Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

PENG HanLin, MA Kui, ZHANG XiHua, WEN Long, WANG YunLong, TIAN XingWang, LI Yong, YANG DaiLin, ZHONG JiaYi, SUN YiTing, REN JiBo, DOU Shuang. Sequence Stratigraphic Characteristics and Sedimentary Evolution Model of the Late Ediacaran in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1440-1450. doi: 10.14027/j.issn.1000-0550.2021.119
Citation: PENG HanLin, MA Kui, ZHANG XiHua, WEN Long, WANG YunLong, TIAN XingWang, LI Yong, YANG DaiLin, ZHONG JiaYi, SUN YiTing, REN JiBo, DOU Shuang. Sequence Stratigraphic Characteristics and Sedimentary Evolution Model of the Late Ediacaran in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1440-1450. doi: 10.14027/j.issn.1000-0550.2021.119

Sequence Stratigraphic Characteristics and Sedimentary Evolution Model of the Late Ediacaran in the Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.119
Funds:

National Key R&D Program of China 2017YFC0603106

Project of Technology Department, PetroChina Southwest Oil & Gas Field Company 20200301-01

  • Received Date: 2021-03-22
  • Rev Recd Date: 2021-08-17
  • Publish Date: 2021-12-10
  • Substantial discoveries and breakthroughs have been made in the search for natural gas in the middle Sichuan paleo-uplift and upper Ediacaran strata from the end of the Neoproterozoic (Sinian Dengying Formation) in the peripheral slope area of the Sichuan Basin. This detailed study of late Ediacaran strata and sedimentation in the non-inherited structural slope area of the Sichuan Basin is of significant benefit to Dengying Formation exploration. Comprehensive interpretation of geological and geochemical data and geophysical logging for the region, taking previous research reports into account, enabled fourth-order sequence division and correlation of SQ4. The sedimentary evolution of the system tract is also discussed. The findings show: (1) SQ4 is divided into five fourth-order sequences. Influenced by their sedimentary paleogeomorphology, SQ4-1, SQ4-2 and SQ4-3 developed in the slope area of north Sichuan; SQ4-3, SQ4-4 and SQ4-5 developed in the high region of the paleo-uplift. (2) In the Dengying Formation, SQ4 comprises a low system tract and a transgressive system tract from bottom upwards. The low system tract evolved from multi-stage core agglomerate beach sedimentation. The transgressive system tract indicates evolution of inter-hill core sand debris beach dome cap sedimentation. In the Gaoshiti Moxi area of the middle Sichuan uplift, SQ4 is the result of the evolution of a sedimentary transgressive system tract and a highstand system tract from bottom upwards. The transgressive system tract and the north Sichuan slope area are isochronous deposits, and the highstand system tract represents the sedimentary evolution of inter-hill sand debris beach and conglomerate stone beach near Qiuping. (3) Conditions of the low system tract of Dengying Formation SQ4 may have formed lithological hydrocarbon traps. The SQ4-1 and SQ4-2 low system tracts in the north Sichuan slope region cover large areas, and favor lithological trap exploration.
  • [1] 邓胜徽,樊茹,李鑫,等. 四川盆地及周缘地区震旦(埃迪卡拉)系划分与对比[J]. 地层学杂志,2015,39(3):239-254.

    Deng Shenghui, Fan Ru, Li Xin, et al. Subdivision and correlation of the Sinian (Ediacaran) system in the Sichuan Basin and its adjacent area[J]. Journal of Stratigraphy, 2015, 39(3): 239-254.
    [2] 张玺华,彭瀚霖,文龙,等. 四川盆地西北部灯影组深水沉积的发现及油气地质意义[J]. 天然气勘探与开发,2020,43(4):10-21.

    Zhang Xihua, Peng Hanlin, Wen Long, et al. Discovery of deep-water deposits in northwest Sichuan Basin during Dengyingian Period: Implications for petroleum geology[J]. Natural Gas Exploration and Development, 2020, 43(4): 10-21.
    [3] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312.

    Wang Zecheng, Jiang Hua, Wang Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312.
    [4] 陈洪德,田景春,刘文均,等. 中国南方海相震旦系—中三叠统层序划分与对比[J]. 成都理工学院学报,2002,29(4):355-379.

    Chen Hongde, Tian Jingchun, Liu Wenjun, et al. Division and correlation of the sequences of marine Sinian System to Middle Triassic Series in the south of China[J]. Journal of Chengdu University of Technology, 2002, 29(4): 355-379.
    [5] 梅冥相,周鹏,张海,等. 上扬子区震旦系层序地层格架及其形成的古地理背景[J]. 古地理学报,2006,8(2):219-231.

    Mei Mingxiang, Zhou Peng, Zhang Hai, et al. Sequence stratigraphic framework and its palaeogeographical background for the Sinian of Upper Yangtze region[J]. Journal of Palaeogeography, 2006, 8(2): 219-231.
    [6] 文龙,杨跃明,游传强,等. 川中—川西地区灯影组沉积层序特征及其对天然气成藏的控制作用[J]. 天然气工业,2016,36(7):8-17.

    Wen Long, Yang Yueming, You Chuanqiang, et al. Characteristics of Dengying Fm sedimentary sequence in the central–western Sichuan Basin and their controlling effect on gas accumulation[J]. Natural Gas Industry, 2016, 36(7): 8-17.
    [7] 文龙,王文之,张健,等. 川中高石梯—磨溪地区震旦系灯影组碳酸盐岩岩石类型及分布规律[J]. 岩石学报,2017,33(4):1285-1294.

    Wen Long, Wang Wenzhi, Zhang Jian, et al. Classification of Sinian Dengying Formation and sedimentary evolution mechanism of Gaoshiti-Moxi area in central Sichuan Basin[J]. Acta Petrologica Sinica, 2017, 33(4): 1285-1294.
    [8] 王文之,文龙,姚军,等. 四川盆地震旦系灯影组层序划分及多期台缘带的发现[J]. 天然气勘探与开发,2019,42(4):46-54.

    Wang Wenzhi, Wen Long, Yao Jun, et al. Sequence classification and discovery of multi-stage platform margin belts of Sinian Dengying Formation, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(4): 46-54.
    [9] Moghadam H S, Khademi M, Hu Z C, et al. Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–Biarjmand metamorphic complex (Iran): Magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(1): 439-452.
    [10] 李智武,冉波,肖斌,等. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义[J]. 地学前缘,2019,26(1):59-85.

    Li Zhiwu, Ran Bo, Xiao Bin, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85.
    [11] 谷志东,汪泽成. 四川盆地川中地块新元古代伸展构造的发现及其在天然气勘探中的意义[J]. 中国科学(D辑):地球科学,2014,44(10):2210-2220.

    Gu Zhidong, Wang Zecheng. The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the central Sichuan block, Sichuan Basin, South China[J]. Science China (Seri. D): Earth Sciences, 2014, 44(10): 2210-2220.
    [12] 宋文海. 对四川盆地加里东期古隆起的新认识[J]. 天然气工业,1987,7(3):6-11.

    Song Wenhai. Recognization of Caledonian palaeohigh petroleum geology in Sichuan Basin[J]. Natural Gas Industry, 1987, 7(3): 6-11.
    [13] 汪泽成,刘静江,姜华,等. 中—上扬子地区震旦纪陡山沱组沉积期岩相古地理及勘探意义[J]. 石油勘探与开发,2019,46(1):39-51.

    Wang Zecheng, Liu Jingjiang, Jiang Hua, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the Middle-Upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 39-51.
    [14] 段金宝,梅庆华,李毕松,等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学,2019,44(3):738-755.

    Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-Early Cambrian tectonic- sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
    [15] 许海龙,魏国齐,贾承造,等. 乐山—龙女寺古隆起构造演化及对震旦系成藏的控制[J]. 石油勘探与开发,2012,39(4):406-416.

    Xu Hailong, Wei Guoqi, Jia Chengzao, et al. Tectonic evolution of the Leshan-Longnüsi paleo-uplift and its control on gas accumulation in the Sinian strata, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(4): 406-416.
    [16] Peropadre C, Liesa C L, Meléndez N. High-frequency, moderate to high-amplitude sea-level oscillations during the Late Early Aptian: Insights into the Mid-Aptian event (Galve sub-Basin, Spain)[J]. Sedimentary Geology, 2013, 294: 233-250.
    [17] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
    [18] 伊海生. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报,2011,13(4):456-466.

    Yi Haisheng. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks[J]. Journal of Palaeogeography, 2011, 13(4): 456-466.
    [19] Anderson T F, Arthur M A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems[M]//Arthur M A, Anderson T F, Kaplan I R, et al. Stable isotopes in sedimentary geology. America: SEPM Society for Sedimentary Geology, 1983: 1-15.
    [20] 刘宏,罗思聪,谭秀成,等. 四川盆地震旦系灯影组古岩溶地貌恢复及意义[J]. 石油勘探与开发,2015,42(3):283-293.

    Liu Hong, Luo Sicong, Tan Xiucheng, et al. Restoration of paleokarst geomorphology of Sinian Dengying Formation in Sichuan Basin and its significance, SW China[J]. Petroleum Exploration and Development, 2015, 42(3): 283-293.
    [21] 李群,王英民,邱以刚,等. 层序单元体系域划分及勘探意义[J]. 石油勘探与开发,2003,30(3):23-25.

    Li Qun, Wang Yingmin, Qiu Yigang, et al. Division of system tract of different sequence units and its implication in petroleum exploration[J]. Petroleum Exploration and Development, 2003, 30(3): 23-25.
    [22] 吴因业,张天舒,张志杰,等. 沉积体系域类型、特征及石油地质意义[J]. 古地理学报,2010,12(1):69-81.

    Wu Yinye, Zhang Tianshu, Zhang Zhijie, et al. Types and characteristics of depositional systems tract and its petroleum geological significance[J]. Journal of Palaeogeography, 2010, 12(1): 69-81.
    [23] 李凌,谭秀成,曾伟,等. 四川盆地震旦系灯影组灰泥丘发育特征及储集意义[J]. 石油勘探与开发,2013,40(6):666-673.

    Li Ling, Tan Xiucheng, Zeng Wei, et al. Development and reservoir significance of mud mounds in Sinian Dengying Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(6): 666-673.
    [24] 张善文,王英民,李群. 应用坡折带理论寻找隐蔽油气藏[J]. 石油勘探与开发,2003,30(3):5-7.

    Zhang Shanwen, Wang Yingmin, Li Qun. Searching subtle traps using the theory of slope break[J]. Petroleum Exploration and Development, 2003, 30(3): 5-7.
    [25] 胡晓兰,樊太亮,王宏语,等. 隐蔽油气藏勘探理论体系再认识[J]. 天然气地球科学,2010,21(6):996-1003.

    Hu Xiaolan, Fan Tailiang, Wang Hongyu, et al. Recognition of theoretical system of subtle reservoirs exploration[J]. Natural Gas Geoscience, 2010, 21(6): 996-1003.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(488) PDF downloads(150) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-03-22
  • Revised:  2021-08-17
  • Published:  2021-12-10

Sequence Stratigraphic Characteristics and Sedimentary Evolution Model of the Late Ediacaran in the Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.119
Funds:

National Key R&D Program of China 2017YFC0603106

Project of Technology Department, PetroChina Southwest Oil & Gas Field Company 20200301-01

Abstract: Substantial discoveries and breakthroughs have been made in the search for natural gas in the middle Sichuan paleo-uplift and upper Ediacaran strata from the end of the Neoproterozoic (Sinian Dengying Formation) in the peripheral slope area of the Sichuan Basin. This detailed study of late Ediacaran strata and sedimentation in the non-inherited structural slope area of the Sichuan Basin is of significant benefit to Dengying Formation exploration. Comprehensive interpretation of geological and geochemical data and geophysical logging for the region, taking previous research reports into account, enabled fourth-order sequence division and correlation of SQ4. The sedimentary evolution of the system tract is also discussed. The findings show: (1) SQ4 is divided into five fourth-order sequences. Influenced by their sedimentary paleogeomorphology, SQ4-1, SQ4-2 and SQ4-3 developed in the slope area of north Sichuan; SQ4-3, SQ4-4 and SQ4-5 developed in the high region of the paleo-uplift. (2) In the Dengying Formation, SQ4 comprises a low system tract and a transgressive system tract from bottom upwards. The low system tract evolved from multi-stage core agglomerate beach sedimentation. The transgressive system tract indicates evolution of inter-hill core sand debris beach dome cap sedimentation. In the Gaoshiti Moxi area of the middle Sichuan uplift, SQ4 is the result of the evolution of a sedimentary transgressive system tract and a highstand system tract from bottom upwards. The transgressive system tract and the north Sichuan slope area are isochronous deposits, and the highstand system tract represents the sedimentary evolution of inter-hill sand debris beach and conglomerate stone beach near Qiuping. (3) Conditions of the low system tract of Dengying Formation SQ4 may have formed lithological hydrocarbon traps. The SQ4-1 and SQ4-2 low system tracts in the north Sichuan slope region cover large areas, and favor lithological trap exploration.

PENG HanLin, MA Kui, ZHANG XiHua, WEN Long, WANG YunLong, TIAN XingWang, LI Yong, YANG DaiLin, ZHONG JiaYi, SUN YiTing, REN JiBo, DOU Shuang. Sequence Stratigraphic Characteristics and Sedimentary Evolution Model of the Late Ediacaran in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1440-1450. doi: 10.14027/j.issn.1000-0550.2021.119
Citation: PENG HanLin, MA Kui, ZHANG XiHua, WEN Long, WANG YunLong, TIAN XingWang, LI Yong, YANG DaiLin, ZHONG JiaYi, SUN YiTing, REN JiBo, DOU Shuang. Sequence Stratigraphic Characteristics and Sedimentary Evolution Model of the Late Ediacaran in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1440-1450. doi: 10.14027/j.issn.1000-0550.2021.119
  • 2004年,地科联地层委员会将新元古界最上部一个系正式命名为埃迪卡拉系(Ediacaran System),这套层系与中国震旦系为基本等时的地层单位[1]。该时期构造运动对四川盆地震旦系灯影组沉积、储层和成藏具有重要控制作用,在川中古隆起德阳—安岳震旦系灯影组发现了我国年代最古老、规模最大的天然气藏。继古隆起突破之后,中国石油于2018年在川北斜坡构造部署了风险探井JT1井,在钻遇目的层灯影组四段时获得良好的油气显示。JT1井的勘探发现,证实川北斜坡构造背景下,灯影组四段能够发育优质丘滩相储层和岩性圈闭。研究表明,川北灯影组发育巨厚沉积型台缘带,是岩性油气藏勘探有利区[2]

    研究表明,四川盆地震旦纪至中寒武世经历了2幕桐湾运动,主要表现为升降运动,并形成了2个区域不整合面,对应形成了盆地II级层序界面[3]。在II级层序的约束下,多个学者对灯影组的III级层序进行划分,但层序界面的识别和地层格架有较大差异[4-6]。其中,一些学者通过对川中—川西灯影组层划分为4个III级层序,认为灯影组SQ3和SQ4早期海侵和晚期高位体系域控制了丘滩相优质储层分布,拓展了川中古隆起高石梯—磨溪台内地区灯四段天然气勘探范围[6-8]。随着灯影组勘探方向逐渐转向古隆起外围斜坡区,III级层序的划分不能满足这种非构造继承性的岩性—地层圈闭预测需求。因此,有必要开展川中古隆起—川北斜坡区灯影组沉积晚期高频层序地层划分和对比,建立层序地层格架,分析不同层序地层格架控制下的沉积演化规律。这不仅有利于深化研究区沉积体系认识,而且对于进一步预测川北斜坡区灯影组地层—岩性圈闭、指导油气勘探具有重要作用。

  • 研究表明,从Rodinia超大陆裂解到冈瓦纳大陆汇聚,华南陆块也由此前的裂谷阶段转化为东冈瓦纳大陆的俯冲—汇聚阶段。在埃迪卡拉纪(震旦纪),四川盆地处于冈瓦纳汇聚构造背景,并在盆地形成了前震旦系古裂陷[9-10]。加上盆地基底强烈褶皱、岩浆侵入和区域变质作用,造成了川中为刚性的隆起基底,川西和川北为塑性的坳陷基底,形成盆地隆坳相间的地貌格局[11-12]。盆地震旦系陡山沱组和灯影组是在该古地貌背景下发育的补偿沉积地层,灯影组的沉积厚度能够反映沉积前的古地貌格局[13-14]

    由于川中古隆起在南华纪—震旦纪就开始形成雏形[15],造成了灯影组的沉积厚度具有差异性。灯影组厚度从川中古隆起高石梯—磨溪至川北斜坡射洪—九龙山方向具有明显增厚的特征(图12)。这种厚度分布特征与陡山沱组基本一致,说明灯影组的沉积古地貌和陡山沱组具有继承性,也揭示了川中古隆起、川北斜坡古地貌特征。这种古地貌和厚度的差异,对川中古隆起—川北斜坡区灯影组SQ4地层充填和沉积演化具有重要的控制作用。

    Figure 1.  Sedimentary thickness map of Sinian Dengying Formation in Sichuan Basin and its periphery

    Figure 2.  Stratigraphic correlation map of Sinian⁃Lower Cambrian in central Sichuan paleo⁃uplift and north Sichuan slope area (locations of wells in Fig.1)

  • 高频层序一般是指IV以上基准面旋回产生的沉积响应,利用旋回地层学和事件地层学的原理可对III级层序地层格架内进行IV级、V级等高频层序划分和对比[16-17]。碳酸盐沉积对海平面变化的反映十分敏感,当海水深度超过透光带,碳酸盐生长就会受到抑制。因此,碳酸盐岩性纵向分布可作为高频层序界面的识别标志。而测井曲线具有等间距采样的特点,数据序列连续、纵向分辨率高,特别是自然伽马曲线能够敏感地反映碳酸盐岩地层中的岩性变化,可以作为识别高频旋回的有效手段[18]

    本研究根据以上研究方法和手段,在前人关于灯影组III级层序的划分标准基础上[6-8],利用岩性和测井特征,对灯影组SQ4开展IV级层序划分。结果表明,SQ4可划分出5个IV级层序,川北斜坡区以JT1井为代表的SQ4可以划分为SQ4-1、SQ4-2和SQ4-3三个IV级层序(图3),而川中古隆起以MX52井为代表的SQ4可识别出SQ4-3、SQ4-4和SQ4-5三个IV级层序(图4),其中SQ4-3在川北斜坡区和川中古隆起高石梯—磨溪地区具有等时性。

    Figure 3.  Synthetic histogram of well JT1, Dengying Formation

    Figure 4.  Synthetic histogram of well MX52, Dengying Formation

  • SQ4-1是在SQ3经历了海侵后达到最大海泛面之后开始沉积的碳酸盐地层。相比于SQ3段高GR,GR曲线形态平缓且低值。JT1井SQ4-1层序主要位于SQ3顶部的砂屑云岩之上,向上发育粉晶云岩、藻云岩和凝块云岩,为向上变粗的沉积序列。研究表明,海平面变化会导致的碳酸盐岩碳同位素发生分馏作用,组成发生变化。因此,δ 13C可作为海平面变化的重要替代指标[19]。当海平面增加时,碳酸盐岩的δ 13C增加,反之则减小。δ 13C向上逐渐偏负,反映了海平面不断下降,有利微生物碳酸盐岩生长,并向广海方向进积。

  • SQ4-2是沉积在SQ4-1之上的第二套IV级层序。δ 13C向上逐渐偏负,自然伽马曲线整体偏低平滑,沉积时期海平面相对下降,发生进积作用。岩性主要为含泥晶凝块云岩,夹杂少量薄层藻云岩,岩性互层且交替出现。

  • 从岩性组合特征、测井曲线分析来看,SQ4-3在川中古隆起和川北斜坡区沉积特征相似。川北斜坡区JT1井SQ4-3底部以藻云岩与SQ4-2顶部的凝块云岩为分界,明显的自然伽马正偏移特征。纵向上由多个藻云岩—泥粉晶云岩或砂屑云岩—泥/粉晶云岩沉积,为向上变细的沉积旋回。川中古隆起MX52井SQ4-3岩性主要以泥质云岩,含少量藻凝块云岩和藻砂屑云岩,底部泥质云岩与SQ3顶部的藻凝块云岩为界,岩性组合与川北斜坡区JT1井相似。自然伽马值整体偏高,存在两个齿状高值区。

  • 层序底界砂屑云岩与SQ4-3顶界面泥晶云岩为分界线。由于海平面下降,可容纳空间的增速小于碳酸盐的产能速率,沉积物向斜坡地貌低洼进积或加积,形成了大量颗粒砂屑云岩等。自然伽马值曲线且平缓且偏低值,为高能沉积产物。

  • SQ4-5层序底界藻凝块云岩与SQ4-4顶界面泥晶云岩为分界线。海平面下降,水体能量增强,发育凝块云岩和砂屑云岩。由于含硅质层沉积,自然伽马局部明显增大。同时受桐湾II幕运动发生抬升,导致SQ4-5在遭受不同程度的剥蚀。

  • 灯影组沉积期,川北斜坡区—川中古隆起具有东南高、西北低的古地貌格局,是典型的斜坡形碳酸盐台地沉积[20]。海水由北部广海向南逐渐侵入,川北斜坡区先于川中古隆起沉积,造成两地区灯影组SQ4内部的IV级层序沉积具有差异性。此外,川中古隆起早期SQ3沉积后古地貌差异,也能造成SQ4内部的IV级层序沉积厚度和分布特征具有较大差异。具体表现在以下3个方面。

    (1) 灯影组SQ3为早期海侵、晚期高位的沉积体系,SQ3沉积晚期达到最大海泛面后,海平面开始下降[7]。川北斜坡区由于位于海平面附近,且处于台地边缘,水动力环境强,碳酸盐产能速率快,沉积SQ4-1和SQ4-2,如JT1井(图5)。而古隆起高石梯—磨溪完全暴露于海平面之上,基本不产生碳酸盐沉积,导致缺失SQ4-1和SQ4-2沉积,如MX52、GS20井。

    Figure 5.  High⁃frequency sequence stratigraphic interwell correlation in the late sedimentary period of Dengying Formation, northern Sichuan slope area, and central Sichuan paleo⁃uplift

    (2) 川北斜坡区经SQ4-1和SQ4-2沉积和填平补齐之后,与川中磨溪地区古地貌差异性变小,但高石梯地区还是位于古地貌高部位,总体为北低南高的格局。造成了海侵体系域只在川北斜坡区和川中古隆起磨溪北部有沉积,而磨溪南部和高石梯地区由于受SQ3沉积后东北方向展布早期台缘影响[6],处于海泛面之上的古地貌高部位,暴露在海平面之上,SQ3沉积较薄或缺失。

    (3) 受SQ3早期台缘控制,高石梯处于海平面之上的古地貌高部位,缺失SQ4-4地层沉积地层,如GS20、GS21井(图56)。而川北斜坡区由于处于海平面之下深水环境古地貌斜坡低部位,地层沉积很薄,在岩性上难以区分,如JT1井。经过SQ4-4沉积后,开始沉积SQ4-5。古隆起高石梯—磨溪地区古地貌基本填平补齐,而海平面开始进一步下降,SQ4-5在高石梯—磨溪地区广泛沉积。同样,川北斜坡区由于古地貌低和水体环境影响,碳酸盐产能速率低,地层沉积薄且难以区分。同时受桐湾II幕抬升被强烈剥蚀,导致沉积地层缺失。

    Figure 6.  High⁃frequency sequence stratigraphic interwell correlation in the late sedimentary period of Dengying Formation, central Sichuan paleo⁃uplift

  • 研究认为,任何级别的完整层序都可划分为3个体系域,即低位体系域、海侵体系域和高位体系域[21-22]。通过层序地层格架和沉积演化分析,建立了川中—川北灯影组SQ4沉积层序充填模式,认为在川中—川北灯影组SQ4由下而上可划分为低位体系域、海侵体系域和高位体系域(图7),不同体系域的沉积和空间分布存在较大差异。

    Figure 7.  Seismic section (top) and sedimentary model map (bottom) of system tract of the Dengying Formation from central to northern slope of Sichuan paleo⁃uplift

  • 低位体系域沉积形成于海平面不断下降至最低位,且低于碳酸盐台地边缘,主要指SQ4-1和SQ4-2沉积期。由于碳酸盐的生长速率小于可容纳空间的增长速率,表现为沉积物由向可容纳空间大的斜坡低洼区进积或加积作用,纵向由下至上发育多期丘核—凝块石滩叠置的沉积演化(图3)。以凝块石滩沉积为主,厚度141 m,占比66.8%。凝块石主要是母岩泥晶云岩或藻云岩发生近距离搬运过程中形成的一种颗粒岩,是典型的海平面下降形成的他生碳酸盐沉积产物[7]。与此同时,在低位体系域沉积期,由于高石梯—磨溪地区处于古隆起构造高部位,完全暴露于海平面之上,不产生碳酸盐沉积,导致缺失SQ4-1和SQ4-2沉积记录。

    碳酸盐低位体系域通常可以形成优质岩溶储层,在海平面下降处于低位时期,斜坡区分布的微生物丘和颗粒滩体遭受风化,形成孔洞发育、储层厚度大的岩溶储层。JT1井的灯影组SQ4-1和SQ4-2存在多个准同生岩溶界面,表明发生多期岩溶暴露,丘滩相溶蚀孔洞非常发育,厚度达159 m,平均孔隙度3.4%。

  • 该阶段主要形成于SQ4-3沉积期。由于海平面快速上升并向南侵入,水体整体较深、水动力条件较弱,营养物质相对缺乏,微生物生长沉积速度慢,难以跟上海平面变化速率,表现为盆地向台地方向加积和退积作用,形成丘间—丘核—砂屑滩—丘盖沉积演化(图34)。丘间相沉积以泥粉晶云岩为主,丘核相藻凝块云岩和砂屑滩相砂屑云岩厚度较小,顶部的泥晶云岩和藻纹层云岩组成丘盖相沉积,反映了受海侵影响水体加深的沉积环境[23]

    由于海侵体系域主要为云坪相低能碳酸盐沉积,微生物丘和颗粒滩相沉积物相对欠发育。即使经后期桐湾II幕抬升和强烈溶蚀改造,储集层仍然欠发育。如JT1井SQ4-3储层以溶蚀孔为主,厚度18.6 m,平均孔隙度2.6%。MX52井SQ4-3储层厚度13.5 m,平均孔隙度2.55%。

  • 当海平面不断上升达到最大海泛面之后,开始下降,形成高位体系域,主要指SQ4-4和SQ4-5沉积期。该时期,川中古隆起碳酸盐的沉积速率达到最高,超过海平面升降速率,有利于微生物丘和颗粒滩相沉积。形成了“丘间—砂屑滩—凝块石滩—丘坪”的沉积演化,发育泥晶云岩—砂屑云岩—凝块云岩—藻纹层云岩的岩性组合模式。高位体系域沉积早期,可容纳空间较大,碳酸盐产率不高,水动力条件弱,川中古隆起发生追捕型加积作用,形成丘间相泥晶云岩沉积。砂屑滩、丘核和丘坪沉积形成于高位体系域沉积晚期。高位体系域沉积晚期,海平面下降,导致可容纳空间速率小于海平面下降速率,碳酸盐沉积速率增大,水动力增强,向川北斜坡方向发生进积作用,有利于砂屑滩、凝块石滩沉积(图47)。

    由于四川盆地发生桐湾II幕运动,川中古隆起灯影组顶部的这套高位体系地层发生差异性抬升剥蚀,与寒武系地层形成区域不整合面。同时砂屑滩和凝块石滩这些高能微生物碳酸盐经过强烈地溶蚀作用,形成非常优质的岩溶风化壳储层,这套储集层在高石梯—磨溪地区大面积分布且稳定存在。

  • 以上分析表明川北斜坡区低位体系域颗粒滩相和藻丘相发育优质岩溶储集层,但主要分布在SQ4中下部。而低位体系域通常是岩性—地层等隐蔽圈闭发育的主要场所,具有良好的储盖空间配置关系[24-25]。上覆的海侵体系域发育以台坪亚相的泥粉晶云岩为主,储层物性较差,能够形成盖层和遮挡条件。川中古隆起灯四段微生物丘相藻凝块云岩和颗粒滩相砂屑云岩形成于高位体系沉积阶段,分布于SQ4中上部,经过桐湾II幕岩溶改造,形成优质的丘滩复合体储层。通过广泛分布的海侵体系域能够与川北斜坡区低位体系域丘滩复合相岩溶储层进行分隔,导致形成两个不同的沉积和成藏体系。

    根据高石梯—磨溪地区灯影组SQ4层序地层沉积模式,利用二维二、三维连片解释和钻井资料,对磨溪北斜坡灯影组IV层序SQ4-1、SQ4-2两套低位体系域层位进行对比和追踪,并编制了平面分布图(图89)。SQ4-1在磨溪北斜坡总面积1 834 km2,SQ4-2总面积4 578 km2,沿北东向展布,是古隆起北斜坡灯四段岩性圈闭勘探的有利区带。

    Figure 8.  Distribution of SQ4⁃1 on northern slope of central Sichuan paleo⁃uplift

    Figure 9.  Distribution of SQ4⁃2 on northern slope of central Sichuan paleo⁃uplift

  • (1) 受早期SQ3沉积地貌影响,灯影组SQ4可以划分为5个IV级层序界面。川北斜坡区发育SQ4-1、SQ4-2和SQ4-3,古隆起高部位区发育SQ4-3、SQ4-4和SQ4-5,其中SQ4-3在川中古隆起和川北斜坡区为等时沉积。

    (2) 川北斜坡区和川中古隆起灯影组SQ4沉积体系域分布具有差异性。川北斜坡区灯影组SQ4由下向上为低位体系域和海侵体系域沉积,低位体系域具为多期丘核—凝块石滩沉积,海侵体系域为丘间—丘核—砂屑滩—丘盖沉积。川中古隆起高石梯—磨溪地区SQ4由下向上为海侵体系域和高位体系域沉积,其中海侵体系域与川北斜坡区为等时沉积,高位体系域为丘间—砂屑滩—凝块石滩—丘坪沉积。

    (3) 川北斜坡区灯影组SQ4低位体系域和高位体系域具有良好的岩性圈闭空间配置关系。古隆起北斜坡SQ4-1、SQ4-2两套低位域面积分布达1 834 km2和4 578 km2,是岩性圈闭勘探的有利区。

Reference (25)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return