Advanced Search
Volume 41 Issue 2
Apr.  2023
Turn off MathJax
Article Contents

ZHENG Wei, XU Xin, QI YongAn, XING ZhiFeng, LIU YunLong, LI WanYing, WU PanPan, ZHANG XiangYun. The Implications of a Paleoenvironment and Paleoclimate Analysis for the Permian⁃Triassic Mass Extinction: A case study of the Sunjiagou Formation in Jiyuan, western Henan province[J]. Acta Sedimentologica Sinica, 2023, 41(2): 392-408. doi: 10.14027/j.issn.1000-0550.2021.122
Citation: ZHENG Wei, XU Xin, QI YongAn, XING ZhiFeng, LIU YunLong, LI WanYing, WU PanPan, ZHANG XiangYun. The Implications of a Paleoenvironment and Paleoclimate Analysis for the Permian⁃Triassic Mass Extinction: A case study of the Sunjiagou Formation in Jiyuan, western Henan province[J]. Acta Sedimentologica Sinica, 2023, 41(2): 392-408. doi: 10.14027/j.issn.1000-0550.2021.122

The Implications of a Paleoenvironment and Paleoclimate Analysis for the Permian⁃Triassic Mass Extinction: A case study of the Sunjiagou Formation in Jiyuan, western Henan province

doi: 10.14027/j.issn.1000-0550.2021.122
Funds:

National Natural Science Foundation of China 41772110

Key Scientific Research Project of Henan Universities 20A170010

  • Received Date: 2021-07-06
  • Accepted Date: 2021-10-09
  • Rev Recd Date: 2021-09-08
  • Available Online: 2021-10-09
  • Publish Date: 2023-04-10
  • Both the ocean and the land experienced the most severe biological crisis during the Permian⁃Triassic transition. Restoration of the sedimentary environment and reconstruction of the paleoclimate before and after the mass extinction event lay the foundation of this study. The study area in the Jiyuan Basin is located at the southern margin of the North China Plate, where the Permian⁃Triassic terrestrial strata are well developed and the contact is clear. The methods of petrology, sedimentology, paleontology and geochemistry were used to study the Dayu Section of the Sunjiagou Formation, situated near Jiyuan city, western Henan province. The succession from the lower strata record a gradual change from a meandering stream environment to a lacustrine shore environment. Geochemical data from the lower and middle strata show low annual precipitation, increasing temperatures and enhanced chemical weathering, and reflect an arid to semi-arid climate, possibly arising from the global giant monsoon. Deposits from this unusual period are characterized by the disappearance of Jiyuan fauna and the emergence of microbially induced sedimentary structures (MISS). The climate tended to become humid for a short time at the end of the middle depositional period, then a persistent arid climate dominated until the Lower Triassic, as evidenced from the upper strata. On the whole, the Sunjiagou Formation reflects a transformation from a humid-arid to a subhumid-arid climate during the sedimentation period. The dry and hot climate may have been an important factor in the destruction of terrestrial ecosystems, leading to the extinction of terrestrial organisms. The lithological evidence, paleoclimate and flourishing MISS in the middle strata indicate that the Permian⁃Triassic mass extinction (PTME) possibly occurred during the early sedimentary stage of the Sunjiagou Formation.
  • [1] Raup D M. Size of the Permo-Triassic bottleneck and its evolutionary implications[J]. Science, 1979, 206(4415): 217-218.
    [2] Erwin D H. Extinction: How life on earth nearly ended 250 million years ago[M]. Princeton: Princeton University Press, 2006: 1-296.
    [3] Song H J, Wignall P B, Tong J N, et al. Two pulses of extinction during the Permian-Triassic crisis[J]. Nature Geoscience, 2013, 6(1): 52-56.
    [4] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [5] Joachimski M M, Lai X L, Shen S Z, et al. Climate warming in the Latest Permian and the Permian⁃Triassic mass extinction[J]. Geology, 2012, 40(3): 195-198.
    [6] Song H J, Wignall P B, Tong J N, et al. Integrated Sr isotope variations and global environmental changes through the Late Permian to early Late Triassic[J]. Earth and Planetary Science Letters, 2015, 424: 140-147.
    [7] Sun Y D, Joachimski M M, Wignall P B, et al. Lethally hot temperatures during the Early Triassic greenhouse[J]. Science, 2012, 338(6105): 366-370.
    [8] Chen J, Shen S Z, Li X H, et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 26-38.
    [9] Retallack G J, Sheldon N D, Carr P F, et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 233-251.
    [10] Retallack G J. Permian and Triassic greenhouse crises[J]. Gondwana Research, 2013, 24(1): 90-103.
    [11] 张抗. 孙家沟组穿时性讨论[J]. 中国区域地质,1991(3):221-228.

    Zhang Kang. Diachronism of the Sunjiagou Formation: A discussion[J]. Regional Geology of China, 1991(3): 221-228.
    [12] 侯静鹏,欧阳舒. 山西柳林孙家沟组孢粉植物群[J]. 古生物学报,2000,39(3):356-368.

    Hou Jingpeng, Ouyang Shu. Palynoflora from the Sunjiagou Formation in Liulin county, Shanxi province[J]. Acta Palaeontologica Sinica, 2000, 39(3): 356-368.
    [13] 白斌,周立发,刘彬辉,等. 南华北上二叠统石千峰组物源与沉积环境分析[J]. 西北大学学报(自然科学版),2006,36(3):461-466.

    Bai Bin, Zhou Lifa, Liu Binhui, et al. Sedimentary environment patterns analysis on Shiqianfeng Formation of Upper Permian in southern part of North China[J]. Journal of Northwest University (Natural Science Edition), 2006, 36(3): 461-466.
    [14] 曹莹. 化学风化指标对华北二叠纪—三叠纪陆地风化及气候变化的指示意义[D]. 武汉:中国地质大学,2018:1-64.

    Cao Ying. Permian-Triassic continental weathering and climates reconstructed in North China from chemical weathering indices[D]. Wuhan: China University of Geosciences, 2018: 1-64.
    [15] 郑伟,齐永安,邢智峰,等. 豫西济源二叠纪末—三叠纪初陆相微生物成因构造及其古环境意义[J]. 沉积学报,2017,35(6):1121-1132.

    Zheng Wei, Qi Yong’an, Xing Zhifeng, et al. Characteristics and paleoenvironmental significance of microbially induced sedimentary structures (MISSs) in terrestrial P-T boundary in Jiyuan, western Henan province[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1121-1132.
    [16] 陈世悦. 华北地块南部晚古生代至三叠纪沉积构造演化[J]. 中国矿业大学学报,2000,29(5):536-540.

    Chen Shiyue. Sedimentary-Tectonic evolution from Late Palaeozoic to Triassic in the south of North China Block[J]. Journal of China University of Mining & Technology, 2000, 29(5): 536-540.
    [17] 杨文涛,王敏,杜远生. 中生代济源盆地沉积充填特征及其对秦岭、太行山隆升作用的响应[J]. 地质论评,2014,60(2):260-274.

    Yang Wentao, Wang Min, Du Yuansheng. The depositional characteristics from Mesozoic Jiyuan Basin with its response to the uplift of Qinling orogen and Taihang mountains[J]. Geological Review, 2014, 60(2): 260-274.
    [18] 彭兆蒙,吴智平. 华北地区三叠纪地层发育特征及原始沉积格局分析[J]. 高校地质学报,2006,12(3):343-352.

    Peng Zhaomeng, Wu Zhiping. Development features of Triassic strata and analysis of original sedimentary pattern in North China[J]. Geological Journal of China Universities, 2006, 12(3): 343-352.
    [19] 林晓英,苏现波,张双斌,等. 济源凹陷页岩气成藏条件与勘探潜力分析[J]. 河南理工大学学报(自然科学版),2013,32(4):410-417.

    Lin Xiaoying, Su Xianbo, Zhang Shuangbin, et al. Accumulation conditions and exploraiton potentional of shale gas in Jiyuan Depression[J]. Journal of Henan Polytechnic University (Natural Science), 2013, 32(4): 410-417.
    [20] 闫法堂,姚合法. 南华北盆地济源凹陷古地温及热演化史恢复[J]. 油气地质与采收率,2006,13(5):28-30,34.

    Yan Fatang, Yao Hefa. Study on reconstruction of palaeogeothermal and thermal evolution history in Jiyuan Depression, south Huabei Basin[J]. Petroleum Geology and Recovery Efficiency, 2006, 13(5): 28-30, 34.
    [21] 张功成. 济源凹陷盆地结构构造特征与油气勘探前景[J]. 断块油气田,1997,4(5):5-11.

    Zhang Gongcheng. The architecture charistics and petroleum prosprecting of Jiyuan Basin[J]. Fault-Block Oil & Gas Field, 1997, 4(5): 5-11.
    [22] 胡斌,杨文涛,宋慧波,等. 豫西济源地区早三叠世和尚沟组湖相遗迹化石及遗迹组构[J]. 沉积学报,2009,27(4):573-582.

    Hu Bin, Yang Wentao, Song Huibo, et al. Trace fossils and ichnofabrics in the Heshanggou Formation of lacustrine deposits, Jiyuan area, Henan province[J]. Acta Sedimentologica Sinica, 2009, 27(4): 573-582.
    [23] 孙艾玲. 华北地区二迭纪、三迭纪陆生四足类的性质及其时代探讨[J]. 古脊椎动物与古人类,1980,18(2):100-110.

    Sun Ailing. Late Permian and Triassic terrestrial tetrapods of North China[J]. Vertebrata Palasiatica, 1980, 18(2): 100-110.
    [24] 张海清,刘印环,林德超. 河南宜阳石千峰组植物组合的发现及其意义[J]. 中国区域地质,1987(4):383-384.

    Zhang Haiqing, Liu Yinhuan, Lin Dechao. The discovery of a plant fossil assemblage in the Shiqianfeng Formation in Yiyang, Henan, and its significance[J]. Regional Geology of China, 1987(4): 383-384.
    [25] 殷鸿福,林和茂. 陕西渭北地区三叠纪海相化石层并论石千峰群的时代[J]. 地层学杂志,1979,3(04):233-241.

    Yin Hongfu, Lin Hemao. Marine Triassic fossil beds in Weibei area, Shaanxi with discussion on the age of Shiqianfeng Group[J]. Acta Stratigraphica Sinica, 1979, 3(04): 233-241.
    [26] 曹高社,余爽杰,孙凤余,等. 豫西宜阳地区三叠纪早期孙家沟组上段湖相碳酸盐岩碳氧同位素和古环境分析[J]. 地质学报,2019,93(5):1137-1153.

    Cao Gaoshe, Yu Shuangjie, Sun Fengyu, et al. Carbon and oxygen isotopic composition and palaeoenvironment analysis of lacustrine carbonate rocks in the Upper member of Early Triassic Sunjiagou Formation, Yiyang area, western Henan province[J]. Acta Geologica Sinica, 2019, 93(5): 1137-1153.
    [27] 徐莉,张成君,贾松海,等. 河南济源大峪槐圪塔岭二叠—三叠系元素地球化学特征及古环境[J]. 地质学报,2015,89(1):137-148.

    Xu Li, Zhang Chengjun, Jia Songhai, et al. Element geochemistry and Palaeoenvironment of Permian-Triassic stratum in the Huaigeda hill of Dayu town Jiyuan Basin, Henan province[J]. Acta Geologica Sinica, 2015, 89(1): 137-148.
    [28] 王道生,张国成. 济源盆地中三叠世油房庄组的古土壤特征[J]. 河南理工大学学报(自然科学版),2005,24(4):278-282.

    Wang Daosheng, Zhang Guocheng. Features of paleosols from Middle Triassic Youfangzhuang Formation, Jiyuan Basin[J]. Journal of Henan Polytechnic University (Natural Science), 2005, 24(4): 278-282.
    [29] 陈留勤,刘鑫,李鹏程. 古土壤:沉积环境和古气候变化的灵敏指针[J]. 沉积学报,2018,36(3):510-520.

    Chen Liuqin, Liu Xin, Li Pengcheng. Paleosols: Sensitive indicators of depositional environments and paleoclimate[J]. Acta Sedimentologica Sinica, 2018, 36(3): 510-520.
    [30] 黄成敏, Retallack G J,王成善. 白垩纪钙质古土壤的发生学特征及古环境意义[J]. 土壤学报,2010,47(6):1029-1038.

    Huang Chengmin, Retallack G J, Wang Chengshan. Cretaceous calcareous paleosols: Pedogenetic characteristics and paleoenvironmental implications[J]. Acta Pedologica Sinica, 2010, 47(6): 1029-1038.
    [31] Retallack G J. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols[J]. Geology, 2005, 33(4): 333-336.
    [32] 潘园园,黄成敏. 中国土壤中钙积层深度与年降水量关系的定量研究[J]. 安徽农业科学,2010,38(35):20043-20044,20054.

    Pan Yuanyuan, Huang Chengmin. Quantitative study on the correlation between the depth of calcic horizon in soil and annual precipitation in China[J]. Journal of Anhui Agricultural Sciences, 2010, 38(35): 20043-20044, 20054.
    [33] Yan D T, Chen D Z, Wang Q C, et al. Large-scale climatic fluctuations in the Latest Ordovician on the Yangtze Block, South China[J]. Geology, 2010, 38(7): 599-602.
    [34] Harnois L. The CIW index: A new chemical index of weathering[J]. Sedimentary Geology, 1988, 55(3/4): 319-322.
    [35] 徐小涛,邵龙义. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素[J]. 古地理学报,2018,20(3):515-522.

    Xu Xiaotao, Shao Longyi. Limiting factors in utilization of chemical index of alteration of mudstones to quantify the degree of weathering in provenance[J]. Journal of Palaeogeography, 2018, 20(3): 515-522.
    [36] 邢智峰,林佳,周虎,等. 豫西宜阳地区晚二叠世晚期—早三叠世沉积记录及其对古气候变化的响应[J]. 高校地质学报,2019,25(3):401-411.

    Xing Zhifeng, Lin Jia, Zhou Hu, et al. Palaeoclimate changes revealed by sedimentary records of the Upper Permian-Lower Triassic strata in Yiyang area, western Henan province, China[J]. Geological Journal of China Universities, 2019, 25(3): 401-411.
    [37] 董黎阳,伊剑. 山西保德上二叠统孙家沟组中发现锯齿龙类集群埋藏化石[J]. 中国地质,2018,45(4):861-862.

    Dong Liyang, Yi Jian. The discovery of clusters of buried fossil remains of pareiasaurs in Upper Permian Sunjiagou Formation in Baode, Shanxi province[J]. Geology in China, 2018, 45(4): 861-862.
    [38] Parrish J T. Climate of the supercontinent Pangea[J]. The Journal of Geology, 1993, 101(2): 215-233.
    [39] Crowley T J. Pangea climate[M]//Klein G D. Pangea: Paleoclimate, tectonics and sedimentation during accretion, zenith and breakup of a supercontinent. Colorado: Geological Society of America Special Paper, 1994, 288: 25-39.
    [40] 庄文娟,朱红涛,杨香华,等. 三叠纪巨型季风在澳大利亚西北大陆架North Carnarvon盆地的沉积记录[J]. 地质科技情报, 2013, 32(06): 42-47.

    Zhuang Wenjuan, Zhu Hongtao, Yang Xianghua, et al. Sedimentary records of Triassic megamonsoon in North Carnarvon Basin, the northwest shelf of Australia[J]. Geological Science and Technology Information, 2013, 32(06): 42-47.
    [41] 钱利军,时志强,欧莉华. 二叠纪—三叠纪古气候研究进展:泛大陆巨型季风气候:形成、发展与衰退[J]. 海相油气地质,2010,15(3):52-58.

    Qian Lijun, Shi Zhiqiang, Lihua Ou. Research advances in Permian-Traissic paleoclimate: Formation, development and decline of Pangaean Megamonsoon[J]. Marine Origin Petroleum Geology, 2010, 15(3): 52-58.
    [42] 邢智峰,周虎,林佳,等. 河南宜阳下三叠统刘家沟组微生物成因沉积构造演化及其对古环境变化的响应[J]. 古地理学报,2018,20(3):191-206.

    Xing Zhifeng, Zhou Hu, Lin Jia, et al. Evolution of microbially induced sedimentary structures and their response to palaeoenvironment variation of the Lower Triassic Liujiagou Formation in Yiyang area, Henan province[J]. Journal of Palaeogeography, 2018, 20(3): 191-206.
    [43] 颜佳新. 东特提斯地区二叠—三叠纪古气候特征及其古地理意义[J]. 地球科学:中国地质大学学报,1999,24(1):13-20.

    Yan Jiaxin. Permian-Triassic paleoclimate of eastern Tethys and its paleogeographic implication[J]. Earth Science: Journal of China University of Geosciences, 1999, 24(1): 13-20.
    [44] 伊剑,刘俊. 山西寿阳二叠系上部的锯齿龙类和二齿兽类化石[J]. 古脊椎动物学报,2020,58(1):16-23.

    Yi Jian, Liu Jun. Pareiasaur and dicynodont fossils from Upper Permian of Shouyang, Shanxi, China[J]. Vertebrata Palasiatica, 2020, 58(1): 16-23.
    [45] Liu J, Xu L, Jia S H, et al. The Jiyuan tetrapod fauna of the Upper Permian of China: 2. Stratigraphy, taxonomical review, and correlation[J]. Vertebrata Palasiatica, 2014, 52(3): 328-339.
    [46] 李锦玲. 中国最原始的低等四足类动物群[J]. 中国科学(D辑):地球科学,2000,30(3):279-283.

    Li Jinling. The most primitive lower tetrapod fauna in China[J]. Science China (Seri. D): Earth Sciences, 2000, 30(3): 279-283.
    [47] Chu D L, Tong J N, Bottjer D J, et al. Microbial mats in the terrestrial Lower Triassic of North China and implications for the Permian-Triassic mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 214-231.
    [48] Mata S A, Bottjer D J. The paleoenvironmental distribution of Phanerozoic wrinkle structures[J]. Earth-Science Reviews, 2009, 96(3): 181-195.
    [49] Noffke N. The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits[J]. Earth-Science Reviews, 2009, 96(3): 173-180.
    [50] Zhang H, Cao C Q, Liu X L, et al. The terrestrial end-Permian mass extinction in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 108-124.
    [51] 谭聪,袁选俊,于炳松,等. 鄂尔多斯盆地南缘上二叠统—中下三叠统地球化学特征及其古气候、古环境指示意义[J]. 现代地质,2019,33(3):615-628.

    Tan Cong, Yuan Xuanjun, Yu Bingsong, et al. Geochemical characteristics and paleoclimatic implications of the Upper Permian and Middle-Lower Triassic strata in southern Ordos Basin[J]. Geoscience, 2019, 33(3): 615-628.
    [52] 殷鸿福,鲁立强. 二叠系—三叠系界线全球层型剖面:回顾和进展[J]. 地学前缘,2006,13(6):257-267.

    Yin Hongfu, Lu Liqiang. A review on the global stratotype section and point of the Permian-Triassic boundary[J]. Earth Science Frontiers, 2006, 13(6): 257-267.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(3)

Article Metrics

Article views(275) PDF downloads(118) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-07-06
  • Revised:  2021-09-08
  • Accepted:  2021-10-09
  • Published:  2023-04-10

The Implications of a Paleoenvironment and Paleoclimate Analysis for the Permian⁃Triassic Mass Extinction: A case study of the Sunjiagou Formation in Jiyuan, western Henan province

doi: 10.14027/j.issn.1000-0550.2021.122
Funds:

National Natural Science Foundation of China 41772110

Key Scientific Research Project of Henan Universities 20A170010

Abstract: Both the ocean and the land experienced the most severe biological crisis during the Permian⁃Triassic transition. Restoration of the sedimentary environment and reconstruction of the paleoclimate before and after the mass extinction event lay the foundation of this study. The study area in the Jiyuan Basin is located at the southern margin of the North China Plate, where the Permian⁃Triassic terrestrial strata are well developed and the contact is clear. The methods of petrology, sedimentology, paleontology and geochemistry were used to study the Dayu Section of the Sunjiagou Formation, situated near Jiyuan city, western Henan province. The succession from the lower strata record a gradual change from a meandering stream environment to a lacustrine shore environment. Geochemical data from the lower and middle strata show low annual precipitation, increasing temperatures and enhanced chemical weathering, and reflect an arid to semi-arid climate, possibly arising from the global giant monsoon. Deposits from this unusual period are characterized by the disappearance of Jiyuan fauna and the emergence of microbially induced sedimentary structures (MISS). The climate tended to become humid for a short time at the end of the middle depositional period, then a persistent arid climate dominated until the Lower Triassic, as evidenced from the upper strata. On the whole, the Sunjiagou Formation reflects a transformation from a humid-arid to a subhumid-arid climate during the sedimentation period. The dry and hot climate may have been an important factor in the destruction of terrestrial ecosystems, leading to the extinction of terrestrial organisms. The lithological evidence, paleoclimate and flourishing MISS in the middle strata indicate that the Permian⁃Triassic mass extinction (PTME) possibly occurred during the early sedimentary stage of the Sunjiagou Formation.

ZHENG Wei, XU Xin, QI YongAn, XING ZhiFeng, LIU YunLong, LI WanYing, WU PanPan, ZHANG XiangYun. The Implications of a Paleoenvironment and Paleoclimate Analysis for the Permian⁃Triassic Mass Extinction: A case study of the Sunjiagou Formation in Jiyuan, western Henan province[J]. Acta Sedimentologica Sinica, 2023, 41(2): 392-408. doi: 10.14027/j.issn.1000-0550.2021.122
Citation: ZHENG Wei, XU Xin, QI YongAn, XING ZhiFeng, LIU YunLong, LI WanYing, WU PanPan, ZHANG XiangYun. The Implications of a Paleoenvironment and Paleoclimate Analysis for the Permian⁃Triassic Mass Extinction: A case study of the Sunjiagou Formation in Jiyuan, western Henan province[J]. Acta Sedimentologica Sinica, 2023, 41(2): 392-408. doi: 10.14027/j.issn.1000-0550.2021.122
  • 二叠纪—三叠纪之交发生了显生宙最大的生物大灭绝事件,全球约90%的海洋生物和70%的陆地脊椎生物遭到灭绝[1-3],该事件后生物复苏进程与机制研究仍是当前地学领域的热点。前人经过大量研究认为二叠纪—三叠纪之交的生物大灭绝事件与一系列地质事件有关,主要有陨石撞击、西伯利亚火成岩省、森林野火、巨型季风、全球性气候变化、海洋缺氧、海退等[4-6]。碳同位素研究表明二叠纪末火山事件使大量温室气体排出,由此导致的温室效应产生了巨大影响[6],而磷灰石氧同位素、锶同位素等研究表明二叠纪末期发生的一次升温事件对该次生物灭绝也有较大影响[3,7],Chen et al.[8]指出在这次升温事件中还存在一次降温事件,这次升温事件并不是造成这次生物大灭绝事件的主要原因,只是对早三叠世生物复苏起到较大的延迟作用[8]。诸多海相古气候变化的研究取得了较多的成果。

    以上成果多基于海相地层取得,对这一时期陆相环境和气候变化的相关研究涉及不多。目前对二叠纪—三叠纪之交陆相古气候的研究主要是利用植物气孔指数、古土壤中的成壤碳酸盐以及古脊椎动物的碳同位素等重建大气中CO2浓度,间接地还原二叠纪—三叠纪之交的陆相气候条件变化[9-10],这三种方法恢复的二叠纪—三叠纪之交的CO2浓度均处于较高水平,表明该时期气候较为温暖,这次高温事件是可能导致陆地生物灭绝的主要原因[10]。但是化石保存的不完备性和陆相地层时代的不确定性限制了二叠纪—三叠纪之交陆相气候和环境变化的研究。孙家沟组保存的华北板块二叠纪—三叠纪转折时期的陆相沉积记录与下伏晚古生代以海相或三角洲相为主的地层有较大差异[11-14]。因此,该时期陆相地层和古气候的基础资料还需要进一步完善。

    济源大峪镇孙家沟组剖面位于济源盆地,盆地内二叠纪—三叠纪陆相沉积发育齐全,地层接触清晰[15]。通过岩性特征和生物特征的分析,结合地球化学手段,恢复和重建研究区孙家沟组沉积环境和古气候,探究孙家沟组沉积期古气候、沉积环境与生态系统之间的耦合变化关系,补充二叠纪—三叠纪之交陆相古气候变化的基础资料,为二叠纪—三叠纪之交济源盆地甚至华北板块南缘古气候演化提供理论支持。

  • 晚古生代,华北板块南部沉积盆地是在其南侧秦岭造山带的强烈挤压作用下,由陆表海逐渐演化形成的陆源近海湖泊盆地;到晚二叠世晚期,北秦岭—北淮阳构造带隆升速度较快,北淮阳带全面隆起,华北板块整体抬升,海水逐渐退去,北淮阳与北秦岭一起形成相对稳定的华北板块南缘的物源区,为近海湖盆提供陆源碎屑物质[16-17]。至此华北板块内盆地进入陆相发展阶段,发育了炎热干旱气候条件下的孙家沟组河流—湖泊相沉积[18]

    济源盆地位于秦岭造山带和山西隆起交汇处,属于开封拗陷最西部的一个次级构造单元。盆地四周均以断裂为界,北以太行山南断裂为界,东北以武陟断裂为界,并与太行山南断裂相接,南以邙山北断裂为界,西以西虢断裂为界[19]。古生代—中生代早期,济源盆地属华北板块的一部分,为克拉通盆地[20]。济源盆地基底为太古代—早元古代的结晶岩系和中上元古代和古生代沉积岩,盖层主要在三叠纪、早中侏罗世、晚侏罗—早白垩世构造改造后的盆地和古近纪—新近纪的张性断陷盆地中形成。盆地经历了印支运动、燕山运动、喜山运动的改造[21]。济源大峪镇剖面位于济源盆地内(图1[22],二叠纪—三叠纪陆相地层发育齐全,界线清晰,沉积连续,孙家沟组与下伏上石盒子组平顶山砂岩段、上覆刘家沟组之间均呈整合接触关系(图1c),剖面实测厚度约为75 m,古土壤广泛发育。孙家沟组具有明显的穿时性,其时代归属至今仍有争议,部分学者认为华北板块孙家沟组归属晚二叠世晚期[11,23-24],也有学者指出孙家沟组上段应归属早三叠世[25-26]。孙家沟组作为华北板块二叠纪和三叠纪转折时期的重要沉积记录,是研究该时期沉积环境和古气候演变的重要材料[26-27]

    Figure 1.  Location of Dayu section in the Jiyuan Basin, western Henan province

  • 大峪镇孙家沟组剖面,位于河南省济源市小浪底水库北侧,实测地层厚度约75 m,按照岩性及沉积特征将其分为三段,即孙家沟组下段(1~7层)、孙家沟组中段(8~10层)和孙家沟组上段(11~17层)(图2)。

    Figure 2.  Lithological column of the Sunjiagou Formation in Jiyuan area

    具体来看,济源孙家沟组第1~4层以紫红色、暗灰色泥岩与钙质结核层互层为特征(图3a,b),泥岩中发育水平层理(图4a,b)。第5层发育一砂岩透镜体(图3c),呈淡紫色,最大厚度约2.6 m,向两侧变薄尖灭,发育平行层理(图4c,d)。第6~7层以紫红色、灰绿色泥岩、粉砂质泥岩为主,夹多层厚0.1~0.2 m的钙质细砂岩,发育水平层理、平行层理和波状交错层理(图4e)。第8~9层以紫红色、灰绿色泥岩、粉砂质泥岩为主,夹一层厚约0.7 m的钙质砂岩和数层约0.1 m厚的钙质结核层(图3d),此外还发育大量MISS,以微生物席生长构造和微生物席破坏构造为主,该种生物成因构造广泛分布于前寒武纪中—新元古界,MISS在P-T界线附近的发育,可能反映了一种典型的陆相灾后生态系统[15]。第10层底部为一层厚约0.1 m的灰绿色砾岩层,砾石粒径为0.5~2 cm,个别可达4 cm(图3e),向上为一层厚约2 m的灰绿色粉砂岩,发育平行层理。第11~14层以灰绿色、土褐色粉砂岩、细砂岩为主,未见明显层理。第15层为厚约0.6 m的砂岩,发育平行层理。第16~17层以褐色粉砂岩、细砂岩为主(图3f),夹一层厚约0.7 m的砾岩,下部发育平行层理,向上变为楔状交错层理(图4f),17层顶部发育紫红色细砂岩,与上覆刘家沟组整合接触。

    Figure 3.  Lithological properties of the Sunjiagou Formation in Jiyuan area

    Figure 4.  Sedimentary structure of Sunjiagou Formation in Jiyuan area

    济源地区孙家沟组砂岩镜下照片见图5。镜下观察发现,样品中主要成分为石英,此外还有少量长石、碳酸盐岩矿物和黏土矿物。部分石英颗粒具有次生加大现象(图5c),石英颗粒被较为完整的自形晶面包裹。碳酸盐矿物结晶程度不一,主要以胶结物的形式存在。

    Figure 5.  Petroscopic characteristics of Sunjiagou Formation in Jiyuan area

  • 古土壤记录了其形成时期的母质、气候、生物群落、地形和时间等信息,是被广泛用作古气候重建、古景观恢复和沉积环境及其控制因素探究的良好材料[28-29],其中含有成壤性碳酸盐的钙质古土壤是利用最广泛的土壤类型之一[29-30]。济源盆地晚二叠世孙家沟组中、下段发育较多的钙质古土壤层,含丰富的钙质结核(图6),其形成与气候密切相关[28]

    Figure 6.  Calcareous paleosols of the Sunjiagou Formation in Jiyuan

    济源孙家沟组剖面中古土壤具有以下特点:泥岩一般为紫红色、深灰色、灰绿色和灰紫色。部分层位的泥岩钙质含量较高,滴稀盐酸剧烈冒泡。成壤钙质结核主要呈厚层状、薄层状和姜状(呈不规则团块状)等3种形态。1)姜状(图6a,b):大小不一(几毫米至几厘米不等),形态各异,镶嵌在深灰色泥岩内部,可能为强季节性气候的产物。2)厚层状(图6c,f):厚度大于1 cm,呈块状连结成层的整体形态,上下界面分明,在地下水补充较充足的低洼地带易于形成。3)薄层状(图6d,e):厚度小于1 cm,钙质大致平行于层面方向,多见于不成熟的古土壤层,短期的蒸发作用易形成此类钙质结核。

    剖面中,姜状钙质结核出现在孙家沟组底部,与之同层位的地化数据也反映气候由湿润向干旱转变。一般认为古气候是波动变化的,干旱是相对的,而红层沉积恰恰是干旱气候的反映[29]。深灰色姜状钙质结核层及其上部的以紫红色为主的地层与下伏黄绿色平顶山砂岩截然不同。济源平顶山砂岩段为湖滩相沉积[15],在济源孙家沟组沉积环境由湖滩相过渡为河流相时,气候由湿润向干旱转变。代表强季节性气候条件的姜状钙质结核大量出现在孙家沟组底部,地化数据大幅偏移和气候的快速干旱,表明该时期可能是通过强季节性变换来完成气候转换的。厚层状钙质结核主要出现在孙家沟组下段之上的大部分红层,灰绿色地层开始出现并与红层互层后,厚层状钙质结核逐渐减少,薄层状钙质结核大量发育,指示干旱气候有所减弱。

    一般认为干旱—半干旱的气候条件下古土壤中的碳酸钙最易发生富集,而淀积层的深度(D,cm)主要由区域年降水量决定[31]。两种年降水量计算公式[31-32]如下:

    P=137.24+6.45D-0.0132 (R2=0.52,S.E=±147 mm) (1)
    P=68.5+12.06D-0.069D2 (R2=0.73,S.E=±89 mm) (2)

    式中:P为年均降水量(mm),D为野外测得的淀积层深度(cm);综合运用上述方法计算年降水量,结果如表1所示。济源孙家沟组中、下段沉积期年降水量在130.32~533.97 mm之间,平均值为332.15 mm,该年降水量指示干旱—半干旱的气候,在第8层沉积时期年降水量有所增加,气候整体向湿润转变。

    层位D/cm年降水量/mm
    P1P2
    120266.24282.10
    30330.74368.20
    30330.74368.20
    10201.74182.20
    25298.49326.88
    20266.24282.10
    230330.74368.20
    10201.74182.20
    340395.24440.50
    415233.99233.88
    25298.49326.88
    15233.99233.88
    10201.74182.20
    530330.74368.20
    830330.74368.20
    10201.74182.20
    5169.49127.08
    10201.74182.20
    3156.59104.06
    5169.49127.08
    5169.49127.08
    20266.24282.10
    50459.74499.00
    60524.24543.70
    55491.99523.08
    注:D是淀积层深度,测自济源剖面孙家沟组;P1据Retallack[31]P2据潘园园等[32]
  • 本次在济源大峪剖面开展了详细的实测工作,自上而下共采集了109块新鲜岩石样品(其中有10块平行样),包括砂岩、泥岩以及钙质结核等,这些样品主要集中于平顶山砂岩到孙家沟组上部之间的地层序列。室内对样品进行了碳氧同位素以及主量、微量元素地球化学等测试分析。由于研究区孙家沟组上段以砂岩为主,因此分别选取了孙家沟组中、下段较具代表性的34件样品和33件样品进行碳氧同位素和主量、微量元素地球化学测试。其中,主量、微量元素测试工作由广州澳实矿物实验室完成(表2,3),碳氧同位素测试分析在自然资源部第三海洋研究所测试中心进行。

    样品编号Al2O3/%CaO/%TFe2O3/%K2O/%MgO/%MnO/%Na2O/%P2O5/%SiO2/%TiO2/%ZnO/%LOI 1 000/%
    JF1-115.621.206.794.572.160.030.680.0863.720.660.014.80
    JF1-315.651.236.264.502.170.030.750.0463.690.670.014.83
    JF1-515.530.876.194.522.240.030.570.0665.140.610.014.54
    JF1-711.4415.54.103.321.710.100.390.0647.710.460.0115.10
    JF1-914.821.415.424.262.140.030.590.0966.020.590.014.72
    JF1-1114.811.335.454.252.100.030.590.0866.200.590.014.67
    JF2-113.114.915.133.522.010.040.420.0763.020.570.017.34
    JF2-412.493.134.963.033.800.100.560.1364.240.600.017.51
    JF2-66.6917.102.591.788.440.160.280.0438.870.310.0122.95
    JF2-711.492.904.462.932.950.040.580.0867.100.610.016.39
    JF3-210.688.294.212.895.360.190.430.0553.700.510.0113.67
    JF3-37.5613.702.842.049.140.340.360.0441.420.34<0.0121.73
    JF3-412.615.174.913.214.430.130.540.0858.550.600.0110.07
    JF4-112.802.735.043.133.590.090.570.1463.750.610.016.96
    JF4-311.303.804.582.594.310.130.620.1163.460.560.018.48
    JF6-217.013.097.483.075.220.070.340.1355.330.660.017.85
    JF6-57.599.432.571.477.700.310.490.0753.290.48<0.0116.11
    JF7-120.041.096.154.163.440.040.380.1257.810.770.016.05
    JF7-317.601.326.463.403.660.050.420.1260.470.720.015.94
    JF7-49.1711.552.561.692.050.200.540.1359.650.700.0111.65
    JF7-518.820.847.453.883.740.040.370.1358.640.710.015.80
    JF7-1117.501.656.233.234.180.050.460.1359.610.720.016.34
    JF7-1317.641.546.913.424.600.050.460.1458.360.700.026.31
    JF7-1518.052.117.033.544.260.060.440.1356.810.700.026.71
    JF7-1718.331.826.753.634.180.060.510.1357.420.720.026.46
    JF8-218.551.046.593.843.760.050.530.1258.440.750.025.81
    JF8-717.442.766.563.773.230.070.650.1357.890.700.026.55
    JF8-911.5010.253.362.192.320.271.060.1456.770.610.0110.96
    JF8-113.1343.801.380.591.060.640.050.0412.720.120.0135.71
    JF9-318.500.847.164.023.130.040.590.1259.780.790.025.28
    JF9-516.933.117.133.662.840.090.610.1358.140.720.026.65
    JF9-917.933.557.124.123.080.090.510.1355.530.710.027.17
    JF10-316.164.145.853.182.720.080.730.1159.300.690.037.25
    注:LOI(Loss on ignition) 代表烧失量;TFe2O3:指以Fe2O3形式表示的全铁含量。
    样品编号Ba/(μg/g)Ca/%Co/(μg/g)Cr/(μg/g)Cs/(μg/g)Cu/(μg/g)Hf/(μg/g)Mg/%Mn/(μg/g)Ni/(μg/g)Pb/(μg/g)Rb/(μg/g)Sr/(μg/g)Th/(μg/g)V/(μg/g)
    JF1-18820.868.56014.4031.08.61.2320617.220.4257.073.79.6486
    JF1-36450.919.75015.8561.29.61.2520520.720.2257.066.411.2580
    JF1-57530.6310.27013.7040.67.21.2716226.123.9248.063.914.7569
    JF1-727910.558.85011.2027.15.20.9668921.218.6181.5124.09.9245
    JF1-91 0201.0510.96013.6043.97.41.2417128.522.0236.078.012.7560
    JF1-118671.0110.46013.9539.17.61.2617127.119.9238.077.313.2563
    JF2-13263.7311.410013.2516.05.21.1927730.421.1189.577.213.1572
    JF2-49302.3113.2908.3223.86.32.2771231.922.9155.589.312.5581
    JF2-64 63011.8511.3505.3815.12.85.121 08017.116.492.0257.011.8538
    JF2-79832.1612.28010.1024.96.21.7429330.319.2155.086.210.6063
    JF3-21 1505.729.1609.3622.34.72.971 32025.321.1147.0153.012.3068
    JF3-31 6409.8010.5506.1319.05.15.642 36014.621.7103.5149.58.1648
    JF3-49293.8312.7709.0828.65.22.6692832.521.0163.097.812.3593
    JF4-11 0502.0813.6908.8124.46.52.1763632.923.3162.092.313.1076
    JF4-38072.8512.4707.0327.45.82.6190228.518.3127.073.611.5593
    JF6-23722.2518.6809.6168.74.43.0848836.719.5154.573.814.30112
    JF6-53807.019.9803.9839.910.64.762 19021.710.771.060.911.2054
    JF7-14000.8518.610012.2036.15.32.0423541.413.8200.082.218.95142
    JF7-33840.9918.6909.9834.45.02.1837538.114.5170.074.616.45119
    JF7-42618.569.91004.7363.813.51.211 40023.54.582.1101.014.45104
    JF7-54010.6416.99012.2526.54.72.1726036.717.4188.574.017.05127
    JF7-113461.2416.7809.3333.74.52.4736434.721.6159.084.616.55117
    JF7-134641.1717.68010.2531.45.02.7331836.229.3165.073.215.90119
    JF7-154261.5818.78010.2530.54.22.5344536.931.1176.586.516.55119
    JF7-176091.3818.38010.2031.64.32.5237536.732.2175.594.516.25119
    JF8-24210.8216.28012.4028.83.92.2934536.025.1194.093.617.95139
    JF8-77122.1415.57010.6526.44.71.9445234.043.7180.0111.016.40111
    JF8-93407.6615.0807.4239.713.51.411 96026.014.8109.5134.015.1089
    JF8-1135432.6011.8202.1635.90.90.664 77014.924.031.4156.52.9557
    JF9-31 5850.6722.49013.7530.64.11.8828140.464.1196.0105.014.90125
    JF9-51 9102.3428.48012.3527.14.21.6959136.593.2179.0104.015.10111
    JF9-96282.6918.59011.7524.64.21.8458733.874.6195.0100.516.25122
    JF10-36473.1019.38010.9526.93.71.6052338.324.8161.5117.512.55115

    主量、微量元素含量及比值可以作为评价化学风化程度的重要指标[29]。测试结果(图7)表明,孙家沟组下段Cs、Hf、Rb、V多种元素含量都呈较大幅度的震荡,除V元素外,整体具有降低趋势。至孙家沟组中段除有一层出现偏移(可能为样品误差)外,四种元素含量都相对稳定。Ca、Mg、Mn、Sr元素在孙家沟组下段也呈现相对剧烈的震荡,中段以后元素含量基本不变。Mg/Ca比值介于0~1.0,孙家沟组下段比值极低,至孙家沟组中段该比值有所升高。孙家沟组下段CaO/(Al2O3+MgO)比值波动频繁,具有降低趋势,至第7层开始稳定升高,至孙家沟组中段该比值恢复到初始水平。测试的33个样品中,其中5个样品Mn/Sr值大于10,其余样品介于2.19~9.49,平均为4.62,远小于10,表明原岩多未经强烈蚀变,测试数据能有效反映研究区气候变化。

    Figure 7.  Variation of geochemical indicators in Sunjiagou Formation, Jiyuan area

    化学蚀变指数(CIA)最初用于定量反映物源区原岩化学风化程度,后来也被用于定量反映多个地质历史时期的古气候变化[33]。为了避免后期成岩作用过程中的K的沉积再循环造成的K富集,在CIA方程式的基础上除去了计算公式中的K即为CIW[34]。CIA、CIW值越高,反映物源区风化程度越强,古气候越趋向于温暖、潮湿[35]。济源地区孙家沟组CIA、CIW及碳同位素变化趋势见图8,CIA比值介于72.29~81.94,平均为76.39;CIW的变化范围为84.43~96.35,平均为92.81。按CIA和CIW可将孙家沟组中下段分为两个阶段,且变化幅度较大。第一阶段(第1~7层)两值起初变化平缓,反映较低的化学风化强度、干旱—半干旱的古气候,后曲线呈震荡化,指示风化程度忽高忽低,半干旱—半湿润气候交替变化的特点;第二阶段(第8~10层)基于上一阶段的高值开始平缓地降低,但降幅很小,反映风化加剧,气候向稳定的湿润—半湿润转变。济源大峪剖面孙家沟组中、下段沉积期碳同位素均为负值,其中δ13C值介于-8.1~-1.2,下段存在一次较为明显的碳同位素负异常,δ13C负偏移由3.8‰降低至8.1‰,幅度达4.3‰,随后保持相对稳定(图8)。

    Figure 8.  Variation of CIA, CIW and C isotope in Sunjiagou Formation, Jiyuan area

  • 根据岩性与沉积特征,识别出曲流河相和滨浅湖相,进一步可分为河漫亚相、堤岸亚相和滨湖亚相(图2)。

    (1) 河漫亚相

    在孙家沟组的下段和中段均有发育,岩性主要为泥岩夹钙质结核层或钙质泥岩,钙质结核层一般不超过0.3 m,最厚可达0.6 m。钙质泥岩和钙质结核层在风化剖面中较为突出,层理难识别,仅在钙质泥岩中出现水平层理。孙家沟组下段河漫亚相主要发育暗灰色和紫红色泥岩,颜色较深但呈由深到浅的变化规律。孙家沟组中段该沉积亚相主要发育泥岩夹粉砂岩与粉砂质泥岩,泥岩大多为紫红色,粉砂岩、粉砂质泥岩和钙质结核多为灰绿色,孙家沟组中段较下段沉积物色浅。孙家沟组中、下段发育泥岩夹钙质结核或钙质泥岩,可识别为钙质古土壤,反映极弱的水动力条件和水位较浅,间歇性暴露的沉积环境。

    (2) 堤岸亚相

    主要表现为紫红色细砂岩和泥岩的互层,砂岩层总体较薄。研究区孙家沟组中、下段均识别出堤岸沉积亚相,该沉积亚相的出现均以一层灰绿色砂岩的出现为标志。孙家沟组下段该沉积亚相为泥岩与钙质细砂岩互层,泥岩较厚,其底部的泥岩中发育灰紫色的砂岩透镜体,透镜体左右延伸约2.6 m,下部出现波状层理,向上变为平行层理。孙家沟组中段该沉积亚相中砂岩厚度有所增加,且灰绿色细砂岩和粉砂岩也有发育。孙家沟组中、下段砂岩钙质含量较高,且发育钙质结核层,反映间歇性出露水面。

    (3) 滨湖亚相

    滨湖地带的沉积环境较为复杂,沉积物的类型丰富多样。当湖岸较陡或水动力较强时,可有高能的粗粒砾岩沉积;当湖滨地势平缓,水动力条件较弱时,也可有低能的黏土沉积。剖面上段呈褐色,主要为中砂岩、细砂岩,反映陆源碎屑供应充分。粉砂岩和砾岩也有发育,砾岩呈透镜状,砾石呈叠瓦状排列,发育平行层理和楔状交错层理,指示较强的水动力环境。

    根据岩性和沉积特征对济源孙家沟组沉积环境进行识别,其中、下段具有典型的“二元结构”,且顶层沉积与底层沉积厚度较为相近,推测为曲流河沉积,主要由“河漫亚相+堤岸亚相”两个旋回组成。MISS以及大量的钙质泥岩、钙质砂岩和钙质结核的出现,说明水位呈周期性波动,沉积物表面间歇性暴露水面,推测为洪水期河流水位上涨,细砂、粉砂等碎屑物溢出河道,沿两岸堆积,形成堤岸沉积。而洪水泛滥时,水流在天然堤溢出,流速降低,细粒沉积物逐渐沉积,形成河漫沉积。后因水进,河流相逐渐过渡为滨浅湖相,开始接受湖岸附近的粗粒沉积物,水动力条件较为复杂,对沉积物改造较为明显。整体上中砂岩和细砂岩占大部分,底部和顶部出现的砾岩、砂砾岩指示水动力较强,泥岩、粉砂岩则指示水动力较弱。孙家沟组上段滨湖相岩石粒径呈现由粗到细再到粗的整体趋势,反映水动力条件呈强—弱—强的变化。推测整体为因水进导致的由曲流河相演化为滨湖相的退积层序。

  • 研究表明,红色沉积反映以干旱为主的古气候特征[28]。钙质结核在古土壤中比较常见,标志着季节性降水[29]。孙家沟组的下段和中段大套红色沉积之间大量钙质泥岩、钙质砂岩和钙质结核的出现,表明沉积期气候比较干旱,水位的周期性波动、沉积物表面间歇性暴露水面反映降水具有明显的季节性特征。在第5层砂岩中下部出现波状交错层理而上部变为平行层理也能反映水体的变化。孙家沟组下段以泥岩最为发育,且泥岩多为紫红色或土红色,到中段时发育的细砂岩和粉砂岩层中较多层位呈灰绿色,且在第8层细砂岩、粉砂岩中有较多MISS发育。孙家沟组下段和中段分别发育9层和6层钙质结核层并与泥岩层呈现较好的韵律性,可以反映沉积环境和气候出现周期性变化。孙家沟组上段砾岩的发育反映出较强的水动力条件,与中、下段相比,孙家沟组上段以褐色砂岩为主,钙质结核层不再发育,直至孙家沟组上段顶部红层沉积才再次出现并一直延续至整个下三叠统,表明孙家沟组沉积期晚期从较为湿润的气候向干旱气候的转变,干旱气候持续至早三叠世[36]

    Cs、Hf、Rb、V等元素含量变化说明晚二叠世孙家沟组沉积期早期气候由上石盒子组温暖湿润的气候开始快速转变成极度干旱的气候,随后干旱程度有所缓解,到孙家沟组沉积期中期变为半干旱气候,之后气候向相对潮湿转变,干旱程度进一步降低,孙家沟组中段末期已转变为半湿润气候。济源孙家沟组中、下段Mg/Ca和CaO/(Al2O3+MgO)整体反映出湿—干—湿的变化趋势,与孙家沟组中、下段岩性及沉积构造反映气候变化一致。

    综上,济源孙家沟组下段沉积期气候突然由湿润转为干旱,随后缓慢地向湿润转变,至孙家沟组沉积期中期末干旱程度已较大程度缓解,孙家沟组中、下段沉积期整体呈现以干热为特征的气候条件下发育的曲流河沉积。孙家沟组上段沉积期完成了半湿润气候向干旱气候的转变。整体来看,孙家沟组沉积期呈现出湿润—干旱—半湿润—干旱的气候变化。

  • 豫西济源孙家沟组各种古环境、古气候、古生物识别标志之间具有较为复杂的协同响应关系,模式见图9。孙家沟组下部锯齿龙类化石的集群埋藏[37]表明P-T之交灭绝事件可能发生于孙家沟组沉积期早期,这与豫西济源大峪、陕西石川河剖面碳同位素的负异常层位一致。此外,孙家沟组中、下段红层沉积的普遍发育和地化数据表明该组沉积期前、中期气候以干旱为主要特征,孙家沟组中段MISS的繁盛和生物扰动的缺失表明生态系统发生了逆行演替,较为恶劣的气候条件可能是导致这一现象的最主要因素,周期性暴露的环境也不适宜底栖生物的生存。MISS的消失、钙质结核的减少、红层被厚层砂岩取代,表明孙家沟组上段沉积期以半湿润气候为主。厚层的砂质沉积表明水动力较强,这可能是孙家沟组上段MISS消失的原因之一。

    Figure 9.  Model of co⁃evolution of environment, climate and organisms

  • 联合古陆时期的古气候分析和古气候模拟取得了重要的进展[38-39],有学者提出这一时期巨型季风盛行导致了干燥性气候沉积广泛分布的观点[40-41]。干燥性气候在低纬度地区具体表现为沙漠的扩张,气候的变暖,季节性温差增大,蒸发岩与红层沉积广泛发育与频繁互层[42]。华北板块的古地磁资料显示,二叠纪其纬度约为6° N,晚二叠世,华北板块因进入北半球的亚热带而逐渐干燥,至二叠纪末,华北板块大致位于15° N[43]

    在孙家沟组沉积期巨型季风作用于研究区的主要表现为季节性沉积的潮湿性的地层、频发的洪水事件、波动频繁的地化证据等。首先,孙家沟组中、下段红层沉积中广泛发育的钙质结核,是干旱气候下季节性降水的良好标志。且钙质结核与泥岩层呈现较好的韵律性,反映沉积环境和气候的周期性变化。此外,孙家沟组上段发育叠瓦状砾岩,指示频发的洪水事件。孙家沟组中、下段钙质结核层与紫红色泥岩的频繁互层以及叠瓦状砾岩的发育是孙家沟组沉积期巨型季风作用于研究区的重要沉积学证据。其次,Cs、Hf、Rb、V、Ca、Mg、Mn、Sr等元素的含量和Mg/Ca、CaO/(Al2O3+MgO)比值的频繁波动也支持气候出现周期性变化的结论,这是巨型季风作用于研究区的地球化学证据。综上,沉积学及地球化学证据都表明在孙家沟组沉积期,研究区气候受巨型季风影响具有明显的季节性特征。

    济源地区广泛分布互层的红层沉积与蒸发岩,较低的降水量、较高的温度和较强的化学风化强度,体现了巨型季风导致的研究区广泛分布以干旱—半干旱为主的亚热带季风气候。在气候由湿润向干旱转变期间,钙质结核大量出现、地化数据大幅偏移,可能也是通过巨型季风环流导致的强季节性气候来实现的。

  • 济源动物群被视作地层划分的标志层,可与俄罗斯Sokolki组合带的Ilinskoe亚带和南非的小头兽组合带进行对比,时代约2.56亿年,济源动物群保存在孙家沟组红层之下,化石层位应归属于上石盒子组[44-46]。济源大峪剖面孙家沟组中段发育较多MISS,研究认为,后生生物与微生物席之间存在此消彼长的关系,微生物的繁盛与后生生物的生物量减少有关[47-49]。后生生物的骤减导致沉积物的扰动程度降低,有利于微生物群落的繁盛,迅速形成较厚的微生物席覆盖于沉积物表面,因而灭绝事件在一定程度上促进了MISS的形成和保存。此外,紫红色泥岩在研究区的大量发育反映了其处于强氧化环境[27],多层钙质结核和似核形石砾岩为炎热气候下严重水土流失的产物[50],且研究区炎热干旱气候条件下形成的间歇性暴露的洪泛平原沉积环境,对后生生物的复苏起到一定的抑制作用,为MISS的发育提供了适宜的环境。孙家沟组炎热干旱的气候可能是P-T之交灭绝事件的重要原因之一,它直接或间接地促进了微生物群落的繁盛。

    大灭绝事件使后生生物骤减,为MISS的形成和保存提供了良好的条件,MISS的出现(第8层)表明大灭绝事件已经发生,因此,灾变事件发生的层位应位于最早出现的MISS层位之下,大约对应于研究区孙家沟组第7层。目前已知的济源动物群最后出现于孙家沟组红层之下,可能表明大灭绝事件还没有发生,因此可将大灭绝事件发生的层位卡定在孙家沟组的第1层至第7层之间。

  • 已有大量研究指出,二叠系—三叠系界线附近无机碳同位素负偏的普遍存在指示了气候、环境的剧变,可能是引发大规模的生物灭绝事件的原因[2,51]。二叠系—三叠系全球层型剖面(浙江煤山剖面P-T界线附近)与陕西石川河剖面下部均存在不同幅度的无机碳同位素负异常,指示这一界线附近发生过某种突发事件,这一事件极可能与P-T之交生物大灭绝有关[51-52]。济源大峪剖面孙家沟组与石川河剖面石千峰组对比发现,两组碳同位素负异常层位近于平行(图10),表明当时的华南、华北地区的气候环境发生突变,炎热干旱的气候条件可能导致了生物的灭绝[51]。石川河剖面中碳同位素第一次负漂移发生在石千峰组沉积末期[51],δ13C负漂移由-1.9‰降低至-7.7‰,幅度达5.8‰。本次济源孙家沟组钙质泥岩和钙质结核测试结果显示下段存在一次较为明显的碳同位素负异常(图8),与石川河剖面石千峰组δ13C负偏移基本相对应。济源孙家沟组下段碳同位素负漂移以及相邻层位中出现的异常厚层深灰色钙质泥岩层,说明当时气候发生剧烈变化。高温,降水量较少,蒸发量相对较大,这种干旱—半干旱的恶劣气候可能和生物灭绝事件有重要且直接的关系,与全球二叠纪—三叠纪之交的大灭绝事件第一幕具有一致性。

    Figure 10.  Comparison between C isotopes in the Jiyuan and Shichuanhe areas, Sunjiagou Formation

    综上所述,大灭绝事件有可能发生在第1~4层之间(图11)。孙家沟组第1~3层大多数地化指标都指示向干旱气候的快速转变,直到第4层开始趋于稳定,野外实测时发现第4层内保存一层“特殊”的钙质泥岩层,与剖面上下出现的紫红色泥岩完全不同,且风化较他层弱。碳同位素数据表明在第1~4层(图11)内同样存在一次较大的负漂移(达4.3‰)。因此,我们认为MISS(第8层)的发育、后生动物的消失、气候的突变和严重的水土流失等现象,代表了研究区的灾变陆相环境生态体系,甚至是豫西地区一个典型的P-T之交灾变事件的陆相环境代表。

    Figure 11.  Possible stratum of P⁃T mass extinction transition in Jiyuan area

  • (1) 济源大峪剖面孙家沟组岩性和沉积特征表明,孙家沟组中下段主要由“河漫亚相+堤岸亚相”两个旋回组成,发育大量的钙质泥岩、钙质砂岩和钙质结核,发育水平层理和波状交错层理,沉积物表面间歇性暴露水面,为曲流河沉积。上段发育厚层褐色、土褐色砂岩,发育平行层理和楔状交错层理,为湖泊沉积滨湖亚相。推测济源孙家沟组整体为因水进导致的由河流相演化为滨湖相的退积层序。

    (2) 济源孙家沟组中下段广泛发育的红色沉积、钙质结核层和地化数据分析表明,孙家沟组沉积期,在受到全球性的巨型季风环流影响下,济源地区属于干旱—半干旱的亚热带季风性气候区,前期表现为湿润气候向干旱气候的迅速转变,中期温度升高、湿度增大,至中期末完全转变为半湿润气候,后期则又从半湿润气候向干旱气候转变。

    (3) 研究区孙家沟组季节性沉积的潮湿性的地层、频发的洪水事件、波动频繁的地化证据等,体现了巨型季风导致的研究区以干旱—半干旱为主的亚热带季风气候。根据济源动物群化石层位、孙家沟组中段MISS和钙质古土壤的发育、气候突变以及碳同位素负漂等证据,推测济源地区P-T之交灭绝事件发生在孙家沟组沉积早期。

Reference (52)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return