[1]
|
Anders D E, Robinson W E. Cycloalkane constituents of the bitumen from Green River Shale[J]. Geochimica et Cosmochimica Acta, 1971, 35(7): 661-678. |
[2]
|
de Grande S M B, Aquino Neto F R, Mello M R. Extended tricyclic terpanes in sediments and petroleums[J]. Organic Geochemistry, 1993, 20(7): 1039-1047. |
[3]
|
Philp P, Symcox C, Wood M, et al. Possible explanations for the predominance of tricyclic terpanes over pentacyclic terpanes in oils and rock extracts[J]. Organic Geochemistry, 2021, 155: 104220. |
[4]
|
Ourisson G, Albrecht P, Rohmer M. Predictive microbial biochemistry: From molecular fossils to procaryotic membranes[J]. Trends in Biochemical Sciences, 1982, 7(7): 236-239. |
[5]
|
Simoneit B R T, Leif R N, de Aquino Neto F R, et al. On the presence of tricyclic terpane hydrocarbons in Permian tasmanite algae[J]. Naturwissenschaften, 1990, 77(8): 380-383. |
[6]
|
Greenwood P F, Arouri K R, George S C. Tricyclic terpenoid composition of Tasmanites kerogen as determined by pyrolysis GC-MS[J]. Geochimica et Cosmochimica Acta, 2000, 64(7): 1249-1263. |
[7]
|
Pearson C A, Philp R P. Geochemical characterization of the upper Mississippian Goddard Formation, noble ranch group, and related oils in the Anadarko Basin of Oklahoma[J]. AAPG Bulletin, 2019, 103(11): 2545-2571. |
[8]
|
Dutta S, Greenwood P F, Brocke R, et al. New insights into the relationship between Tasmanites and tricyclic terpenoids[J]. Organic Geochemistry, 2006, 37(1): 117-127. |
[9]
|
Kim D, Philp R P. Extended tricyclic terpanes in Mississippian rocks from the Anadarko Basin, Oklahoma[M]//Johnson K S. Silurian, Devonian, and Mississippian geology and petroleum in the southern midcontinent, 1999 symposium. Norman Oklahoma: Oklahoma Geological Survey Circular 105, 2001: 109-127. |
[10]
|
Peters K E, Walters C C, Moldowan J M. The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. New York: Cambridge University Press, 2005: 76-192. |
[11]
|
Seifert W K, Moldowan J M. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils[J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 77-95. |
[12]
|
Aquino Neto F A, Trendel J M, Restlé A, et al. Occurrence and formation of tricyclic terpanes in sediments and petroleums[M]//Bjorøy M, Albrecht P, Cornford C, et al. Advances in organic geochemistry 1981. New York: Wiley, 1983: 659-667. |
[13]
|
Kruge M A. Biomarker geochemistry of the Miocene Monterey Formation, West San Joaquin Basin, California: Implications for petroleum generation[J]. Organic Geochemistry, 1986, 10(1/2/3): 517-530. |
[14]
|
程熊,侯读杰,徐长贵,等. 庙西凹陷严重生物降解原油序列中三环萜烷的异常分布成因初探[J]. 沉积学报,2017,35(1):193-202.
Cheng Xiong, Hou Dujie, Xu Changgui, et al. Abnormal distributions of tricyclic terpanes and its genesis in severely biodegraded oils from the Miaoxi Depression, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 2017, 35(1): 193-202. |
[15]
|
张水昌. 运移分馏作用:凝析油和蜡质油形成的一种重要机制[J]. 科学通报,2000,45(6):667-670.
Zhang Shuichang. The migration fractionation: An important mechanism in the formation of condensate and waxy oil[J]. Chinese Science Bulletin, 2000, 45(6): 667-670. |
[16]
|
南青云,刘文汇,腾格尔,等. 塔河油田原油甾藿烷系列化合物地球化学再认识[J]. 沉积学报,2006,24(2):294-299.
Qingyun Nan, Liu Wenhui, Tenger, et al. Geochemical characters recognition for steranes and hopanes from oils of Tahe oilfield[J]. Acta Sedimentologica Sinica, 2006, 24(2): 294-299. |
[17]
|
Tuo J C, Wang X B, Chen J F. Distribution and evolution of tricyclic terpanes in lacustrine carbonates[J]. Organic Geochemistry, 1999, 30(11): 1429-1435. |
[18]
|
Revill A T, Volkman J K, O'Leary T, et al. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia[J]. Geochimica et Cosmochimica Acta, 1994, 58(18): 3803-3822. |
[19]
|
肖洪,李美俊,杨哲,等. 不同环境烃源岩和原油中C19~C23三环萜烷的分布特征及地球化学意义[J]. 地球化学,2019,48(2):161-170.
Xiao Hong, Li Meijun, Yang Zhe, et al. Distribution patterns and geochemical implications of C19-C23 tricyclic terpanes in source rocks and crude oils occurring in various depositional environments[J]. Geochimica, 2019, 48(2): 161-170. |
[20]
|
游君君,杨希冰,雷明珠,等. 珠江口盆地珠三坳陷不同沉积环境下烃源岩和原油中长链三环萜烷、二环倍半萜烷分布特征及地球化学意义[J]. 天然气地球科学,2020,31(7):904-914.
You Junjun, Yang Xibing, Lei Mingzhu, et al. The characteristics and significances of cheilanthane tricyclic terpanes and bicyclic sesquiterpanes in source rocks and oils under different depositional environments in Zhu Ⅲ Depression, Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2020, 31(7): 904-914. |
[21]
|
Tao S Z, Wang C Y, Du J G, et al. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 2015, 67: 460-467. |
[22]
|
Volkman J K. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 2003, 60(5): 495-506. |
[23]
|
Moldowan J M, Sundararaman P, Schoell M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany[J]. Organic Geochemistry, 1986, 10(4/5/6): 915-926. |
[24]
|
Huang W Y, Meinschein W G. Sterols as source indicators of organic materials in sediments[J]. Geochimica et Cosmochimica Acta, 1976, 40(3): 323-330. |
[25]
|
Qiao J Q, Baniasad A, Zieger L, et al. Paleo-depositional environment, origin and characteristics of organic matter of the Triassic Chang 7 member of the Yanchang Formation throughout the mid-western part of the Ordos Basin, China[J]. International Journal of Coal Geology, 2021, 237: 103636. |
[26]
|
马立元,尹航,陈纯芳,等. 鄂尔多斯盆地红河油田原油地球化学特征及油源分析[J]. 沉积学报,2015,33(2):416-425.
Ma Liyuan, Yin Hang, Chen Chunfang, et al. Research of geochemistry characteristics and source of crude oils from the Honghe oilfield in the Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(2): 416-425. |
[27]
|
Behrens A, Schaeffer P, Bernasconi S, et al. 17(E)-13α(H)-Malabarica-14(27),17,21-triene, an unexpected tricyclic hydrocarbon in sediments[J]. Organic Geochemistry, 1999, 30(5): 379-383. |
[28]
|
Wang G L, Chang X C, Wang T G, et al. Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks[J]. Organic Geochemistry, 2015, 78: 110-120. |
[29]
|
Rubinstein I, Sieskind O, Albrecht P. Rearranged sterenes in a shale: Occurrence and simulated formation[J]. Journal of the Chemical Society, Perkin Transactions 1, 1975(19): 1833-1836. |
[30]
|
Clark J P, Philp R P. Geochemical characterization of evaporite and carbonate depositional environments and correlation of associated crude oils in the Black Creek Basin, Alberta[J]. Bulletin of Canadian Petroleum Geology, 1989, 37(4): 401-416. |
[31]
|
Powell T G, McKirdy D M. Relationship between ratio of pristane to phytane, crude oil composition and geological environment in Australia[J]. Nature Physical Science, 1973, 243(124): 37-39. |
[32]
|
Zhang S C, Huang H P. Geochemistry of Palaeozoic marine petroleum from the Tarim Basin, NW China: Part 1. Oil family classification[J]. Organic Geochemistry, 2005, 36(8): 1204-1214. |
[33]
|
Li M W, Larter S R, Taylor P, et al. Biomarkers or not biomarkers? A new hypothesis for the origin of pristane involving derivation from methyltrimethyltridecylchromans (MTTCs) formed during diagenesis from chlorophyll and alkylphenols[J]. Organic Geochemistry, 1995, 23(2): 159-167. |
[34]
|
Kruge M A, Hubert J F, Akes R J, et al. Biological markers in Lower Jurassic synrift lacustrine black shales, Hartford Basin, Connecticut, U.S.A[J]. Organic Geochemistry, 1990, 15(3): 281-289. |
[35]
|
Killops S D, Nytoft H P, di Primio R. Biodegradative production and destruction of norhopanes-An example from residual oil in a Paleogene paleomigration conduit on the Utsira High, Norwegian North Sea[J]. Organic Geochemistry, 2019, 138: 103906. |
[36]
|
Peters K E, Moldowan J M, Sundararaman P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members[J]. Organic Geochemistry, 1990, 15(3): 249-265. |