Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

LU LongFei, LIU WeiXin, WEI ZhiHong, PAN AnYang, ZHANG QingZhen, Tenger. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. doi: 10.14027/j.issn.1000-0550.2021.125
Citation: LU LongFei, LIU WeiXin, WEI ZhiHong, PAN AnYang, ZHANG QingZhen, Tenger. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. doi: 10.14027/j.issn.1000-0550.2021.125

Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation

doi: 10.14027/j.issn.1000-0550.2021.125
Funds:

National Natural Science Foundation of China U19B6003-02, 41972164

  • Received Date: 2020-07-20
  • Rev Recd Date: 2021-09-01
  • Publish Date: 2022-01-10
  • The effect of diagenesis on organic matter enriched shale characteristics of the Wufeng Formation-Longmachi Formation in Sichuan Basin is very complicated and plays an important role in the development and preservation of inorganic and organic matter. In the early and middle diagenesis stage, argillaceous shales were subjected mainly to intense mechanical compaction, pyrite and carbonate cementation, and illitization, which resulted in the loss of many primary inorganic pores. While siliceous shales mainly experienced mechanical compaction and the recrystallization of biological opal, some primary inorganic pores were preserved due to the inhibition of compaction. After entering the hydrocarbon generation window, the thermal evolution of organic matter became the governing factor of diagenesis, in which liquid hydrocarbon was generated and thermally cracked in the high-over mature stage, accompanied by the formation of organic pores. There was much residual porosity in siliceous shale, leading to much stranded hydrocarbon and organic pores, while less stranded hydrocarbon and organic pores are found in argillaceous shale. Thermal maturity in most areas of Sichuan Basin is in the range of 2.0%-3.0%, within the scope of the “organic pore generation window”. As decompression and pressure balance readjustment occurred in the tectonic uplift stage, the organic pores are transformed and destroyed by deep burial compaction and tectonic compaction, and fluid overpressure is favored for the preservation of organic pores. Shales of the Wufeng Formation-Longmachi Formation experienced four important diagenesis stages, i.e., inorganic pores lost in the early diagenesis stage, hydrocarbon generation and expulsion in the middle diagenesis stage, organic pore generation in the late diagenesis stage, and pore transformation in the tectonic uplift stage. The total porosity was reduced to its minimum value in the early period of liquid hydrocarbon cracking and increased gradually in a major period of thermal cracking, maximizing at a Ro that was about 2.0%-3.0% and reducing after 3.0%. With good fluid overpressure in the tectonic uplift stage, total porosity remained stable as pore structure changed slightly.
  • [1] Athy L F. Density, porosity, and compaction of sedimentary rocks[J]. AAPG Bulletin, 1930, 14(1): 1-24.
    [2] Borst R L. Some effects of compaction and geological time on the pore parameters of argillaceous rocks[J]. Sedimentology, 1982, 29(2): 291-298.
    [3] 柳广弟,张厚福. 石油地质学[M]. 北京:石油工业出版社,2009:266-273.

    Liu Guangdi, Zhang Houfu. Petroleum geology[M]. Beijing: Petroleum Industry Press, 2009: 266-273.
    [4] 刘震,武耀辉. 泥岩压实程度与热成熟度关系分析[J]. 地质论评,1997,43(3):290-296.

    Liu Zhen, Wu Yaohui. Analysis on relation between compaction of mudstone and thermal maturity[J]. Geological Review, 1997, 43(3): 290-296.
    [5] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [6] Martineau D F. History of the Newark East field and the Barnett shale as a gas reservoir[J]. AAPG Bulletin, 2007, 91(4): 399-403.
    [7] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of Nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
    [8] Nelson P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3): 329-340.
    [9] 邹才能,朱如凯,白斌,等. 中国油气储层中纳米孔首次发现及其科学价值[J]. 岩石学报,2011,27(6):1857-1864.

    Zou Caineng, Zhu Rukai, Bai Bin, et al. First discovery of nano-pore throat in oil and gas reservoir in China and its scientific value[J]. Acta Petrologica Sinica, 2011, 27(6): 1857-1864.
    [10] Jarvie D M, Hill R J, Ruble T E, et al. Unconventional shale-gas systems: The Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
    [11] Bowker K A. Barnett shale gas production, fort worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
    [12] 郭旭升,胡东风,文治东,等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质,2014,41(3):893-901.

    Guo Xusheng, Hu Dongfeng, Wen Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901.
    [13] 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36.

    Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
    [14] 董大忠,邹才能,杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报,2012,33(增刊1):107-114.

    Dong Dazhong, Zou Caineng, Yang Hua, et al. Progress and prospects of shale gas exploration and development in China[J]. Acta Petrolei Sinica, 2012, 33(Supp.l): 107-114.
    [15] 胡东风,张汉荣,倪楷,等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业,2014,34(6):17-23.

    Hu Dongfeng, Zhang Hanrong, Ni Kai, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 17-23.
    [16] 金之钧,胡宗全,高波,等. 川东南地区五峰组—龙马溪组页岩气富集与高产控制因素[J]. 地学前缘,2016,23(1):1-10.

    Jin Zhijun, Hu Zongquan, Gao Bo, et al. Controlling factors on the enrichment and high productivity of shale gas in the Wufeng-Longmaxi Formations, southeastern Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(1): 1-10.
    [17] 何治亮,聂海宽,张钰莹. 四川盆地及其周缘奥陶系五峰组—志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘,2016,23(2):8-17.

    He Zhiliang, Haihuan Nei, Zhang Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.
    [18] Hartmann, B H, Ramseyer, K, Matter, A. Diagenesis and pore-water evolution in Permian sandstones, Gharif Formation, Sultanate of Oman[J]. Journal of Sedimentary Research, 2000, 70(3): 533-544.
    [19] Aplin A C, Yang Y L, Hansen S. Assessment of β the compression coefficient of mudstones and its relationship with detailed lithology[J]. Marine and Petroleum Geology, 1995, 12(8): 955-963.
    [20] Aplin A C, Matenaar I F, McCarty D K, et al. Influence of mechanical compaction and clay mineral diagenesis on the microfabric and pore-scale properties of deep-water Gulf of Mexico mudstones[J]. Clays and Clay Minerals, 2006, 54(4): 500-514.
    [21] Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744.
    [22] Slatt R M, O’Brien N R. Pore types in the Barnett and Woodford gas shales: Contribution to understanding gas storage and migration pathways in fine-grained rocks[J]. AAPG Bulletin, 2011, 95(12): 2017-2030.
    [23] Milliken, K L, Olson, Silica Diagenesis T., Evolution Porosity, and Mechanical Behavior in Siliceous Mudstones, Mowry Shale (Cretaceous), Mountains Rocky, U.S.A [J]. Journal of Sedimentary Research, 2017, 87(4): 366-387.
    [24] Schieber J. A role for organic petrology in integrated studies of mudrocks: Examples from Devonian black shales of the eastern US[J]. International Journal of Coal Geology, 2001, 47(3/4): 171-187.
    [25] Berner R A. Calcium carbonate concretions formed by the decomposition of organic matter[J]. Science, 1968, 159(3811): 195-197.
    [26] Berner R A. Sedimentary pyrite Formation: An update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615.
    [27] Brock F, Parkes R J, Briggs D E G. Experimental pyrite Formation associated with decay of plant material[J]. Palaios, 2006, 21(5): 499-506.
    [28] Bernard S, Benzerara K, Beyssac O, et al. Multiscale characterization of pyritized plant tissues in blueschist facies metamorphic rocks[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5054-5068.
    [29] Krouse H R, Viau C A, Eliuk L S, et al. Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 1988, 333(6172): 415-419.
    [30] Goldstein T P, Aizenshtat Z. Thermochemical sulfate reduction a review[J]. Journal of Thermal Analysis, 1994, 42(1): 241-290.
    [31] 王玉净,张元动. 江苏仑山地区上奥陶统五峰组放射虫动物群及其地质意义[J]. 微体古生物学报,2011,28(3):251-260.

    Wang Yujing, Zhang Yuandong. Radiolarian fauna of the Wufeng Formation (Upper Ordovician) in Lunshan area, Jiangsu and its geological significance[J]. Acta Micropalaeontologica Sinica, 2011, 28(3): 251-260.
    [32] 卢龙飞,秦建中,申宝剑,等. 中上扬子地区五峰组—龙马溪组硅质页岩的生物成因证据及其与页岩气富集的关系[J]. 地学前缘,2018,25(4):226-236.

    Lu Longfei, Qin Jianzhong, Shen Baojian, et al. Biogenic silica evidence in siliceous shale of Wufeng-Longmachi Formation of Middle and Upper Yangtze region and its relationship with shale gas enrichment[J]. Earth Science Frontiers, 2018, 25(4): 226-236.
    [33] 陈红宇,卢龙飞,刘伟新,等. 蛋白石硅质页岩成岩过程中的孔隙结构变化特征[J]. 石油实验地质,2017,39(3):341-347.

    Chen Hongyu, Lu Longfei, Liu Weixin, et al. Pore network changes in opaline siliceous shale during diagenesis[J]. Petroleum Geology & Experiment, 2017, 39(3): 341-347.
    [34] 卢龙飞,秦建中,申宝剑,等. 川东南涪陵地区五峰—龙马溪组硅质页岩的生物成因及其油气地质意义[J]. 石油实验地质,2016,38(4):460-465,472.

    Lu Longfei, Qin Jianzhong, Shen Baojian, et al. Biogenic origin and hydrocarbon significance of siliceous shale from the Wufeng-Longmaxi formations in Fuling area, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2016, 38(4): 460-465, 472.
    [35] 卢龙飞,刘伟新,俞凌杰,等. 生物蛋白石早期成岩相变特征及对硅质页岩孔隙发育与孔径分布的影响[J]. 石油实验地质,2020,42(3):363-370.

    Lu Longfei, Liu Weixin, Yu Lingjie, et al. Early diagenesis characteristics of biogenic opal and its influence on porosity and pore network evolution of siliceous shale[J]. Petroleum Geology & Experiment, 2020, 42(3): 363-370.
    [36] Day-Stirrat R J, Aplin A C, Środoń J, et al. Diagenetic reorientation of phyllosilicate minerals in Paleogene mudstones of the Podhale Basin, southern Poland[J]. Clays and Clay Minerals, 2008, 56(1): 100-111.
    [37] Ho N C, Peacor D R, Van Der Pluijm B A. Preferred orientation of phyllosilicates in Gulf Coast mudstones and relation to the smectite-illite transition[J]. Clays and Clay Minerals, 1999, 47(4): 495-504.
    [38] Hill R J, Zhang E T, Katz B J, et al. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 501-521.
    [39] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
    [40] Bernard S, Wirth R, Schreiber A, et al. Formation of nanoporous pyrobitumen residues during maturation of the Barnett shale (Fort Worth Basin)[J]. International Journal of Coal Geology, 2012, 103: 3-11.
    [41] Romero-Sarmiento M F, Rouzaud J N, Bernard S, et al. Evolution of Barnett shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry, 2014, 71: 7-16.
    [42] Ko L T, Loucks R G, Ruppel S C, et al. Origin and characterization of Eagle Ford pore networks in the South Texas Upper Cretaceous shelf[J]. AAPG Bulletin, 2017, 101(3): 387-418.
    [43] 赵文智,李建忠,杨涛,等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.

    Zhao Wenzhi, Li Jianzhong, Yang Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
    [44] 王飞宇,关晶,冯伟平. 过成熟海相页岩孔隙度演化特征和游离气量[J]. 石油勘探与开发,2013,40(6):764-768.

    Wang Feiyu, Guan Jing, Feng Weiping. Evolution of overmature marine shale porosity and implication to the free gas volume[J]. Petroleum Exploration and Development, 2013, 40(6): 764-768.
    [45] 王玉满,李新景,王皓,等. 中上扬子地区下志留统龙马溪组有机质碳化区预测[J]. 天然气地球科学,2020,31(2):151-162.

    Wang Yuman, LI Xinjing, Wang Hao, et al. Prediction of organic matter carbonization zones for Lower Silurian Longmaxi Formation in Middle-Upper Yangtze region[J]. Natural Gas Geoscience, 2020, 31(2): 151-162.
    [46] 曹环宇,朱传庆,邱楠生. 川东地区古生界主要泥页岩最高古温度特征[J]. 地球物理学报,2016,59(3):1017-1029.

    Cao Huanyu, Zhu Chuanqing, Qiu Nansheng. Maximum paleotemperature of main Paleozoic argillutite in the eastern Sichuan Basin[J]. Chinese Journal of Geophysics, 2016, 59(3): 1017-1029.
    [47] 曹环宇,朱传庆,邱楠生. 川东地区下志留统龙马溪组热演化[J]. 地球科学与环境学报,2015,37(6):22-32.

    Cao Huanyu, Zhu Chuanqing, Qiu Nansheng. Thermal evolution of Lower Silurian Longmaxi Formation in the eastern Sichuan Basin[J]. Journal of Earth Sciences and Environment, 2015, 37(6): 22-32.
    [48] 郭彤楼,刘若冰. 复杂构造区高演化程度海相页岩气勘探突破的启示:以四川盆地东部盆缘JY1井为例[J]. 天然气地球科学,2013,24(4):643-651.

    Guo Tonglou, Liu Ruobing. Implications from marine shale gas exploration breakthrough in complicated structural area at high thermal stage: Taking Longmaxi Formation in well JY1 as an example[J]. Natural Gas Geoscience, 2013, 24(4): 643-651.
    [49] 刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏—强改造独特地质作用[J]. 地学前缘,2016,23(1):11-28.

    Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28.
    [50] 王晔,邱楠生,仰云峰,等. 四川盆地五峰—龙马溪组页岩成熟度研究[J]. 地球科学,2019,44(3):953-971.

    Wang Ye, Qiu Nansheng, Yang Yunfeng, et al. Thermal maturity of Wufeng-Longmaxi shale in Sichuan Basin[J]. Earth Science, 2019, 44(3): 953-971.
    [51] Bernard S, Brown L, Wirth R, et al. FIB-SEM and TEM investigations of an organic-rich shale maturation series from the Lower Toarcian Posidonia Shale, Germany: Nanoscale pore system and fluid-rock interactions[M]//Camp W K, Diaz E, Wawak B. Electron microscopy of shale hydrocarbon reservoirs. Tulsa: American Association of Petroleum Geologists, 2013: 53-66.
    [52] Milliken K L, Rudnicki M, Awwiller D N, et al. Organic matter-hosted pore system, Marcellus Formation (Devonian), pennsylvania[J]. AAPG Bulletin, 2013, 97(2): 177-200.
    [53] Mathia E J, Bowen L, Thomas K M, et al. Evolution of porosity and pore types in organic-rich, calcareous, Lower Toarcian Posidonia Shale[J]. Marine and Petroleum Geology, 2016, 75: 117-139.
    [54] Milliken K L, Curtis M E. Imaging pores in sedimentary rocks: Foundation of porosity prediction[J]. Marine and Petroleum Geology, 2016, 73: 590-608.
    [55] 刘若冰. 超压对川东南地区五峰组—龙马溪组页岩储层影响分析[J]. 沉积学报,2015,33(4):817-827.

    Liu Ruobing. Analyses of influences on shale reservoirs of Wufeng-Longmaxi Formation by overpressure in the south-eastern part of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 817-827.
    [56] 魏祥峰,李宇平,魏志红,等. 保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J]. 石油实验地质,2017,39(2):147-153.

    Wei Xiangfeng, Li Yuping, Wei Zhihong, et al. Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2017, 39(2): 147-153.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Article Metrics

Article views(458) PDF downloads(128) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-07-20
  • Revised:  2021-09-01
  • Published:  2022-01-10

Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation

doi: 10.14027/j.issn.1000-0550.2021.125
Funds:

National Natural Science Foundation of China U19B6003-02, 41972164

Abstract: The effect of diagenesis on organic matter enriched shale characteristics of the Wufeng Formation-Longmachi Formation in Sichuan Basin is very complicated and plays an important role in the development and preservation of inorganic and organic matter. In the early and middle diagenesis stage, argillaceous shales were subjected mainly to intense mechanical compaction, pyrite and carbonate cementation, and illitization, which resulted in the loss of many primary inorganic pores. While siliceous shales mainly experienced mechanical compaction and the recrystallization of biological opal, some primary inorganic pores were preserved due to the inhibition of compaction. After entering the hydrocarbon generation window, the thermal evolution of organic matter became the governing factor of diagenesis, in which liquid hydrocarbon was generated and thermally cracked in the high-over mature stage, accompanied by the formation of organic pores. There was much residual porosity in siliceous shale, leading to much stranded hydrocarbon and organic pores, while less stranded hydrocarbon and organic pores are found in argillaceous shale. Thermal maturity in most areas of Sichuan Basin is in the range of 2.0%-3.0%, within the scope of the “organic pore generation window”. As decompression and pressure balance readjustment occurred in the tectonic uplift stage, the organic pores are transformed and destroyed by deep burial compaction and tectonic compaction, and fluid overpressure is favored for the preservation of organic pores. Shales of the Wufeng Formation-Longmachi Formation experienced four important diagenesis stages, i.e., inorganic pores lost in the early diagenesis stage, hydrocarbon generation and expulsion in the middle diagenesis stage, organic pore generation in the late diagenesis stage, and pore transformation in the tectonic uplift stage. The total porosity was reduced to its minimum value in the early period of liquid hydrocarbon cracking and increased gradually in a major period of thermal cracking, maximizing at a Ro that was about 2.0%-3.0% and reducing after 3.0%. With good fluid overpressure in the tectonic uplift stage, total porosity remained stable as pore structure changed slightly.

LU LongFei, LIU WeiXin, WEI ZhiHong, PAN AnYang, ZHANG QingZhen, Tenger. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. doi: 10.14027/j.issn.1000-0550.2021.125
Citation: LU LongFei, LIU WeiXin, WEI ZhiHong, PAN AnYang, ZHANG QingZhen, Tenger. Diagenesis of the Silurian Shale, Sichuan Basin: Focus on pore development and preservation[J]. Acta Sedimentologica Sinica, 2022, 40(1): 73-87. doi: 10.14027/j.issn.1000-0550.2021.125
  • 在传统地质认识中,页岩的物理化学性质除了受控于原始矿物组成和沉积颗粒结构外,沉积后的成岩作用,特别是机械压实作用起着极为重要的控制作用,在有限的埋深范围内使页岩孔隙度迅速降低至较低水平[1-5],以至于无法作为油气的有效储集体。随着页岩中有机孔隙的发现,彻底改变了页岩不具储集性能的观念[6-9],使人们认识到富有机质页岩作为非常规油气储层的巨大潜力[10-13],有力推动了油气地质理论的革新和发展。页岩的成岩演化过程控制页岩有机孔隙和总孔隙的发育与保存,然而除了黏土矿物沉积、成岩演化研究受到较广泛关注外,对页岩成岩作用的了解与认识还有待不断深入。页岩属细粒沉积物,指以粒级小于62.5 μm的颗粒为主要组成的沉积岩,主要由黏土矿物和黏土粒级的石英、长石及碳酸盐等碎屑矿物组成,矿物颗粒总体较小的特点给页岩沉积、成岩作用研究带来了诸多困难和挑战。

    我国南方中上扬子地区普遍发育多套海相黑色页岩层系,其中上奥陶统—下志留统五峰组—龙马溪组(O3 w-S1 l)页岩因页岩气勘探获得突破和成功开发而受到广泛关注[14-17]。五峰组—龙马溪组页岩古沉积环境特殊,岩相多样,有机质丰度较高,热演化程度也较高,且经历了复杂的成岩作用和强烈的多期构造改造,在沉积埋藏和漫长的成岩演化和构造运动过程中有机孔隙能否大量发育以及有效保存对页岩气的生、储和富集均极为重要。本文在岩心观察、岩石薄片鉴定和X射线衍射前期分析基础上,利用近年来发展起来的氩离子抛光样品预处理技术和环境扫描电镜与高分辨率场发射扫描电镜及能谱两级电子显微与微区成分分析技术,系统开展四川盆地五峰组—龙马溪组页岩微观结构、成岩作用类型及特征和纳米尺度孔隙结构特征研究,通过超显微特征分析探讨不同成岩作用对有机孔隙发育和保存的影响,进而建立成岩作用约束下有机孔隙的形成与演化模式,为该套页岩储层评价和页岩气甜点层段优选提供基础依据。

  • 碎屑储集岩的成岩作用是碎屑沉积物在沉积后到变质作用之间这一漫长阶段所发生的各种物理、化学及生物化学变化,这一系列变化对作为储集岩的孔隙形成、保存和破坏起着极为重要的影响作用[18-20]。与常规储集岩相比,页岩储层以有机孔隙大量发育为独特特征,因此成岩作用研究不仅需要考虑无机孔隙变化,而且还需要考虑次生有机孔隙的形成与演化,尤其是需要关注后期演化阶段复杂构造活动影响下有机孔隙的保存、改造和破坏过程。

  • 机械压实作用是指在上覆载荷作用下孔隙水排出和沉积物密度增大逐渐向岩石转变的作用过程,主要发生在早期成岩作用阶段,是导致页岩孔隙损失的主要作用。泥页岩富含黏土矿物且碎屑粒度较小,以基质支撑为主,抗压实能力较弱,沉积后在上覆荷载影响下,孔隙水排出,以絮凝体形式存在的黏土矿物“卡—房”结构迅速垮塌变形[21],黏土矿物重新排列,板片状结构趋于定向[22-23],从而使沉积物固结程度增加,原始孔隙度减小,渗透率降低。五峰组—龙马溪组页岩普遍较为致密,电镜观察黏土矿物含量较高的泥质页岩,可见片状的黏土矿物多呈近平行的定向排列,相互紧密堆积,部分刚性颗粒的长轴亦平行于层理方面,粒间孔隙发育较差(图1)。矿物颗粒以面接触为主(图1a,b),由于刚性碎屑颗粒抗压实能力强于黏土质,黏土颗粒遭受挤压则发生弯曲变形,与刚性颗粒形成紧密的凹凸接触关系,刚性颗粒则被黏土矿物包围形成鱼尾状分叉结构,(图1a~c),粒间孔隙(后期被沥青充填)偶有发育,表明泥页岩原生粒间孔隙在压实过程中大量消亡,所经历的机械压实作用较为强烈。另外,也有少部分未明显定向重排的黏土矿物片晶则在压实作用下发生层间劈裂和断折变形,构成三角状的稳定支撑结构,产生一定数量的次生孔隙,为烃类充注提供了一定空间的同时还有利于后期液态烃裂解所形成有机孔隙的保存(图1d~f),是泥质页岩中有机孔隙发育的主要空间。这种未明显重排的结构一般认为是泥质沉积时受到一定底流扰动形成的[24],经压实后形成此种次生孔隙。

    Figure 1.  Scanning electron microscope (SEM) images illustrating the effects of mechanical compaction

    机械压实作用除早期对页岩原生无机孔隙造成破坏外,在晚成岩阶段对液态烃裂解形成的有机孔隙也具有挤压破坏作用。电镜下观察到泥质页岩中较多平行于层理方向的条带状沥青中发育的有机孔隙大多呈挤压变形状或多个孔隙挤压合并后的线状或串珠状,其长轴方向基本平行于沥青条带和层理面(图1g~i),且孔隙发育程度明显低于附近非条带状沥青的发育度,表明有机孔隙形成后受到了一定程度压实作用的改造和破坏。

  • 胶结作用是成岩自生矿物对孔隙和吼道的充填和堵塞,从而造成孔隙的减少和渗透率的降低,使储集性能变差。对于常规储层,绝大多数胶结作用都属于破坏性成岩作用,在其影响下孔—喉系统变小并趋于复杂化。然而页岩储层却有所不同,胶结作用对其中原生无机孔隙和次生有机孔隙的影响较为复杂,有些胶结作用虽然由于填充效应占据了一定数量的原生无机孔隙,但能够对后期形成的次生有机孔隙起到较好的保护作用,因此具有双重效应特征。

  • 黄铁矿胶结作用在五峰组—龙马溪组页岩优质段十分普遍,产出形式多样,常以颗粒状、草莓状、不规则状和微裂缝充填物等形式出现(图2),前者为单颗粒态,其他均为集合体态。虽然黄铁矿胶结会占据一小部分原生孔隙空间,但由于其颗粒具有刚性特征,胶结后可以有效抑制颗粒及毗邻区域压实作用的进一步进行。草莓状黄铁矿胶结物由于球粒较大,常能够在其周围诱导微裂缝形成并保持适度开启(图2a~c),这些微裂缝平均宽度在3~4 μm左右,平均长度在15 μm左右。而鞍状和不规则状颗粒态黄铁矿等则更多胶结于黏土矿物片晶之间,从而起到“柱撑”作用,使晶间孔隙避免遭受完全压实破坏,其中一部分孔隙得以保存下来(图2d~f),为后期液态烃充注和滞留提供了所需的空间。黄铁矿胶结作用还对后期液态烃裂解所形成的有机孔隙给予“柱撑”保护,使其避免遭受压实破坏而有效保存(图2d~f)。

    Figure 2.  SEM images illustrating the effects of pyrite cementation

    众多研究发现泥页岩中的黄铁矿胶结作用可发生于同生—准同生期,因这一阶段细菌硫酸盐还原反应能够提供黄铁矿形成所需的硫化氢[25-28],另外也可发生于晚期的热硫酸盐还原作用[29-30]。五峰组—龙马溪组页岩中普遍发育于黏土矿物片晶间的“柱撑”颗粒状黄铁矿与草莓状黄铁矿的产状特点及压实过程中边缘诱导微裂缝的存在反映出它们形成于黏土矿物沉积时所具“卡—房”结构未被完全压实、尚有较多粒间孔隙存在的阶段,说明黄铁矿胶结作用发生较早。早期黄铁矿胶结作用发育程度越高,对机械压实作用的抑制越强,就越有利于页岩原生粒间孔隙的保持以及后期有机孔隙的形成和保存。龙一段中下部有机孔隙和总孔隙发育较好,与早期黄铁矿胶结作用有非常密切的关系。

  • 碳酸盐胶结物在五峰组—龙马溪组页岩中也较为普遍,含量在10%以下,主要以粒间胶结物和交代物形式出现,多以微晶状和晶粒状产出,自形程度中等至较高,矿物类型主要包括方解石、白云石及少量铁白云石,并且具有明显的多期次性(图3)。碳酸盐胶结物在不同成岩阶段均有产出,不同阶段的碳酸盐胶结物其晶体特征和矿物成分存在较大差异,主要受控于不同成岩阶段温压条件、流体—岩石相互作用的效应、成岩流体酸碱度等成岩环境参数。方解石胶结物形成于同生—早成岩期,碱性成岩流体环境是其形成的主控因素,由于形成期较早,多充填粒间孔隙,呈镶嵌状(图3a~d),是页岩中碳酸盐胶结物的主要类型。白云石和铁白云石胶结物是另一主要类型,多为半自形晶和自形晶,以分散状产出(图3e,f),主要通过交代早期的方解石胶结物和长石及黏土矿物颗粒形成,形成期较晚,与孔隙流体晚期的碱性转变有关。

    Figure 3.  SEM images illustrating the effects of carbonate cementation

    在发生早期方解石胶结时,方解石颗粒充填后会占据所充填原生孔隙的较大空间,但同时也由于支撑作用使未充填的少量剩余孔隙得到保存(图3a~c),并且跟黄铁矿胶结作用类似能够诱导微裂缝形成并保持开启(图3a,b),为有机孔隙形成保留了少量孔隙空间(图3b,c),可见适度的早期方解石胶结有利于增强泥页岩的抗压实能力,有利于原生无机孔隙和次生有机孔隙的保存,只是该部分孔隙贡献量较小。晚期白云石和铁白云石胶结作用则充填在剩余粒间孔隙内,充填后使剩余孔隙进一步减少,属于破坏性成岩作用。

  • 五峰组—龙马溪组页岩中最常见的硅质胶结物以石英次生加大和自生石英胶结两种形式存在,前者主要产出于碎屑石英颗粒表面,后者则主要充填于原生粒间孔隙内(图4)。次生加大石英主要在碎屑石英颗粒表面生长,多由大小在2 μm以下的微晶石英组成,呈卵状或椭球状,自形程度较低(图4a),部分碎屑石英颗粒呈明显的多期次次生加大现象(图4b),总体上石英次生加大胶结作用较弱。自生石英胶结作用相对较强,石英胶结物主要产出于原生粒间孔隙当中(图4c~e),也有少量胶结于粒间孔隙的孔壁上(图4f),以微晶石英单颗粒或集合体形式存在,有一定晶形,自形程度相对较高。硅质胶结所需的Si4+主要来源于温压条件升高后生物蛋白石重结晶、石英颗粒间的压溶和长石蚀变及蒙脱石向伊利石转化过程中硅的释放。硅质胶结作用形成的微晶石英颗粒将占据相当一部分的原生无机孔隙,使孔隙度降低,供液态烃生成后原位滞留的空间减少,是五峰组—龙马溪组页岩储层主要的破坏性成岩作用之一。

    Figure 4.  SEM images illustrating the effects of silica cementation

  • 泥页岩中除了原始沉积的黏土矿物外,还含有一定数量的黏土矿物胶结物,它们均为自生成因。五峰组—龙马溪组页岩以伊利石胶结物最为普遍,偶见高岭石胶结物,主要以填隙物形式出现,多呈丝状、纤维状和鳞片状充填于原生无机孔隙内及吼道中(图5)。前者主要形成于弱酸性的孔隙水环境,后者则主要形成于弱碱性的孔隙水体中。在有机质开始生烃阶段,有机酸大量生成,成岩流体由弱碱性逐渐转变为弱酸性,铝硅酸盐矿物如长石等发生溶蚀,溶蚀过程释放出的Si、Al等元素在原地或附近孔隙中形成黏土矿物胶结物和硅质胶结物,这也是黏土矿物胶结物多与硅质胶结物共生的原因。

    Figure 5.  SEM images illustrating the effects of clay mineral cementation

  • 在五峰组—龙马溪组页岩成岩过程中,还有一些其他自生矿物形成,如磷灰石、锐钛矿和重晶石等(图6)。鞍状磷灰石可直接通过富磷流体的析出形成,而锐钛矿可能来自于富含有机物质的卤水沉淀。根据它们多呈分散状分布于沥青之中的特征,推断它们的形成与烃类的侵位密切相关,烃类流体的侵入使孔隙内流体性质发生较大变化,从而引发不同金属离子的饱和沉淀。由于这些自生矿物的含量极低,虽然也起到一定胶结占位和支撑保护作用,但总体对页岩孔隙的影响不大,甚至可以忽略不计。

    Figure 6.  SEM images illustrating the effects of other authigenic mineral cementation

  • 重结晶作用是使沉积矿物由非晶质向隐晶质、晶质体变化的过程,是化学岩或生物化学岩成岩的主要作用方式。五峰组—龙马溪组下部富有机质硅质页岩发育有丰富的硅质生物—放射虫和海绵骨针碎屑和残体,属典型的生物成因[31-32]。放射虫和海绵骨针等硅质生物碎屑以非晶质的硅质矿物蛋白石-A形式存在,随着埋深和温度的增加,蛋白石-A经脱水和重结晶作用从含水的无周期性非晶体结构逐步向不含水具周期性结构的结晶体转化,经历蛋白石-A、蛋白石-CT和石英三大相态及中间过渡阶段最终转变为晶体石英[33]。五峰组—龙马溪组页岩X射线衍射谱线上既无蛋白石A衍射峰,又无鳞石英和方石英(蛋白石-CT)衍射峰,而石英衍射峰则强度高,锐度和对称性好[34],表明生物成因硅质经成岩演化已完全转化为晶体石英。在重结晶作用下生物硅质多呈蛋白石-CT硅球形态,以微晶石英集合体形式产出,微晶石英颗粒呈粒径较接近的卵状、椭球状或不规则状,为隐晶质结构,互有接触(图7)。

    Figure 7.  SEM images illustrating the effects of biogenic silica recrystallization

    由于蛋白石-A和蛋白石-CT的稳定性都不高,成岩转化的温度和压力条件均相对较低,在持续埋藏过程中重结晶作用发生较早且完成较迅速[35],近乎与机械压实作用同步进行。在该过程中由于不断形成硬度较高的石英而使页岩整体硬度不断增大,能够有效抑制机械压实作用的破坏,使相当数量的孔隙有效保存下来。由于石英硅质支撑格架的抗应力改造能力大大增强,重结晶作用结束后就完成了硅质页岩的成岩定型,机械压实和后续发生的其他成岩作用对硅质页岩原生孔隙的破坏就变得相当有限[35],因此至生油高峰期仍然保持有较多孔隙,尤其是微晶石英颗粒间存在的大量纳米级孔隙(图7d~i),为液态烃充注提供了有效空间,并在演化后期对有机孔隙的规模发育和保存持续起到保护作用。生物成因蛋白石重结晶作用及其抗压实机制是龙一段一亚段中下部硅质页岩发育高孔隙而成为页岩气产层的重要原因。

  • 页岩在有机质未成熟至开始成熟阶段,生成大量的有机酸,孔隙流体转化为弱酸性环境,从而造成钾长石等铝硅酸盐矿物的溶蚀。在较封闭的页岩系统中,随着孔隙流体性质的变化,钾长石沿着解理缝发生缓慢溶蚀,由于孔隙流体基本停滞,逐渐析出K+等碱性离子难以向外部迁移,而与溶蚀的中间产物硅铝凝胶再次发生反应,生成伊利石。由于溶蚀作用首先沿着解理缝发生,从而使钾长石呈现出较明显的原位蚀变特征,由原始块状向条状甚至丝状转变(图8a~c),而港湾状等溶蚀特征并不明显。

    Figure 8.  SEM images illustrating the effects of Illitization and cementation of microcrystalline quartz

    蒙脱石向伊利石转化是最主要的化学压实作用,并通过所引起的压实和胶结作用使泥页岩结构和物性发生较大变化。五峰组—龙马溪组页岩的X射线衍射分析结果显示黏土矿物以伊利石为主,并含有少量有序伊/蒙混层矿物,且随着埋深的增加伊/蒙混层矿物逐渐减少而伊利石含量不断增加,表明伊利石主要为蒙脱石的伊利石化作用转变而成。电镜下黏土矿物主要以片状形式产出,水平定向性较强,多平行层理面排列,片晶间近乎平行,具有明显的定向排列特征(图8)。这是由于伊利石化过程中新形成的伊利石趋向于沿垂直于最大主应力方向发生定向排列[36-37],从而在机械压实基础上进一步强化了黏土矿物片晶的定向排列程度[20],使页岩各向异性增强。蒙脱石伊利石化作用在泥质页岩经历了强烈的机械压实作用之后继续对其进行化学压实改造,使泥质页岩除黄铁矿胶结较发育层段外原生粒间孔隙几乎丧失殆尽,孔隙度进一步降低,页岩结构变得更加致密。

    蒙脱石伊利石化是硅氧四面体层间加钾、脱水和四面体内加铝脱钙镁铁硅的过程,钾长石溶蚀释放出的钾是该反应的驱动力之一,同时在该转化过程中又会产生剩余的Si4+,Ca2-,Mg2+和Fe3+。其中Si4+以SiO2形式进入孔隙水中,进而经沉淀以单矿物颗粒形式嵌生于黏土矿物片晶内或粒间孔隙内,形成微晶石英胶结物(图8),而Ca2-和Mg2+则形成同期次的碳酸盐胶结物。在硅、钙质胶结和蒙脱石层间水脱出的共同作用下,不仅页岩结构更加致密,黏土矿物片晶排列更加有序,而且孔隙度进一步大幅降低,残余原生孔隙较少,致使近乎同期生成的液态烃大量排出,原位滞留于页岩中的量非常有限。

  • 海相富有机质页岩孔隙以有机质孔隙为主,干酪根生烃和滞留烃裂解生气的生烃演化作用是有机孔隙形成的基本机制[10,38-39],因此有机质热成熟作用是有机孔隙形成的主要动力,对有机孔隙的发育起决定性影响。当有机质成熟后,液态烃大量生成,原位滞留于早期成岩作用改造后的残余孔隙中。当剩余孔隙较多时,滞留的液态烃量就较多,反之则较少,进而决定了后期形成有机孔隙的热解沥青的量。同时烃类的生、排过程,将原有的水—岩两相系统改变为水—油—岩三相系统,改变了岩石的地球化学环境及湿润性,有效阻止了水—岩相互作用的持续进行,使胶结作用趋于缓慢甚至停滞状态。随着热演化程度的不断增高,滞留于孔隙中的液态烃开始裂解生气并转化为热解沥青,气体在沥青内膨胀占位而形成孔隙[40-42],因此热演化程度直接控制着有机孔隙的发育及程度。四川盆地五峰组—龙马溪组页岩的热演化程度普遍较高,在构造保存良好的地区有机孔隙的发育程度总体较好(图9),当R o值在2.0%~3.0%之间时有机孔隙发育最好,但R o值>3.0%以后孔隙发育程度开始出现明显降低趋势,孔径变小,在3.5%以后有机孔隙发育程度变差[43],总孔隙度明显偏低,可能与基本接近“有机孔隙生成窗”的R o上限值有关。

    Figure 9.  Organic pore development characteristics across the thermal maturity of the Wufeng Formation⁃Longmachi Formation

  • 虽然机械压实作用在早成岩期对页岩原生孔隙破坏程度较高,但五峰组—龙马溪组页岩中生物硅质重结晶、黄铁矿与碳酸盐胶结等作用发生相对较早,能够使页岩硬度增高或局部抗压实能力增强,有效抑制机械压实作用对孔隙的进一步破坏,因此原生孔隙在遭受到一定程度的破坏后仍有相当一部分保存下来。五峰组—龙马溪组底部生物成因硅质页岩在早期成岩阶段虽然会损失掉约60%的原生无机孔隙,但由于生物蛋白石重结晶转化较早,与压实作用近乎同步,转化形成的大量石英颗粒在压实和自身胶结作用下相互接触构成整体刚性的格架,从而形成了一个有效应力支撑系统,硅质页岩的抗压实能力大大增强,能够有效抵御压实作用的继续破坏,为后期液态烃类的原位充注提供了充足的储集空间(图7)。而五峰组—龙马溪组富含黏土矿物的泥质页岩,由于石英含量较少且多被黏土矿物包裹,遭受压实后变形强烈,原生孔隙大量丧失,随后发生的蒙脱石伊利石化作用(化学压实)及所引起的硅、钙质胶结致使页岩更加致密,导致可供液态烃滞留的原生孔隙持续减少,因此电镜下所能观察到的沥青仅充填于黄铁矿和碳酸盐胶结后柱撑黏土片晶保存下来的极少量残余孔隙之中(图1~38)。当黄铁矿和碳酸盐胶结不发育时几乎无热解沥青存在,表明泥质页岩在机械压实和化学压实相继作用下原生残余孔隙极少而导致液态烃原位滞留空间严重不足。因此,当有机质达到热成熟阶段时页岩中是否仍具有较多原生无机孔隙非常关键,将直接决定液态烃原位滞留量的多少,这是后期有机孔隙能否大量发育的重要前提。同时热成熟阶段页岩系统的封闭性也非常重要,在无机孔隙仍较发育的前提下将保证更多的液态烃滞留于页岩系统内部而不被排出。

    有机质热成熟作用不仅控制着页岩有机孔隙的形成与发育,而且也影响着有机孔隙自身的演化与保持。大量研究表明有机孔隙在热成熟度达到一定程度时开始形成,然后随着热成熟度的升高,有机孔隙数量增多,但并非一直随着成熟度的不断增高而增加。当成熟度达到上限范围后,有机孔隙非但不会继续发育,反而由于成熟度过高导致生烃衰竭,有机质发生炭化,热解沥青逐渐向石墨化结构转变使有机孔隙破坏而逐渐消亡,孔隙体积大幅度减小[43]。四川盆地五峰组—龙马溪组页岩有机孔隙形成的R o值有利区间为2.0%~3.0%范围内,R o值>3.0%以后孔隙发育程度开始出现降低趋势,一旦R o超过3.5%后有机孔隙发育程度变差[43-45]。五峰组—龙马溪组页岩最大古埋深达到7 km以上,古地温最高达到170 ℃~260 ℃[46-47],大部分地区R o值在2.0%~3.0%范围内[48-50],热演化程度主体与“有机孔隙生成窗”吻合,主要得益于有限的最大古埋藏深度和盆地较低的大地热流值,对该套古老页岩地层有机孔隙的大量形成和有效保持非常有利。

    在后期演化的构造抬升过程中,深埋藏作用和构造压实作用对页岩有机孔隙的保存同样影响极大。深埋藏阶段强烈的压实作用和后期构造抬升过程中强烈的构造侧向挤压作用等会对矿物颗粒和塑性的有机质(沥青)进行挤压,对已生成的有机孔隙产生不同程度的改造和破坏[51-52]。当气体散失较多有机孔隙内的流体压力不足以抵抗该埋深条件下上覆地层压力或构造应力时就会发生一定形变,当达到新的压力平衡后孔隙保持稳定状态,孔隙形态则呈压扁状甚至垮塌状。然后可能继续散失并不断进行平衡调整。若气体散失极少始终保持流体超压状态,孔隙则仍能够抵抗来自上覆地层和侧向应力的挤压,保存程度较好,总孔隙度相对保持稳定。现今处于中浅层埋深(埋深<3 500 m)压力系数为1.55的钻井页岩中充填于石英粒间孔隙间的沥青发育大量孔隙,形态多样,大小不一,孔径较大(图10a),后期的改造和破坏较弱,而同处于中浅层埋深压力系数为1.08且靠近逆掩断层和埋藏较深(埋深>4 000 m)压力系数为0.98远离断层的页岩有机孔隙发育度明显偏低,数量较少,孔径变小(图10b,c),显示遭受过一定的挤压改造和破坏,表明深埋藏压实作用和晚期强烈的构造压实作用对有机孔隙有明显的破坏作用,而流体超压条件则对有机孔隙起着非常重要的保护作用。

    Figure 10.  Organic pore development characteristics across the pressure coefficient of the Wufeng Formation⁃Longmachi Formation (siliceous shale)

  • 五峰组—龙马溪组页岩自沉积伊始就开始接受成岩作用改造,从有机孔隙形成演化角度看,干酪根热生烃、液态烃裂解生气和构造抬升是三个控制有机孔隙发育与保存的关键成岩期。以关键成岩期为大致节点,页岩经历了早成岩期无机孔隙较多损失、中成岩期液态烃大量生成滞留于无机孔隙内、晚成岩期液态烃裂解生气生成有机孔隙和构造抬升期有机孔隙改造甚至破坏的多阶段演化过程,孔隙类型从早中期原生无机孔隙单一型逐渐转变为以晚期次生有机孔隙为主的二元混合型。

    在早成岩期,以机械压实作用为主,页岩孔隙变化主要受压实作用引起的有效应力控制。压实初期,沉积物颗粒压实迅速, 孔隙水大量排出,粒间孔隙损失较快。压实中后期,颗粒压实减缓,在生物蛋白石重结晶和黄铁矿胶结等作用影响下粒间孔隙损失率降低。泥质页岩在压实作用下孔隙损失量较多,利用高分辨率场发射扫描电镜大面积图像拼接技术(MAPS)分析五峰组—龙马溪组泥质页岩胶结物和沥青面积占比可得到早期成岩作用改造后残余无机孔隙的近似下限值,换算得到压实后的残余孔隙度大致为8%~13%,表明约80%以上的原生孔隙在这一过程损失殆尽。而硅质页岩由于同期蛋白石重结晶作用对机械压实的有效抑制,只有约60%的原生孔隙在这一过程中消亡,孔隙度由原始的80%左右降至25%左右,仍有较多原生孔隙残余[35]。这一阶段无论泥质页岩还是硅质页岩,作为孔隙主体的大孔和介孔均损失十分明显,但微孔却呈略为增加趋势,主要来自于大孔和介孔的转化(图11)。

    Figure 11.  Pore evolution profile with the diagenesis constraint of the Wufeng Formation⁃Longmachi Formation

    中成岩期,泥质页岩孔隙变化主要受蒙脱石伊利石化和干酪根生烃作用的控制,硅质页岩则主要受干酪根生烃作用影响。蒙脱石伊利石化及所引起的硅、钙质胶结作用使泥质页岩无机孔隙度进一步降低,之后干酪根成熟所生成的液态烃开始滞留于这些残余孔隙中。当进入干酪根生烃高峰期,大量液态烃原位滞留,页岩含油饱和度高。利用场发射扫描电镜图像拼接(MAPS)技术统计五峰组—龙马溪组页岩大面积高分辨率电镜图像中无机孔隙和热解沥青面积所占比例,可近似得到液态烃生成前原生残余孔隙的下限值。泥质页岩残余无机孔隙下限值为8%~10%右,此时干酪根形成的有机孔隙度约为1%,总孔隙度约为9%~11%,其中滞留烃占据的孔隙度值约为5%~8%的孔隙空间;硅质页岩残余无机孔隙下限值为13%~18%,此时干酪根形成的有机孔隙约为2%,总孔隙度约为15%~20%,其中滞留烃占据的孔隙度值约为10%~15%。

    晚成岩期,页岩孔隙变化主要受液态烃热裂解作用控制。该阶段滞留烃持续受热发生裂解,生成气态烃的同时自身缩聚形成热解沥青并伴随有机孔隙的形成。液态烃裂解初期因所形成热解固体沥青的充填作用较强,而此时所生成的有机孔隙数量还相对较少,与干酪根自身裂解形成的有机孔隙的总和仍尚不足以补偿热解沥青的填充量,从而导致总孔隙度逐渐降低。随着液态烃裂解作用的持续增强,有机孔隙大量生成,从而实现了热解沥青占据孔隙的内部规模性扩容,使总孔隙度又有所增加。当R o值为2.0%~3.0%区间时有机孔隙发育程度最高,页岩孔隙类型从原生无机孔隙单一型逐渐转变为以次生有机孔隙为主体的二元混合型,然后随着热演化的继续进行,总孔隙又趋于缓慢降低,孔隙以微孔和介孔为主,大孔趋于减少。

    构造抬升期,以泄压调整过程中深埋藏压实作用和构造侧向应力挤压作用为主,孔隙保存主要受上覆载荷压力和构造应力引起的有效应力的影响。在抬升过程中地层发生剥蚀,页岩温度和上覆静岩压力降低,岩石体积回弹,气体发生不同程度逸散,孔隙流体压力发生变化调整。当气体散失较多有机孔隙内流体压力小于上覆地层压力或构造应力时,塑性的有机质(沥青)受到挤压,孔隙发生形变,被压扁甚至垮塌,数量减少,孔隙度降低[51-54]。若气体散失极少而始终保持流体超压状态,孔隙则仍能够抵抗来自上覆地层和构造应力的挤压,保存程度较好,孔隙度相对保持稳定[55-56]

  • (1) 四川盆地五峰组—龙马溪组富有机质页岩成岩过程复杂,发育多种成岩作用,相互叠加接替,其中蛋白石重结晶、黄铁矿胶结、液态烃生成与热裂解等为有利于有机孔隙形成和保存的建设性成岩作用,而机械压实作用、伊利石化、多种胶结作用和构造压实作用等则属于破坏性成岩作用。龙一段二、三亚段泥质页岩主要遭受到强烈机械压实、中等黄铁矿及碳酸盐胶结和较强蒙脱石伊利石化作用影响;而龙一段一亚段硅质页岩主要受中等机械压实和强烈生物蛋白石重结晶作用影响。早期成岩作用对该套页岩原生无机孔隙形成、演化影响较大,进而影响后期液态烃的原位滞留量和有机孔隙的发育数量。

    (2) 五峰组—龙马溪组页岩原生无机孔隙主要受机械压实作用和发生较早的生物蛋白石重结晶作用和黄铁矿与碳酸盐胶结等作用控制,有机孔隙主要受有机质热成熟生烃、裂解生气和后期压实等作用的控制,成岩自生脆性矿物形成后的支撑和抬升过程流体超压条件的保持则对有机孔隙起着非常重要的保护作用。热演化程度适中(2.0%<R o<3.5%)和高生物成因硅质含量与流体超压条件是五峰组—龙马溪组页岩保持高孔的主要原因。

    (3) 在成岩演化过程中,五峰组—龙马溪组页岩经历了早—中成岩期原生无机孔隙损失、中成岩期液态烃生成滞留、晚成岩期液态烃裂解与有机孔隙生成和构造抬升期有机孔隙改造保存四大孔隙演化阶段,孔隙类型从原生无机孔隙单一型逐渐转变为以次生有机孔隙为主的有机无机二元复合型。后期构造抬升期流体超压保持较好条件下孔隙结构有所变化但总孔隙较为稳定。

Reference (56)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return