliocene climatic changes[J]. Quaternary Sciences, 1997(2): 147-157. |
[11] |
Tate S E, Greene R S B, Scott K M, 2007: Recognition and characterisation of the aeolian component in soils in the Girilambone region, north western New South Wales, Australia[J]. CATENA, 69, 122-133.
|
[12] |
Vandenberghe J, 2013: Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 121, 18-30.
|
[13] |
Liu X X, Sun Y B, Vandenberghe J, 2018: Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 32, 202-209.
|
[14] |
Zhang X N, Zhou A F, Zhang C, 2016: High-resolution records of climate change in arid eastern central Asia during MIS 3 (51600-25300 cal a BP) from Wulungu Lake, north-western China[J]. Journal of Quaternary Science, 31, 577-586.
|
[15] |
Zhang X N, Zhang H C, Chang F Q, 2021: Sedimentary grain-size record of Holocene runoff fluctuations in the Lake Lugu watershed, SE Tibetan Plateau[J]. The Holocene, 31, 346-355.
|
[16] |
Ghosh J K, Mazumder B S. Size distribution of suspended particles—unimodality, symmetry and lognormality[M]//Taillie C, Patil G P, Baldessari B A. Statistical distribution in scientific Work: Applications in physical, social and life sciences. Berlin: Springer Science & Business Media, 1981: 21-32. |
[17] |
McLaren P, Bowles D, 1985: The effects of sediment transport on grain-size distributions[J]. Journal of Sedimentary Research, 55, 457-470.
|
[18] |
Yang F, Zhang G L, Yang F, 2016: Pedogenetic interpretations of particle-size distribution curves for an alpine environment[J]. Geoderma, 282, 9-15.
|
[19] |
孙东怀, 安芷生, 苏瑞侠, 2001: 古环境中沉积物粒度组分分离的数学方法及其应用[J]. 自然科学进展, 11, 269-276.
|
Sun Donghuai, An Zhisheng, Su Ruixia, et al. Mathematical approach to sedimentary component partitioning of polymodal sediments and its applications[J]. Progress in Natural Science, 2001, 11(3): 269-276. |
[20] |
Sun D H, Bloemendal J, Rea D K, 2002: Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 152, 263-277.
|
[21] |
Prins M A, Vriend M, Nugteren G, 2007: Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records[J]. Quaternary Science Reviews, 26, 230-242.
|
[22] |
Heslop D, von Dobeneck T, Höcker M, 2007: Using non-negative matrix factorization in the “unmixing” of diffuse reflectance spectra[J]. Marine Geology, 241, 63-78.
|
[23] |
Dietze E, Hartmann K, Diekmann B, 2012: An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 243-244, 169-180.
|
[24] |
Paterson G A, Heslop D, 2015: New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 16, 4494-4506.
|
[25] |
Yu S Y, Colman S M, Li L X, 2016: BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions[J]. Mathematical Geosciences, 48, 723-741.
|
[26] |
van Hateren J A, Prins M A, van Balen R T, 2018: On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms[J]. Sedimentary Geology, 375, 49-71.
|
[27] |
Blakey R C, Ranney W D. Flat-slab subduction, the Laramide orogeny, uplift of the Colorado Plateau and rocky mountains: Paleocene and Eocene: Ca. 65-35 Ma[M]//Blakey R C, Ranney W D. Ancient landscapes of western North America. Cham: Springer, 2018: 131-148. |
[28] |
Lawton T F. Laramide sedimentary basins and sediment-dispersal systems[M]//Miall A D. The sedimentary basins of the United States and Canada. Amsterdam: Elsevier, 2019: 529-557. |
[29] |
DeCelles P G, 2004: Late Jurassic to Eocene evolution of the cordilleran thrust belt and foreland basin system, western U.S.A[J]. American Journal of Science, 304, 105-168.
|
[30] |
Sprinkel D A, Chidsey T C, Anderson P B. Geology of Utah's parks and monuments[M]. 3rd ed. Salt Lake City: Utah Geological Association, 2010. |
[31] |
Bowers W E. The Canaan peak, pine hollow, and Wasatch formations in the table cliff region, Garfield county, Utah[M]. Washington: US Government Printing Office, 1972. |
[32] |
Blott S J, Pye K, 2001: GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 26, 1237-1248.
|
[33] |
Xiao J L, Porter S C, An Z S, 1995: Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130, 000 yr[J]. Quaternary Research, 43, 22-29.
|
[34] |
孙有斌, 2001: 黄土样中石英单矿物的分离[J]. 岩矿测试, 20, 23-26.
|
Sun Youbin. Separation of quartz minerals from loess samples[J]. Rock and Mineral Analysis, 2001, 20(1): 23-26. |
[35] |
李越, 宋友桂, 宗秀兰, 2019: 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报, 74, 162-177.
|
Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 162-177. |
[36] |
Liu Y M, Liu X X, Sun Y B, 2021: QGrain: An open-source and easy-to-use software for the comprehensive analysis of grain size distributions[J]. Sedimentary Geology, 423, 105980-.
|
[37] |
卢演俦, 文启忠, 黄伯钧, 1976: 中国黄土物质来源的初步探讨:石英粉砂颗粒表面结构的电子显微镜研究[J]. 地球化学, , 47-53.
|
Lu Yanchou, Wen Qizhong, Huang Bojun, et al. A prelimilary discussion on the source of loessic materials in China: A study of the surface textures of silt quartz grains by transmission electron microscope[J]. Geochimica, 1976(1): 47-53. |
[38] |
Margolis S V, Krinsley D H, 1974: Processes of formation and environmental occurrence of microfeatures on detrital quartz grains[J]. American Journal of Science, 274, 449-464.
|
[39] |
刘秀铭, 吉金平, 章涛, 2021: 湖南古丈奥陶纪红石林地层特征与石灰岩沉积环境分析[J]. 地球环境学报, 12, 1-18.
|
Liu Xiuming, Ji Jinping, Zhang Tao, et al. Analysis on sedimentary environment of the red stone forest strata in Guzhang, Hunan province[J]. Journal of Earth Environment, 2021, 12(1): 1-18. |
[40] |
Schwertmann U, Cornell R M. Iron oxides in the laboratory: Preparation and characterisation[M]. 2nd ed. New York: Wiley-VCH, 2008. |
[41] |
沈吉,薛滨,吴敬禄,等. 湖泊沉积与环境演化[M]. 北京:科学出版社,2010:1-575. |
Shen Ji, Xue Bin, Wu Jinglu, et al. Lake sediments and environmental evolution[M]. Beijing: Science Press, 2010: 1-575. |
[42] |
刘东生. 黄土与环境[M]. 北京:科学出版社,1985:191-277. |
Liu Tungsheng. Loess and environment[M]. Beijing: Science Press, 1985: 191-277. |
[43] |
朱丽东. 中亚热带加积型红土及其所记录的第四纪环境变化探讨[D]. 兰州:兰州大学,2007. |
Zhu Lidong. Aggradation red earth sediments in mid-subtropics of China and their recorded environmental changes during Quaternary[D]. Lanzhou: Lanzhou University, 2007. |
[44] |
孙有斌, 安芷生, 2000: 风尘堆积物中石英颗粒表面微结构特征及其沉积学指示[J]. 沉积学报, 18, 506-509.
|
Sun Youbin, An Zhisheng. Sedimentary interpretation of surface textures of quartz grains from the eolian deposits[J]. Acta Sedimentologica Sinica, 2000, 18(4): 506-509. |
[45] |
谢又予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社,1984:4-10. |
Xie Youyu. Atlas of quartz sand surface textural features of China micrographs[M]. Beijing: Ocean Press, 1984: 4-10. |
[46] |
Mahaney W. Atlas of sand grain surface textures and applications[M]. Oxford: Oxford University Press, 2002. |
[47] |
Krinsley D, Cavallero L, 1970: Scanning electron microscopic examination of periglacial eolian sands from Long Island, New York[J]. Journal of Sedimentary Research, 40, 1345-1350.
|
[48] |
江新胜, 徐金沙, 潘忠习, 2003: 鄂尔多斯盆地白垩纪沙漠石英沙颗粒表面特征[J]. 沉积学报, 21, 416-422.
|
Jiang Xinsheng, Xu Jinsha, Pan Zhongxi. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin[J]. Acta Sedimentologica Sinica, 2003, 21(3): 416-422. |
[49] |
Guo Z T, Peng S Z, Hao Q Z, 2001: Origin of the Miocene-Pliocene red-earth formation at Xifeng in northern China and implications for paleoenvironments[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 170, 11-26.
|
[50] |
鹿化煜, 安芷生, 1999: 黄土高原红黏土与黄土古土壤粒度特征对比:红黏土风成成因的新证据[J]. 沉积学报, 17, 226-232.
|
Lu Huayu, An Zhisheng. Comparison of grain-size distribution of red clay and loess-paleosol deposits in Chinese Loess Plateau[J]. Acta Sedimentologica Sinica, 1999, 17(2): 226-232. |
[51] |
Bronger A, Heinkele T, 1990: Mineralogical and clay mineralogical aspects of loess research[J]. Quaternary International, 7-8, 37-51.
|
[52] |
李徐生, 杨达源, 鹿化煜, 1997: 皖南第四纪风尘堆积序列粒度特征及其意义[J]. 海洋地质与第四纪地质, 17, 80-81.
|
Li Xusheng, Yang Dayuan, Lu Huayu, et al. The grain size features of Quaternary aeolian dust deposition sequence in south Anhui and their significance[J]. Marine Geology & Quaternary Geology, 1997, 17(4): 74-78, 80-81. |
[53] |
朱丽东, 叶玮, 周尚哲, 2006: 中亚热带第四纪红黏土的粒度特征[J]. 地理科学, 26, 586-591.
|
Zhu Lidong, Ye Wei, Zhou Shangzhe, et al. Grain-size features of red earth in mid-subtropics[J]. Scientia Geographica Sinica, 2006, 26(5): 586-591. |
[54] |
Wang X, Sun D H, Wang F, 2013: A high-resolution multi-proxy record of Late Cenozoic environment change from central Taklimakan Desert, China[J]. Climate of the Past, 9, 2731-2739.
|
[55] |
Liu X X, Vandenberghe J, An Z S, 2016: Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 41-51.
|
[56] |
Xiao J L, Fan J W, Zhai D Y, 2015: Testing the model for linking grain-size component to lake level status of modern clastic lakes[J]. Quaternary International, 355, 34-43.
|
[57] |
Vandenberghe J, Sun Y, Wang X, 2018: Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 177, 43-52.
|
[58] |
Tsoar H, Pye K, 1987: Dust transport and the question of desert loess formation[J]. Sedimentology, 34, 139-153.
|
[59] |
Chen F H, Qiang M R, Zhou A F, 2013: A 2000-year dust storm record from Lake Sugan in the dust source area of arid China[J]. Journal of Geophysical Research: Atmospheres, 118, 2149-2160.
|
[60] |
Lin Y C, Mu G J, Xu L S, 2016: The origin of bimodal grain-size distribution for aeolian deposits[J]. Aeolian Research, 20, 80-88.
|
[61] |
孙东怀, 鹿化煜, ReaD, 2000: 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 18, 327-335.
|
Sun Donghuai, Lu Huayu, Rea D, et al. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335. |
[62] |
刘秀铭, 吕镔, 毛学刚, 2014: 风积地层中铁矿物随环境变化及其启示[J]. 第四纪研究, 34, 443-457.
|
Liu Xiuming, Bin Lü, Mao Xuegang, et al. Iron minerals of aeolian deposits vary with environment and its significances[J]. Quaternary Sciences, 2014, 34(3): 443-457. |