Advanced Search
Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents

CHENG Hao, JIN ZhenKui, YU WenDuan, LI BaiQiang, ZHU XiaoEr, CHEN Bin, WU ZhenZhen. Reservoir Classification and Evaluation Based on Fractal Theory and Factor Analysis: A case study of the Third member of the Funing Formation, Qintong Sag, Subei Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 828-838. doi: 10.14027/j.issn.1000-0550.2021.131
Citation: CHENG Hao, JIN ZhenKui, YU WenDuan, LI BaiQiang, ZHU XiaoEr, CHEN Bin, WU ZhenZhen. Reservoir Classification and Evaluation Based on Fractal Theory and Factor Analysis: A case study of the Third member of the Funing Formation, Qintong Sag, Subei Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 828-838. doi: 10.14027/j.issn.1000-0550.2021.131

Reservoir Classification and Evaluation Based on Fractal Theory and Factor Analysis: A case study of the Third member of the Funing Formation, Qintong Sag, Subei Basin

doi: 10.14027/j.issn.1000-0550.2021.131
Funds:

National Natural Science Foundation of China 41872018

Natural Science Foundation Research Project of Shaanxi Province 2019JQ-151

Fundamental Research Funds for the Central Universities JZ2021HGQB0284

  • Received Date: 2021-06-10
  • Accepted Date: 2021-10-15
  • Rev Recd Date: 2021-09-18
  • Available Online: 2021-10-15
  • Publish Date: 2023-06-10
  • The strata of the Third member of the Funing Formation in the Qintong Sag is a set of shallow-water gently sloping delta deposits, with evidence of frequent changes of water level. The lithology consists of poorly sorted and strongly heterogeneous shale, argillaceous siltstone and fine sandstone. As a result, conventional single physical property parameters do not accurately characterize the stratigraphic properties. In order to clarify the relationship between its physical properties and pore structure, and to summarize a discrimination basis for the sand body, the physical property data was analyzed together with high-pressure mercury injection experimental data. Fractal theory was used to specify the main pore types in the formation, and to obtain the relationship between physical properties, pore structure and fractal dimensions. Porosity, permeability, pore structure coefficient, mean pore throat radius and pore throat sorting coefficient were selected in this study as the main reference factors to develop a standard of formation classification based on fractal dimension analysis. Three types of strata were classified: Type Ⅰ. D = 2.31-2.42 (mean 2.36); Type Ⅱ. D = 2.53-2.86 (mean 2.75); Type Ⅲ. D = 2.94-2.99 (mean 2.97). This provides a new reference basis for quantitative characterization of stratigraphic structure and discrimination between stratigraphic types in this area.
  • [1] 陈杰,周改英,赵喜亮,等. 储层岩石孔隙结构特征研究方法综述[J]. 特种油气藏,2005,12(4):11-14.

    Chen Jie, Zhou Gaiying, Zhao Xiliang, et al. Overview of study methods of reservoir rock pore structure[J]. Special Oil and Gas Reservoirs, 2005, 12(4): 11-14.
    [2] 耿斌,胡心红. 孔隙结构研究在低渗透储层有效性评价中的应用[J]. 断块油气田,2011,18(2):187-190.

    Geng Bin, Hu Xinhong. Application of pore structure study in effectiveness evaluation of low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2011, 18(2): 187-190.
    [3] Katz A J, Thompson A H. Fractal sandstone pores: Implications for conductivity and pore formation[J]. Physical Review Letters, 1985, 54(12): 1325-1328.
    [4] Wong P Z, Howard J, Lin J S. Surface roughening and the fractal nature of rocks[J]. Physical Review Letters, 1986, 57(5): 637-640.
    [5] Pfeifer P, Avnir D. Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces[J]. The Journal of Chemical Physics, 1983, 79(7): 3558-3565.
    [6] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: W. H. Freeman, 1982.
    [7] 张婷,徐守余,杨珂. 储层微观孔隙结构分形维数应用[J]. 大庆石油学院学报,2010,34(3):44-47.

    Zhang Ting, Xu Shouyu, Yang Ke. Application of fractal dimension of micro-pore structure[J]. Journal of Daqing Petroleum Institute, 2010, 34(3): 44-47.
    [8] 尹帅,谢润成,丁文龙,等. 常规及非常规储层岩石分形特征对渗透率的影响[J]. 岩性油气藏,2017,29(4):81-90.

    Yin Shuai, Xie Runcheng, Ding Wenlong, et al. Influences of fractal characteristics of reservoir rocks on permeability[J]. Lithologic Reservoirs, 2017, 29(4): 81-90.
    [9] 钟业勋,胡宝清,乔俊军. 数学在地图学中的应用[J]. 桂林理工大学学报,2010,30(1):93-98.

    Zhong Yexun, Hu Baoqing, Qiao Junjun. Mathematical application in cartography[J]. Journal of Guilin University of Technology, 2010, 30(1): 93-98.
    [10] 陈更新,刘应如,郭宁,等. 铸体薄片的分形表征:以柴达木盆地昆北新区为例[J]. 岩性油气藏,2016,28(1):72-76,87.

    Chen Gengxin, Liu Yingru, Guo Ning, et al. Fractal characterization of casting thin sections: A case study from Kunbei area in Qaidam Basin[J]. Lithologic Reservoirs, 2016, 28(1): 72-76, 87.
    [11] 马立民,林承焰,范梦玮. 基于微观孔隙结构分形特征的定量储层分类与评价[J]. 石油天然气学报,2012,34(5):15-19.

    Ma Limin, Lin Chengyan, Fan Mengwei. Quantitative classification and evaluation of reservoirs based on fractal features of micro-pore structures[J]. Journal of Oil and Gas Technology, 2012, 34(5): 15-19.
    [12] Thompson A H, Katz A J, Krohn C E. The microgeometry and transport properties of sedimentary rock[J]. Advances in Physics, 1987, 36(5): 625-694.
    [13] 文慧俭,闫林,姜福聪,等. 低孔低渗储层孔隙结构分形特征[J]. 大庆石油学院学报,2007,31(1):15-18.

    Wen Huijian, Yan Lin, Jiang Fucong, et al. The fractal characteristics of the pore texture in low porosity and low permeability reservoir[J]. Journal of Daqing Petroleum Institute, 2007, 31(1): 15-18.
    [14] 陈程,孙义梅. 砂岩孔隙结构分维及其应用[J]. 沉积学报,1996,14(4):108-113.

    Chen Cheng, Sun Yimei. Fractional dimension of the pore-texture in sandstones and its application[J]. Acta Sedimentologica Sinica, 1996, 14(4): 108-113.
    [15] 昝灵,骆卫峰,马晓东. 苏北盆地溱潼凹陷阜二段烃源岩生烃潜力及形成环境[J]. 非常规油气,2016,3(3):1-8.

    Zan Ling, Luo Weifeng, Ma Xiaodong. Hydrocarbon generation potential and genetic environments of Second member of Funing Formation in Qintong Sag, Subei Basin[J]. Unconventional Oil & Gas, 2016, 3(3): 1-8.
    [16] 吴群,余文端,骆卫峰,等. 苏北盆地溱潼凹陷岩性油藏勘探成果及启示[J]. 中国石油勘探,2016,21(3):99-107.

    Wu Qun, Yu Wenduan, Luo Weifeng, et al. Achievements and recognitions of exploration in lithologic reservoirs in Qintong Sag, North Jiangsu Basin[J]. China Petroleum Exploration, 2016, 21(3): 99-107.
    [17] 臧素华. 苏北盆地溱潼凹陷西斜坡阜三段沉积相研究[J]. 石油地质与工程,2014,28(6):22-24.

    Zang Suhua. Sedimentary facies study of 3rd member Funing Formation in western slope of Qintong Depression, Northern Jiangsu Basin[J]. Petroleum Geology and Engineering, 2014, 28(6): 22-24.
    [18] 赖锦,王贵文,郑懿琼,等. 低渗透碎屑岩储层孔隙结构分形维数计算方法:以川中地区须家河组储层41块岩样为例[J]. 东北石油大学学报,2013,37(1):1-7.

    Lai Jin, Wang Guiwen, Zheng Yiqiong, et al. Method for calculating the fractal dimension of the pore structure of low permeability reservoirs: A case study on the Xujiahe Formation reservoir in central Sichuan Basin[J]. Journal of Northeast Petroleum University, 2013, 37(1): 1-7.
    [19] 邓浩阳,司马立强,吴玟,等. 致密砂岩储层孔隙结构分形研究与渗透率计算:以川西坳陷蓬莱镇组、沙溪庙组储层为例[J]. 岩性油气藏,2018,30(6):76-82.

    Deng Haoyang, Sima Liqiang, Wu Wen, et al. Fractal characteristics of pore structure and permeability calculation for tight sandstone reservoirs: A case of Penglaizhen Formation and Shaximiao Formation in western Sichuan Depression[J]. Lithologic Reservoirs, 2018, 30(6): 76-82.
    [20] 吴浩,刘锐娥,纪友亮,等. 致密气储层孔喉分形特征及其与渗流的关系:以鄂尔多斯盆地下石盒子组盒8段为例[J]. 沉积学报,2017,35(1):151-162.

    Wu Hao, Liu Rui’e, Ji Youliang, et al. Fractal characteristics of pore-throat of tight gas reservoirs and its relation with percolation: A case from He8 member of the Permian Xiashihezi Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(1): 151-162.
    [21] 贺承祖,华明琪. 储层孔隙结构的分形几何描述[J]. 石油与天然气地质,1998,19(1):15-23.

    He Chengzu, Hua Mingqi. Fractal geometry description of reservoir pore structure[J]. Oil & Gas Geology, 1998, 19(1): 15-23.
    [22] 刘凯,石万忠,王任,等. 鄂尔多斯盆地杭锦旗地区盒1段致密砂岩孔隙结构分形特征及其与储层物性的关系[J]. 地质科技通报,2021,40(1):57-68.

    Liu Kai, Shi Wanzhong, Wang Ren, et al. Pore structure fractal characteristics and its relationship with reservoir properties of the First member of lower Shihezi Formation tight sandstone in Hangjinqi area, Ordos Basin[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 57-68.
    [23] 程浩,王起琮,杨奕华,等. R-Q因子分析在海相石灰岩岩相识别中的应用:以塔里木盆地巴楚—塔中地区奥陶系石灰岩为例[J]. 西安石油大学学报(自然科学版),2020,35(4):1-10,18.

    Cheng Hao, Wang Qicong, Yang Yihua, et al. Application of R-Q factor analysis in lithofacies identification of marine limestone: Taking the Ordovician limestone in Bachu-Tazhong area of Tarim Basin as an example[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2020, 35(4): 1-10, 18.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(4)

Article Metrics

Article views(309) PDF downloads(70) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-06-10
  • Revised:  2021-09-18
  • Accepted:  2021-10-15
  • Published:  2023-06-10

Reservoir Classification and Evaluation Based on Fractal Theory and Factor Analysis: A case study of the Third member of the Funing Formation, Qintong Sag, Subei Basin

doi: 10.14027/j.issn.1000-0550.2021.131
Funds:

National Natural Science Foundation of China 41872018

Natural Science Foundation Research Project of Shaanxi Province 2019JQ-151

Fundamental Research Funds for the Central Universities JZ2021HGQB0284

Abstract: The strata of the Third member of the Funing Formation in the Qintong Sag is a set of shallow-water gently sloping delta deposits, with evidence of frequent changes of water level. The lithology consists of poorly sorted and strongly heterogeneous shale, argillaceous siltstone and fine sandstone. As a result, conventional single physical property parameters do not accurately characterize the stratigraphic properties. In order to clarify the relationship between its physical properties and pore structure, and to summarize a discrimination basis for the sand body, the physical property data was analyzed together with high-pressure mercury injection experimental data. Fractal theory was used to specify the main pore types in the formation, and to obtain the relationship between physical properties, pore structure and fractal dimensions. Porosity, permeability, pore structure coefficient, mean pore throat radius and pore throat sorting coefficient were selected in this study as the main reference factors to develop a standard of formation classification based on fractal dimension analysis. Three types of strata were classified: Type Ⅰ. D = 2.31-2.42 (mean 2.36); Type Ⅱ. D = 2.53-2.86 (mean 2.75); Type Ⅲ. D = 2.94-2.99 (mean 2.97). This provides a new reference basis for quantitative characterization of stratigraphic structure and discrimination between stratigraphic types in this area.

CHENG Hao, JIN ZhenKui, YU WenDuan, LI BaiQiang, ZHU XiaoEr, CHEN Bin, WU ZhenZhen. Reservoir Classification and Evaluation Based on Fractal Theory and Factor Analysis: A case study of the Third member of the Funing Formation, Qintong Sag, Subei Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 828-838. doi: 10.14027/j.issn.1000-0550.2021.131
Citation: CHENG Hao, JIN ZhenKui, YU WenDuan, LI BaiQiang, ZHU XiaoEr, CHEN Bin, WU ZhenZhen. Reservoir Classification and Evaluation Based on Fractal Theory and Factor Analysis: A case study of the Third member of the Funing Formation, Qintong Sag, Subei Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 828-838. doi: 10.14027/j.issn.1000-0550.2021.131
  • 随着油气资源勘探开发的不断深入,早期的以物性参数为主的储层描述方法已无法满足指导现代油气田开发生产的要求,储层的孔隙结构作为影响储层储集性及渗流性的重要因素[1],对其进行精细刻画也逐渐成为储层描述的重要内容[2]。储层孔隙结构复杂且影响因素众多,难以进行定量描述,后经Katz et al.[3],Wong et al.[4],Pfeifer et al.[5]发现并证实:沉积岩孔隙结构具有分形特征,可作为表征储层物性、孔隙结构及非均质性的有效手段。

    分形概念在1977年由Mandelbrot[6]提出,是研究物体自相似性的一种数学统计理论,是反映地层的基本性质在三维空间分布的不均匀性的一个较为准确的量化表征[7]。目前该理论较为成熟,在建筑、物理、地质等多个行业得到了广泛应用[8],在地质中主要应用在储层孔隙结构、节理或裂缝的定量表征及微观图像观察等方面[9],多用于描述地质体结构,也可以作为微观尺度下复杂地质体不规则性的量度,反映地质体微观形态的有序性和复杂程度[10]

    储层非均质性越强,分选性越差,储集空间越复杂,则储层储集性越差,分形维数值越高;储层均质性越好,分选性越好,则储集性越好,分形维数值越低[1114]。本文通过对岩石样品高压压汞实验数据进行计算获得储层分形维数。同时,将地层分形维数与地层物性、孔隙结构等特征进行对比,探讨不同类型岩石之间分形维数的关系以及岩石性质对分形维数的影响,旨在为研究区砂体结构定量化表征及砂体类型判别提供参考依据。

  • 溱潼凹陷位于苏北盆地东南部,面积为1 004.8 km2,属于东台坳陷次级构造单元,东临泰州凸起,西临吴堡低凸起,西南与苏南隆起相接,东北与小海子凸起相邻(图1a),是一个南断北超、中部开阔、东西收敛的新生代箕状断陷。由南往北可依次划分为:断阶带、深凹带、斜坡带3个构造单元[15],发育有利的生储盖组合,是苏北盆地油气最富集的凹陷之一(图1a),古新世与始新世地层是主要勘探开发层段[16],自下而上发育泰州组、阜宁组、戴南组及三垛组(图1b)。其中阜三段在阜宁组二段及四段烃源岩之间,是主力油层,主要发育浅水三角洲沉积,水位变化频繁[17],因此本文以大规模湖泛面泥质沉积为界限将阜三段地层划分为四个砂组,其中Ⅱ砂组是一个全区稳定的相对较厚的“泥脖子”层段,对应了一次较长时间的大规模的湖侵,岩性主要为深灰色泥页岩;Ⅰ、Ⅲ、Ⅳ砂组对应水位变化频繁阶段,砂泥多以互层形式存在,岩性多为灰色泥质粉砂岩、细砂岩及灰色泥岩,是主要的研究层段。

    Figure 1.  The structural position and lithological characteristics of Qintong Sag, Subei Basin

  • 通过对研究区地层54块样品的X衍射全岩分析和黏土矿物分析,溱潼凹陷阜三段砂质地层以含泥石英杂砂岩为主,粒级为粉砂—中砂,黏土矿物、石英、钾长石、斜长石含量平均值分别为20.35%,48.31%,6.0%,16.13%;其中黏土矿物以伊/蒙混层为主,平均含量达45.19%,伊利石、高岭石、绿泥石平均含量分别为10.64%,21.02%,20.26%。

  • 溱潼凹陷阜三段储层孔隙发育较差,多发育微—小孔,主要有晶间微孔、粒内孔、粒间孔及微裂缝4种孔隙类型:晶间微孔一般发育在高岭石等黏土矿物之间,孔径小于50 μm,连通性差(图2a,b);粒内孔包括粒内溶孔和铸模孔,是由于颗粒间或颗粒内部经过溶蚀作用形成的孔洞,孔径约为50 μm,连通性一般(图2c,d);粒间孔是颗粒间相互支撑形成的连续空间,孔径50~200 μm(图2e),孔隙连通性好,分布广泛,是岩石主要的储集空间类型;裂缝主要为构造裂缝,是地层由于内外构造应力变化而发生形变所产生的断裂,分布范围小,宽度窄且延伸短(图2f)。

    Figure 2.  Types of rock pores in Qintong Sag, Subei Basin

  • 实验样品深度主要分布在2 297.33~2 982.63 m,物性测试孔隙度为4.4%~26.5%,平均值为19.09%;渗透率为(0.06~183.00)×10-3 μm²,平均值为22.73×10-3 μm²;高压压汞实验测试显示储层孔隙结构系数为0.04~0.38,平均值为0.19;平均喉道半径为0.07~4.00 μm,平均值为0.89 μm;孔喉半径均值为0.04~3.02,平均值为0.57;孔喉分选系数为0.12~0.42,平均值为0.29(表1)。

    样品编号井名岩性砂层组样品深度/m排驱压力/MPa最大汞饱度/%孔隙度/%渗透率/×10-3 μm2孔隙结构系数平均喉道半径/μm孔喉半径均值/μm孔喉分选系数分段分维1分段分维2单段分维分形维数分类结果
    1仓1-2井泥质砂岩Ef332 297.330.0789.3026.50122.000.333.512.250.362.372.371
    2仓1-2井泥质砂岩Ef332 298.820.1196.9925.7069.800.292.551.730.302.352.351
    3仓1-2井泥质砂岩Ef332 300.580.0799.9024.70183.000.264.003.020.332.352.351
    4仓1-1井泥质砂岩Ef342 380.050.2996.4123.309.140.331.030.690.252.342.342
    5俞5井中砂岩Ef332 771.010.1874.0323.7717.400.281.510.800.422.362.362
    6俞5井中砂岩Ef332 771.110.1877.2522.7516.200.381.480.800.392.312.312
    7俞5井中砂岩Ef332 776.210.1884.5921.417.980.351.030.520.302.422.422
    8仓1-1井泥质砂岩Ef332 410.510.7387.3520.001.390.100.230.130.212.472.542.53
    9俞201井泥质砂岩Ef332 870.351.1085.2815.490.430.240.230.140.232.812.872.85
    10俞201井泥质砂岩Ef332 874.701.1678.4017.550.590.100.170.080.292.652.712.68
    11俞201井泥质砂岩Ef332 875.381.8377.9819.460.230.160.120.070.292.782.862.83
    12俞2井砂质泥岩Ef342 949.270.7384.6018.111.250.120.290.170.242.702.752.73
    13俞2井砂质泥岩Ef342 951.221.1683.4519.070.690.120.190.100.242.662.712.69
    14俞2井砂质泥岩Ef342 951.501.8371.4117.670.270.110.110.060.372.842.892.86
    15俞2井砂质泥岩Ef342 951.661.8380.7719.800.290.140.130.080.252.782.822.79
    16俞2井砂质泥岩Ef342 952.382.9480.2617.210.180.070.080.040.252.812.842.82
    17俞3井含砂质泥岩Ef322 982.631.8377.4115.870.720.030.110.060.292.942.94
    18俞3井含砂质泥岩Ef322 981.022.9493.924.400.060.040.070.050.122.992.99
  • 本次实验选取苏北盆地溱潼凹陷阜三段18块岩石样品,进行了岩石物性测试、薄片鉴定、扫描电镜、高压压汞实验等一系列分析测试。其中扫描电镜实验,样品表面抛光喷碳处理,测试仪器采用Crossbeam-540 SEM图像采集仪,实验温度22 ℃,相对湿度26%,满足设备正常运行要求;高压压汞实验采用Auto pore Ⅳ 9520全自动压汞仪,仪器编号201211A,实验温度22 ℃,相对湿度30%,实验方法及数据处理均按照SY/T 5346—2005行业标准实行。以上所有实验的预处理及测试均在中国石油大学(北京)油气资源与探测国家重点实验室完成。实验过程与数据处理均符合国际标准,相对标准偏差均在2%以下。

  • 目前对于高压压汞毛管压力曲线求分形维数的方法主要有:基于含水饱和度(润湿相)和汞饱和度(非润湿相)两种方法。其中,采用汞饱和度计算的孔隙结构分形维数与排驱压力、孔喉分选系数等表征储层孔隙结构参数相关性较好,可用于定量描述孔隙结构参数及孔隙结构的复杂程度;采用含水饱和度计算分形维数与排驱压力、孔喉半径及孔喉分选系数等相关系数较低,应避免采用该参数表征储层物性及孔隙结构特征[18]

    汞饱和度法:根据汞在高压下进入不同大小孔径孔隙产生不同毛细管力,毛细管力变化曲线可以反映孔隙大小和分布[19]。因此,采用毛管束分形公式对实验数据进行处理,其推导过程如下[2021]

    储层孔喉分布具有分形特征,则孔喉数量N>r)与孔喉半径r符合如下关系:

    N(>r)=ar-D (1)

    式中:a为常数,D为分形维数。同时,N>r)可以表示为:

    N(>r)=VHgr2lπ (2)

    式中:VHg是孔喉半径为r时累计进汞体积,l为毛细管长度。

    由式(1)(2)及拉普莱斯公式得:

    SHg=bpc-(2-D) (3)

    在双对数坐标下,若趋势线为直线(图3a),则通过该直线斜率k即可求得储层孔隙结构分形维数D=k+2;如趋势线发生明显转折分段(图3b),说明该地层岩石孔隙结构相比于直线式更为复杂,发育多种孔隙类型,在不同大小孔隙中有不同分形维数,需分别求分形维数,并根据其所对应汞饱和度求得总加权平均数作为该样品总分形维数,可较为全面地反映该样品分形特征[22]。通过以上方法可得到溱潼凹陷阜三段储层分形维数(表1)。

    Figure 3.  PcSHg intersection figure in mercury saturation method

  • 主因子分析又称为R-Q因子分析,联合应用了变量相关分析的R型分析和样品相关分析的Q型分析方法,分别计算R型和Q型因子载荷矩阵,应用样品的Q型因子载荷F0和F1绘制平面图,再将变量的R型因子载荷投影到该图,最终形成由变量和样品构成的点聚。据此开展变量与变量、样品与样品、变量与样品之间的相关性统计和分析,获得对样品的客观分类结果。

    (1) R型因子分析

    假设有n个样品,每个样品有m个变量,则其矩阵为:

    X=x11x12x1nx21x22x2nxm1xm2xmn (4)

    式中:xij≥0(i=1,2,…,m;j=1,2,…,n),并且在每一行和每一列至少有1个数据不为0。根据

    zij=xijxixjTxixj (5)

    对公式(4)进行变换,且xi,xj,T分别为

    xi=j=1nxij(i=1,2,,m) (6)
    xj=i=1mxij(j=1,2,,n) (7)
    T=i=1mj=1nxij=i=1mxi (8)

    根据变量协方差矩阵特征值λ1≥λ2≥…≥λm,取其累积特征值百分比≥80%的前P个特征值λ12,…,λp,计算与其相对应的单位特征向量u1,u2, …,up,得到R型因子载荷矩阵式:

    U=u11λ1u12λ2u1pλpu21λ1u22λ2u2pλpum1λ1um2λ2umpλp (9)

    以此为基础进行的散点数据分析为R型因子分析,表示变量之间的相互关系。

    (2) Q型因子分析

    vj=z′uj 得出Q型因子载荷矩阵为:

    V=v11λ1v12λ2v1pλpv21λ1v22λ2v2pλpvn1λ1vn2λ2vnpλp (10)

    根据Q型因子载荷矩阵在因子平面上作样品散点图并分析,称为Q型因子分析,以研究样品之间的相关性[23]

    (3) 关键参数优选

    根据变量分析的R型因子荷载矩阵(表2)显示,孔渗参数、孔隙结构系数、孔喉半径及分选系数对储层特征值贡献率高,对因子分析结果影响明显,包含样品绝大部分信息,能对样品的物性参数特征进行准确表征。因此,本文选取以上变量并对其参数进行R⁃Q因子分析,得到R⁃Q分析特征值贡献率(表3)。

    因子ω(孔隙度)ω(渗透率)ω(孔喉半径均值)ω(孔隙结构系数)ω(孔喉分选系数)
    F00.473-0.278-0.022-0.836-0.006
    F10.4280.6290.2100.033-0.613
    F20.4960.398-0.0090.1430.759
    F30.395-0.5400.6330.387-0.040
    F40.437-0.279-0.7450.361-0.217
    特征值方差特征值贡献率/%累积贡献率/%
    λ158.83869.2269.22
    λ214.59217.1786.39
    λ37.4628.7895.17
    λ43.8454.5299.69
    λ50.2640.31100

    特征值与其所携带的信息量成正比,当累计贡献率大于80%,样品及变量的分类效果最好[23]。由表3可知,第一特征值方差贡献率达69.22%,第二特征值累积贡献率达86.39%,这表示前两个特征值包含了样品及其所含元素的绝大部分信息。

    使用样品分析的Q型因子载荷F0F1值绘制样品数据的平面图,再将变量分析的R型因子载荷在图上投影,得到储层性质R-Q因子分析点聚图(图4)。点聚图反映样品与样品、变量与变量、样品与变量之间的相互关系,F累计值为86.39%,说明选取的参数可表征样品的大部分特征,可作为准确划分储层类别的可靠依据。

    Figure 4.  Principal factor and cluster analysis diagram

  • 在对储层参数进行主因子分析的基础上,进一步验证储层分形维数与主因子分析中关键参数的相关性,以明确分形维数对储层整体性质表征的准确性。

  • 岩石孔隙度与渗透率越大,说明岩石内部空间越大,均质性越差,因此自相似性越差,相应的分形维数值越低。通过对溱潼凹陷阜三段储层分形维数与地层物性参数对比分析,发现分形维数与储层孔隙度呈线性负相关关系(图5a),与渗透率呈指数关系(图5b),且相关性均较好,说明储层孔、渗参数对分形维数影响稳定且准确。因此,分形维数可以较好地进行反映与表征储层物性特征。分形维数越大,储层孔隙度越小,渗透率越低,储层物性越差;反之,则物性越好。

    Figure 5.  Intersection diagram of fractal dimension and physical property parameters

  • 随着岩石孔隙结构、分选性及孔喉大小的逐渐增大,岩石内部空间结构越复杂,对均质性影响越大,分形维数也随着降低。因此,分形维数与储层孔隙结构参数均具有一定的相关性,其中与孔隙结构系数、孔喉分选系数及平均喉道半径相关性较好(孔隙结构系数为0.03~0.38,R2=0.708 9;孔喉分选系数为0.12~0.39,R2=0.824 9;孔喉半径均值0.07~4.00,R2=0.790 6)。平均喉道半径和孔喉分选系数与分形维数呈指数关系,孔隙结构系数则与之呈对数关系(图6):分形维数越大,储层储集空间越小越复杂,平均喉道半径越小,非均质性越强,储层孔隙结构越差;反之孔隙结构越好。表明分形维数对储层孔隙结构也有着很好的表征作用。

    Figure 6.  Intersection diagram of fractal dimension and pore structure parameters

    其中Ⅰ1类样品点在散点图中分形维数已基本趋近于一个定值(图6),即该类样品基本处于分形维数最低值,低于此值分形维数不再随着岩石物性、孔隙结构变化而变化,此时反映对应储层是高孔渗特征。因此,分形维数只适用于表征岩石参数低于对应临界值(孔隙度为24.70%,渗透率为69.80×10-3 μm2,平均喉道半径为2.55 μm,孔喉半径均值为1.73 μm)的低渗致密储层特征。

  • 在对样品进行主因子分析(图4)的基础上,根据样品分形维数特征,将样品划分为3种类型:Ⅰ类(D:2.31~2.42,D¯=2.36);Ⅱ类(D:2.53~2.86,D¯=2.2.75);Ⅲ类(D:2.94~2.99,D¯=2.97)(表4)。

    储层类别样品数孔隙度/%渗透率/10-3 μm²孔隙结构系数平均喉道半径/μm孔喉半径均值/μm孔隙分选系数分形维数
    Ⅰ类721.41~26.5024.027.98~183.0060.790.26~0.380.321.03~4.002.160.52~3.021.400.25~0.420.342.31~2.422.36
    Ⅱ类915.49~20.0018.260.18~1.390.590.07~0.240.130.08~0.290.170.04~0.170.100.21~0.370.262.53~2.862.75
    Ⅲ类24.40~15.8710.140.06~0.720.390.03~0.040.040.07~0.110.090.05~0.060.060.12~0.290.212.94~2.992.97

    Ⅰ类储层在溱潼凹陷阜三段发育较少,可细分为Ⅰ1类与Ⅰ2类:Ⅰ1类岩性主要为泥质砂岩,发育大量微裂缝,有着极高的渗透率,分形维数2.35~2.37,平均值为2.36,即分形维数数值下限并近似定值;Ⅰ2类主要为中—细砂岩,孔隙类型为粒间孔,孔、渗、喉道半径、孔喉半径均值等参数均较高,均质性强,分形维数为2.31~2.42,平均值为2.36。Ⅰ类储层分形维数为2.31~2.42,平均值为2.36(表2),进—退汞曲线低平无突变,排驱压力小,进—退汞效率及饱和度高(图7a),储集空间主要为微裂缝及粒间孔等大孔(图7b),连通性较好。因此,因子分析点群集中分布于孔隙度与孔喉半径均值参数数据轴(图4),具有良好的物性与孔隙结构,为优质储层。

    Figure 7.  Classification characteristics of high⁃pressure mercury injection test curve

    Ⅱ类储层是研究区主要的储层发育类型,主要发育细砂岩—粉砂岩,孔隙度较高,但由于平均喉道半径及孔喉半径均值较低,储层渗透率远低于前者,分形维数为2.53~2.86,平均值为2.75。物性与孔隙结构差,同时也是压汞实验中有较高的排驱压力、较低的含汞饱和度以及进退汞效率明显降低的原因,储集空间为粒内孔与粒间孔(图7),连通性较差,储层物性主要受孔隙结构系数影响,因子分析样品点群绝大多数分布于孔隙结构系数与孔喉分选系数数据轴周围,为一般储层。

    Ⅲ类储层主要为泥岩、泥质粉砂岩,主要发育黏土晶间微孔,物性及孔隙结构等各项参数极低,储集空间小且连通性差,分形维数为2.94~2.99,平均值高达2.97。进—退汞曲线显示为极高的排驱压力及低含汞饱和度,储层性质不受孔隙度、平均喉道半径及孔喉半径均值等物性与孔隙结构参数影响。因此,不与任何数据轴有明显关联(图4),为差储层。

  • (1) 分形维数适用于低渗致密储层的表征,可准确表征苏北盆地溱潼凹陷阜三段储层物性与孔隙结构特征。储层分形维数越大,则储层物性和孔隙结构越差,非均质性越强,储集空间越复杂;反之则越好。

    (2) 通过对样品参数进行分形维数、主因子分析,将溱潼凹陷阜三段储层划分为3种类型:Ⅰ类中砂岩储层(D:2.31~2.42,均值为2.36),储层孔隙主要为微裂缝及粒间孔;Ⅱ类细—粉砂储层(D:2.53~2.86,均值为2.2.75),孔隙类型主要为粒间孔与粒内孔;Ⅲ类泥质储层(D:2.94~2.99,均值为2.97),孔隙类型以晶间微孔为主且孔隙结构差。

    (3) 利用因子分析、分形理论可以较准确地对储层进行分类评价,建立的理论模型与实际情况具有较高的一致性,可推广至全区全井段进一步验证,为研究区储层结构定量化表征及储层类型判别提供了一种新思路。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return