HTML
-
根据成岩序列,结合多种地球化学测试,得出研究区如下的流体演化特征:沉积流体为海水,表现在基质δ13C值在1.02‰±1.21‰(n=10),δ18O值-6.16‰±0.72‰(n=10),落在早期海源灰岩白云石化范围内(寒武纪同时期海水δ13C介于2.5‰~0.5‰,δ18O介于9‰~-4‰[65]),反映海源流体成因。基质粉细晶白云石具有的与现代海水特征相近的LREE亏损、HREE富集特征,记录了海水信号。基质粉细晶白云石的总REE低,轻微Ce负异常(CeSN/CeSN*=0.71±0.25),高Fe(502.5±160.3 μg/g),低Mn(168.39±52.12 μg/g)含量记录了弱氧化的海水性质[65]。
随着沉积物逐渐埋藏至半脱离地表水体范围,进入半封闭的流体环境,流体逐渐演化为接近海水的孔隙水,反映在碳氧同位素值(δ13C集中在0.78‰±0.24‰、δ18O值-6.4‰±0.57‰)与基质相近的细晶白云石胶结物,且未观察到流体包裹体,阴极发光为暗红色,说明孔隙水仍然继承早成岩海水特点,为准同生期流体产物。此外,与基质相似的稀土配分特征进一步支持其继承了以古海水为主的孔隙水信号。
随着埋藏加深进入浅埋藏成岩流体环境,沉积物脱离海水而逐渐演化为还原性孔隙水环境,与基质有显著差异。反映在δ18O值(-8.54‰±0.1‰,n=5)稍微负偏的细晶白云石胶结物,说明受到埋藏重结晶和地温升高影响。具有高Fe(1 468.27±1 630.13 μg/g,n=18)、高Mn(279.74±134.06 μg/g,n=18)含量和MREE富集特征。现今形成于铁化环境下的碳酸盐胶结物常具有典型的MREE富集特征[66]。此外,现今孔隙水研究表明锰化带和铁化带分别具有最高的Mn和Fe含量[67⁃68]。这是因为在这两个还原带中,锰(氧)化物和铁(氧)化物的还原程度最大。因此主微量和稀土特征共同指示了在还原条件下孔隙水中铁锰氧化物被还原。
中深埋藏阶段,孔隙水具有高温高盐度特征。中粗晶白云石胶结物流体包裹体具有高的均一温度(94.3 ℃~121.2 ℃),与进一步负偏δ18O值(-11.35‰±1.41‰)一致,均指示了较高的沉淀温度。铁锰氧化物进一步被还原,白云石具有更高的锰含量和MREE富集模式。
埋藏期热液流体充注,具有高温高盐度特征,热液矿物鞍形白云石、石英流体包裹体均一温度峰值分别为140 ℃~160 ℃、130 ℃~150 ℃。鞍形白云石被限定在早二叠世热液白云石化生成[69],流体包裹体温度高于肖尔布拉克组在早二叠世古地温100 ℃[70⁃72]。且鞍形白云石氧同位素进一步负偏,分布在-10.44‰±0.6‰,为典型高温热液特征,这支持上述成岩矿物代表热液沉淀[28]。Eu正异常,被认为是热液流体和塔里木盆地富含Eu的前寒武纪斜长岩基底水岩相互作用的结果[73],且酸性和高温环境下均有利于流体Eu以正二价还原态存在,导致Eu正异常[74⁃75],因此推测成岩流体为还原酸性热液[76]。鞍形白云石MREE富集可能指示其从酸性壳源流体中沉淀[75],结合高Mn含量(623.15±219.58 μg/g,n=4),较高Fe(1 165.91±285.39 μg/g,n=4),无Ce负异常,支持铁锰氧化物被还原[66,77]。
方解石稀土配分曲线与基质白云石相差很大,且稀土总量高达55.06 μg/g,远高于其他充填物,结合盐度特征,共同指示了最高盐度流体。此外,最低的Fe(109.49±92.72 μg/g,n=9)、Mn(7.68±8.20 μg/g,n=9)含量可能说明铁参与了TSR反应并生成黄铁矿[78](图3j),该过程会释放H+,产生酸性流体。虽然TSR作用会生成低盐度的水[79],但是方解石仍具有高盐度特征,被认为是产生的低盐度水加入下寒武统地层水,而非方解石[48]。LREE富集可能是流体和富含LREE的火成岩基底反应的结果,轻微Eu正异常(1.43±0.1),被认为是高温还原流体[74,80]。结合塔里木盆地火山岩浆活动在二叠纪很活跃,且广泛发育酸性碱性岩浆喷发和辉绿岩侵入体[72,81],认为酸性还原热流体可能来自二叠纪岩浆热流体。
综上,流体依次演化为:沉积弱氧化海水、接近海水的孔隙水、浅埋藏富铁孔隙水、中深埋藏高温高盐度孔隙水、埋藏期高盐度还原酸性壳源热流体、晚期最高盐度高温TSR流体(表1)。
沉积/成岩流体 均一温度与盐度 稀土配分模式 微量元素含量 性质 产物 沉积海水 40 ℃,3.5 wt%[48] LREE亏损 HREE富集 中—高Fe 低Mn 弱氧化性 粉细晶白云石基质 接近海水的孔隙水 小于50 ℃[48] LREE亏损 HREE富集 中—高Fe 低Mn 低盐度 氧同位素接近基质的细晶白云石胶结物 浅埋藏条件孔隙水 70 ℃~100 ℃[44],6~14wt.%[48] MREE富集 极高Fe 高Mn 稍高温,还原性 氧同位素偏负的细晶白云石胶结物 中深埋藏条件孔隙水 94 ℃~121 ℃,10~29 wt.% MREE富集 高Fe 高Mn 高温高盐度 中粗晶白云石胶结物 壳源热流体 136 ℃~182 ℃,13~25 wt.% MREE富集 极高Fe 极高Mn 高温高盐度还原酸性 鞍形白云石,石英 TSR相关流体 128 ℃~152 ℃,18~23 wt.% LREE富集 低Fe 低Mn 高温高盐度酸性 方解石
[1] | Sun S Q, 1995: 白云岩的孔隙演化与储层特性[J]. 项光,译.国外油气勘探, 7, 551-563. | Sun S Q. Pore evolution and reservoir characteristics of dolostone[J]. Xiang Guang, trans. Equipment for Geophysical Prospecting, 1995, 7(5): 551-563. |
[2] | 张静, 胡见义, 罗平, 2010: 深埋优质白云岩储集层发育的主控因素与勘探意义[J]. 石油勘探与开发, 37, 203-210. | Zhang Jing, Hu Jianyi, Luo Ping, et al. Master control factors of deep high-quality dolomite reservoirs and the exploration significance[J]. Petroleum Exploration and Development, 2010, 37(2): 203-210. |
[3] | Ohm S E, Karlsen D A, Austin T J F, 2008: Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea[J]. AAPG Bulletin, 92, 1191-1223. | |
[4] | 白莹, 罗平, 王石, 2017: 台缘微生物礁结构特点及储集层主控因素:以塔里木盆地阿克苏地区下寒武统肖尔布拉克组为例[J]. 石油勘探与开发, 44, 349-358. | Bai Ying, Luo Ping, Wang Shi, et al. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak Formation, Lower Cambrian, Aksu area, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 349-358. |
[5] | Ma Y S, Guo T L, Zhao X F, 2008: The formation mechanism of high-quality dolomite reservoir in the deep of Puguang gas field[J]. Science China (Seri. D): Earth Sciences, 51, 53-64. | |
[6] | Jiang L, Worden R H, Cai C F, 2014: Thermochemical sulfate reduction and fluid evolution of the Lower Triassic Feixianguan Formation sour gas reservoirs, northeast Sichuan Basin, China[J]. AAPG Bulletin, 98, 947-973. | |
[7] | Jiang L, Worden R H, Cai C F, 2014: Dolomitization of gas reservoirs: The Upper Permian Changxing and Lower Triassic Feixianguan Formations, northeast Sichuan Basin, China[J]. Journal of Sedimentary Research, 84, 792-815. | |
[8] | Peyravi M, Rahimpour-Bonab H, Nader F H, 2015: Dolomitization and burial history of Lower Triassic carbonate reservoir-rocks in the Persian Gulf (Salman offshore field)[J]. Carbonates and Evaporites, 30, 25-43. | |
[9] | Wilson A O. Depositional and diagenetic facies in the Jurassic Arab-C and-D reservoirs, Qatif field, Saudi Arabia[M]//Roehl P O, Choquette P W. Carbonate petroleum reservoirs. New York: Springer, 1985: 319-340. | |
[10] | 朱光有, 陈斐然, 陈志勇, 2016: 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征[J]. 天然气地球科学, 27, 8-21. | Zhu Guangyou, Chen Feiran, Chen Zhiyong, et al. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(1): 8-21. |
[11] | 王招明, 谢会文, 陈永权, 2014: 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探, 19, 1-13. | Wang Zhaoming, Xie Huiwen, Chen Yongquan, et al. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 well in Tarim Basin[J]. China Petroleum Exploration, 2014, 19(2): 1-13. |
[12] | 杨海军, 陈永权, 田军, 2020: 塔里木盆地轮探1井超深层油气勘探重大发现与意义[J]. 中国石油勘探, 25, 62-72. | Yang Haijun, Chen Yongquan, Tian Jun, et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(2): 62-72. |
[13] | Beavington-Penney S J, Nadin P, Wright V P, 2008: Reservoir quality variation on an Eocene carbonate ramp, El Garia Formation, offshore Tunisia: Structural control of burial corrosion and dolomitisation[J]. Sedimentary Geology, 209, 42-57. | |
[14] | Vandeginste V, Swennen R, Reed M H, 2009: Host rock dolomitization and secondary porosity development in the Upper Devonian Cairn Formation of the Fairholme carbonate complex (South-west Alberta, Canadian Rockies): Diagenesis and geochemical modelling[J]. Sedimentology, 56, 2044-2060. | |
[15] | Bourdet J, Pironon J, Levresse G, 2010: Petroleum accumulation and leakage in a deeply buried carbonate reservoir, Níspero field (Mexico)[J]. Marine and Petroleum Geology, 27, 126-142. | |
[16] | Li K K, Cai C F, Jia L Q, 2015: The role of thermochemical sulfate reduction in the genesis of high-quality deep marine reservoirs within the central Tarim Basin, western China[J]. Arabian Journal of Geosciences, 8, 4443-4456. | |
[17] | Cai C F, Worden R H, Bottrell S H, 2003: Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China[J]. Chemical Geology, 202, 39-57. | |
[18] | Cai C F, Xie Z Y, Worden R H, 2004: Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation east Sichuan Basin, China: Towards prediction of fatal H2[J]. Marine and Petroleum Geology, 21, 1265-1279. | |
[19] | Cai C F, He W X, Jiang L, 2014: Petrological and geochemical constraints on porosity difference between Lower Triassic sour- and sweet-gas carbonate reservoirs in the Sichuan Basin[J]. Marine and Petroleum Geology, 56, 34-50. | |
[20] | Jiang L, Worden R H, Cai C F, 2015: Generation of isotopically and compositionally distinct water during thermochemical sulfate reduction (TSR) in carbonate reservoirs: Triassic Feixianguan Formation, Sichuan Basin, China[J]. Geochimica et Cosmochimica Acta, 165, 249-262. | |
[21] | Jiang L, Pan W Q, Cai C F, 2015: Fluid mixing induced by hydrothermal activity in the Ordovician carbonates in Tarim Basin, China[J]. Geofluids, 15, 483-498. | |
[22] | Giles M R, de Boer R B, 1989: Secondary porosity: Creation of enhanced porosities in the subsurface from the dissolution of carbonate cements as a result of cooling formation waters[J]. Marine and Petroleum Geology, 6, 261-269. | |
[23] | Huang S J, Huang K K, Tong H P, 2010: Origin of CO2[J]. Science China Earth Sciences, 53, 642-648. | |
[24] | Surdam R C, Boese S W, Crossey L J. The chemistry of secondary porosity: Part 2. Aspects of porosity modification[M]//McDonald D A, Surdam R C. Clastic diagenesis. Tulsa, Okla, American: AAPG Bulletin, 1984: 127-149. | |
[25] | Schmidt T V, McDonald D A. The role of secondary porosity in the course of sandstone diagenesis[M]//Scholle P A, Schluger P R. Aspects of Diagenesis. Tulsa, Okla, American: SEPM Special Publication, 1979: 1-207. | |
[26] | Taylor T R, Giles M R, Hathon L A, 2010: Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin, 94, 1093-1132. | |
[27] | Al-Aasm I, 2003: Origin and characterization of hydrothermal dolomite in the western Canada sedimentary basin[J]. Journal of Geochemical Exploration, 78-79, 9-15. | |
[28] | Davies G R, Smith L B, 2006: Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin, 90, 1641-1690. | |
[29] | Lavoie D, Chi G, Urbatsch M, 2010: Massive dolomitization of a pinnacle reef in the Lower Devonian West Point Formation (Gaspé Peninsula, Quebec): An extreme case of hydrothermal dolomitization through fault-focused circulation of magmatic fluids[J]. AAPG Bulletin, 94, 513-531. | |
[30] | Krouse H R, Viau C A, Eliuk L S, 1988: Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature, 333, 415-419. | |
[31] | 朱光有, 张水昌, 梁英波, 2006: 四川盆地深部海相优质储集层的形成机理及其分布预测[J]. 石油勘探与开发, 33, 161-166. | Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Formation mechanism and distribution prediction of high-quality marine reservoir in deeper Sichuan Basin[J]. Petroleum Exploration and Development, 2006, 33(2): 161-166. |
[32] | Ma Y S, Guo X S, Guo T L, 2007: The Puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China[J]. AAPG Bulletin, 91, 627-643. | |
[33] | 王一刚, 文应初, 洪海涛, 2007: 四川盆地三叠系飞仙关组气藏储层成岩作用研究拾零[J]. 沉积学报, 25, 831-839. | Wang Yigang, Wen Yingchu, Hong Haitao, et al. Diagenesis of Triassic Feixianguan Formation in Sichuan Basin, Southwest China[J]. Acta Sedimentologica Sinica, 2007, 25(6): 831-839. |
[34] | Ehrenberg S N, Walderhaug O, Bjørlykke K, 2012: Carbonate porosity creation bymesogenetic dissolution: Reality or illusion[J]. AAPG Bulletin, 96, 217-233. | |
[35] | Bjørlykke K, Jahren J, 2012: Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin, 96, 2193-2214. | |
[36] | Machel H G, Buschkuehle B E, 2008: Diagenesis of the Devonian Southesk-Cairn Carbonate Complex, Alberta, Canada: Marine cementation, burial dolomitization, thermochemical sulfate reduction, anhydritization, and squeegee fluid flow[J]. Journal of Sedimentary Research, 78, 366-389. | |
[37] | Hao F, Zhang X F, Wang C W, 2015: The fate of CO2[J]. Earth-Science Reviews, 141, 154-177. | |
[38] | 邵龙义, 何宏, 彭苏萍, 2002: 塔里木盆地巴楚隆起寒武系及奥陶系白云岩类型及形成机理[J]. 古地理学报, 4, 19-30. | Shao Longyi, He Hong, Peng Suping, et al. Types and origin of dolostones of the Cambrian and Ordovician of Bachu uplift area in Tarim Basin[J]. Journal of Palaeogeography, 2002, 4(2): 19-30. |
[39] | 邵龙义, 韩俊, 马锋, 2010: 塔里木盆地东部寒武系白云岩储层及相控特征[J]. 沉积学报, 28, 953-961. | Shao Longyi, Han Jun, Ma Feng, et al. Characteristics of the Cambrian dolomite reservoirs and their facies-controlling in eastern Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(5): 953-961. |
[40] | 黄擎宇, 刘迪, 叶宁, 2013: 塔里木盆地寒武系白云岩储层特征及成岩作用[J]. 东北石油大学学报, 37, 63-74. | Huang Qingyu, Liu Di, Ye Ning, et al. Reservoir characteristics and diagenesis of the Cambrian dolomite in Tarim Basin[J]. Journal of Northeast Petroleum University, 2013, 37(6): 63-74. |
[41] | 沈安江, 郑剑锋, 陈永权, 2016: 塔里木盆地中下寒武统白云岩储集层特征、成因及分布[J]. 石油勘探与开发, 43, 340-349. | Shen Anjiang, Zheng Jianfeng, Chen Yongquan, et al. Characteristics, origin and distribution of dolomite reservoirs in Lower-Middle Cambrian, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(3): 340-349. |
[42] | 郑剑锋, 黄理力, 袁文芳, 2020: 塔里木盆地柯坪地区下寒武统肖尔布拉克组地球化学特征及其沉积和成岩环境意义[J]. 天然气地球科学, 31, 698-709. | Zheng Jianfeng, Huang Lili, Yuan Wenfang, et al. Geochemical features and its significance of sedimentary and diagenetic environment in the Lower Cambrian Xiaoerblak Formation of Keping area, Tarim Basin[J]. Natural Gas Geoscience, 2020, 31(5): 698-709. |
[43] | 严威, 郑剑锋, 陈永权, 2017: 塔里木盆地下寒武统肖尔布拉克组白云岩储层特征及成因[J]. 海相油气地质, 22, 35-43. | Yan Wei, Zheng Jianfeng, Chen Yongquan, et al. Characteristics and genesis of dolomite reservoir in the Lower Cambrian Xiaoerblak Formation, Tarim Basin[J]. Marine Origin Petroleum Geology, 2017, 22(4): 35-43. |
[44] | 程丽娟, 李忠, 刘嘉庆, 2020: 塔里木盆地巴楚—塔中地区寒武系盐下白云岩储层成岩作用及物性特征[J]. 石油与天然气地质, 41, 316-327. | Cheng Lijuan, Li Zhong, Liu Jiaqing, et al. Diagenesis and physical properties of subsalt dolomite reservoirs of the Cambrian, Bachu-Tazhong areas, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(2): 316-327. |
[45] | 金振奎, 余宽宏, 2011: 白云岩储集层埋藏溶蚀作用特征及意义:以塔里木盆地东部下古生界为例[J]. 石油勘探与开发, 38, 428-434. | Jin Zhenkui, Yu Kuanhong. Characteristics and significance of the burial dissolution of dolomite reservoirs: Taking the Lower Palaeozoic in eastern Tarim Basin as an example[J]. Petroleum Exploration and Development, 2011, 38(4): 428-434. |
[46] | 赵文智, 沈安江, 胡素云, 2012: 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 39, 1-12. | Zhao Wenzhi, Shen Anjiang, Hu Suyun, et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1): 1-12. |
[47] | 赵文智, 沈安江, 胡素云, 2012: 塔里木盆地寒武—奥陶系白云岩储层类型与分布特征[J]. 岩石学报, 28, 758-768. | Zhao Wenzhi, Shen Anjiang, Hu Suyun, et al. Types and distributional features of Cambrian-Ordovician dolostone reservoirs in Tarim Basin, northwestern China[J]. Acta Petrologica Sinica, 2012, 28(3): 758-768. |
[48] | Jiang L, Cai C F, Worden R H, 2016: Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China[J]. Sedimentology, 63, 2130-2157. | |
[49] | 余浩元, 蔡春芳, 郑剑锋, 2018: 微生物结构对微生物白云岩孔隙特征的影响:以塔里木盆地柯坪地区肖尔布拉克组为例[J]. 石油实验地质, 40, 233-243. | Yu Haoyuan, Cai Chunfang, Zheng Jianfeng, et al. Influence of microbial textures on pore characteristics of microbial dolomites: A case study of Lower Cambrian Xiaoerbulake Formation in Keping area, Tarim Basin[J]. Petroleum Geology & Experiment, 2018, 40(2): 233-243. |
[50] | Jiang L, Worden R H, Cai C F, 2018: Diagenesis of an evaporite-related carbonate reservoir in deeply buried Cambrian strata, Tarim Basin, northwest China[J]. AAPG Bulletin, 102, 77-102. | |
[51] | Jia L Q, Cai C F, Zhang J G, 2021: Effect of thermochemical sulfate reduction on carbonate reservoir quality: Cambrian and Ordovician oilfield, Tazhong area, Tarim Basin, China[J]. Marine and Petroleum Geology, 123, 104745-. | |
[52] | Cai C F, Hu W S, Worden R H, 2001: Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim[J]. Marine and Petroleum Geology, 18, 729-741. | |
[53] | 贾承造,魏国齐,姚慧君,等. 盆地构造演化与区域构造地质[M]. 北京:石油工业出版社,1995:1-42. | Jia Chengzao, Wei Guoqi, Yao Huijun, et al. Basin tectonic evolution and regional tectonic geology[M]. Beijing: Petroleum Industry Press, 1995: 1-42. |
[54] | Cai C F, Zhang C M, Cai L L, 2009: Origins of Palaeozoic oils in the Tarim Basin: Evidence from sulfur isotopes and biomarkers[J]. Chemical Geology, 268, 197-210. | |
[55] | Cai C F, Zhang C M, Worden R H, 2015: Application of sulfur and carbon isotopes to oil⁃source rock correlation: A case study from the Tazhong area, Tarim Basin, China[J]. Organic Geochemistry, 83-84, 140-152. | |
[56] | 潘文庆, 陈永权, 熊益学, 2015: 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义[J]. 天然气地球科学, 26, 1224-1232. | Pan Wenqing, Chen Yongquan, Xiong Yixue, et al. Sedimentary facies research and implications to advantaged exploration regions on Lower Cambrian source rocks, Tarim Basin[J]. Natural Gas Geoscience, 2015, 26(7): 1224-1232. |
[57] | 陈永权, 周新源, 杨海军, 2010: 塔里木盆地塔中地区上寒武统三种截面特征白云岩的岩石地球化学特征与成因研究[J]. 沉积学报, 28, 209-218. | Chen Yongquan, Zhou Xinyuan, Yang Haijun. Geochemical research and genesis of dolostones with different crystal characteristics occurring in the Upper Cambrian, centeral area of Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(2): 209-218. |
[58] | 白莹, 罗平, 刘伟, 2018: 微生物碳酸盐岩储层特征及主控因素:以塔里木盆地阿克苏地区下寒武统肖尔布拉克组上段为例[J]. 中国石油勘探, 23, 95-106. | Bai Ying, Luo Ping, Liu Wei, et al. Characteristics and main controlling factors of microbial carbonate reservoir: A case study of Upper member of Lower Cambrian Xiaoerbulake Formation in Akesu area, Tarim Basin[J]. China Petroleum Exploration, 2018, 23(4): 95-106. |
[59] | Qiu N S, Chang J, Zuo Y H, 2012: Thermal evolution and maturation of Lower Paleozoic source rocks in the Tarim Basin, northwest China[J]. AAPG Bulletin, 96, 789-821. | |
[60] | Wang T G, He F Q, Wang C J, 2008: Oil filling history of the Ordovician oil reservoir in the major part of the Tahe oilfield, Tarim Basin, NW China[J]. Organic Geochemistry, 39, 1637-1646. | |
[61] | 胡明毅, 孙春燕, 高达, 2019: 塔里木盆地下寒武统肖尔布拉克组构造—岩相古地理特征[J]. 石油与天然气地质, 40, 12-23. | Hu Mingyi, Sun Chunyan, Gao Da. Characteristics of tectonic-lithofacies paleogeography in the Lower Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2019, 40(1): 12-23. |
[62] | 高孝巧. 塔里木盆地巴楚—塔中地区肖尔布拉克组沉积特征及控储机理[D]. 北京:中国地质大学(北京),2018. | Gao Xiaoqiao. Sedimentary characteristics and its control mechanisms on reservoirs of the Xiaoerbulak Formation in Bachu-Tazhong region, Tarim Basin, NW China[D]. Beijing: China University of Geosciences (Beijing), 2018. |
[63] | 贾承造. 中国塔里木盆地构造特征与油气[M]. 北京:石油工业出版社,1997:1-438. | Jia Chengzao. Tectonic characteristics and petroleum Tarim Basin China[M]. Beijing: Petroleum Industry Press, 1997: 1-438. |
[64] | Bau M, Dulski P, 1996: Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 79, 37-55. | |
[65] | Sheppard S M F, Schwarcz H P, 1970: Fractionation of Carbon and Oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite[J]. Contributions to Mineralogy and Petrology, 26, 161-198. | |
[66] | Haley B A, Klinkhammer G P, Mcmanus J, 2004: Rare earth elements in pore waters of marine sediments[J]. Geochimica et Cosmochimica Acta, 68, 1265-1279. | |
[67] | Jacobs L, Emerson S, Huested S S, 1987: Trace metal geochemistry in the Cariaco Trench[J]. Deep Sea Research Part A. Oceanographic Research Papers, 34, 965-981. | |
[68] | Canfield D E, Thamdrup B, 2009: Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 7, 385-392. | |
[69] | Dong S F, Chen D Z, Qing H, 2013: Hydrothermal alteration of dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple constraints from petrology, isotope geochemistry and fluid inclusion microthermometry[J]. Marine and Petroleum Geology, 46, 270-286. | |
[70] | 李慧莉, 邱楠生, 金之钧, 2005: 塔里木盆地的热史[J]. 石油与天然气地质, 26, 613-617. | Li Huili, Qiu Nansheng, Jin Zhijun, et al. Geothermal history of Tarim Basin[J]. Oil & Gas Geology, 2005, 26(5): 613-617. |
[71] | Li K K, Cai C F, He H, 2011: Origin of palaeo-waters in the Ordovician carbonates in Tahe oil-field, Tarim Basin: Constraints from fluid inclusions and Sr, C and O isotopes[J]. Geofluids, 11, 71-86. | |
[72] | Zhang C L, Xu Y G, Li Z X, 2010: Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume?[J]. Lithos, 119, 537-552. | |
[73] | McLennan S M, 1989: Rare earth elements in sedimentary rocks; Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 21, 169-200. | |
[74] | Kučera J, Cempírek J, Dolníček Z, 2009: Rare earth elements and yttrium geochemistry of dolomite from post-Variscan vein-type mineralization of the Nízký Jeseník and Upper Silesian Basins, Czech Republic[J]. Journal of Geochemical Exploration, 103, 69-79. | |
[75] | Hecht L, Freiberger R, Gilg H A, 1999: Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany)[J]. Chemical Geology, 155, 115-130. | |
[76] | Frimmel H E, 2009: Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 258, 338-353. | |
[77] | Azomani E, Azmy K, Blamey N, 2013: Origin of Lower Ordovician dolomites in eastern Laurentia: Controls on porosity and implications from geochemistry[J]. Marine and Petroleum Geology, 40, 99-114. | |
[78] | Canfield D E, Raiswell R, Bottrell S H, 1992: The reactivity of sedimentary iron minerals toward sulfide[J]. American Journal of Science, 292, 659-683. | |
[79] | Fu Y J, van Berk W, Schulz H M, 2016: Hydrogen sulfide Formation, fate, and behavior in anhydrite-sealed carbonate gas reservoirs: A three-dimensional reactive mass transport modeling approach[J]. AAPG Bulletin, 100, 843-865. | |
[80] | Cai C F, Li K K, Li H T, 2008: Evidence for cross formational hot brine flow from integrated 8786[J]. Applied Geochemistry, 23, 2226-2235. | |
[81] | Tian W, Campbell I H, Allen C M, 2010: The Tarim picrite⁃basalt⁃rhyolite suite, a Permian flood basalt from northwest China with contrasting rhyolites produced by fractional crystallization and anatexis[J]. Contributions to Mineralogy and Petrology, 160, 407-425. | |
[82] | Tonietto S, Pope M C, 2013: Diagenetic evolution and its ifluence on petrophysical properties of the Jurassic Smackover Formation thrombolite and grainstone units of Little Cedar Creek Field, Alabama[J]. GCAGS Journal, 2, 68-84. | |
[83] | 宋金民, 罗平, 杨式升, 2012: 塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征[J]. 古地理学报, 14, 341-354. | Song Jinmin, Luo Ping, Yang Shisheng, et al. Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak area, Tarim Basin[J]. Journal of Palaeogeography, 2012, 14(3): 341-354. |
[84] | 宋金民, 罗平, 杨式升, 2014: 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 41, 404-413. | Song Jinmin, Luo Ping, Yang Shisheng, et al. Reservoirs of Lower Cambrian microbial carbonates, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2014, 41(4): 404-413, 437. |
[85] | 李朋威, 罗平, 陈敏, 2015: 塔里木盆地西北缘上震旦统微生物碳酸盐岩储层特征与成因[J]. 石油与天然气地质, 36, 416-428. | Li Pengwei, Luo Ping, Chen Min, et al. Characteristics and origin of the Upper Sinian microbial carbonate reservoirs at the northwestern margin of Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 416-428. |
[86] | 李朋威, 罗平, 宋金民, 2015: 微生物碳酸盐岩储层特征与主控因素:以塔里木盆地西北缘上震旦统—下寒武统为例[J]. 石油学报, 36, 1074-1089. | Li Pengwei, Luo Ping, Song Jinmin, et al. Characteristics and main controlling factors of microbial carbonate reservoirs: A case study of Upper Sinian- Lower Cambrian in the northwestern margin of Tarim Basin[J]. Acta Petrolei Sinica, 2015, 36(9): 1074-1089. |
[87] | 邓世彪, 关平, 庞磊, 2018: 塔里木盆地柯坪地区肖尔布拉克组优质微生物碳酸盐岩储层成因[J]. 沉积学报, 36, 1218-1232. | Deng Shibiao, Guan Ping, Pang Lei, et al. Genesis of excellent Xiaoerbulak microbial carbonate reservoir in Kalpin area of Tarim Basin, NW China[J]. Acta Sedimentologica Sinica, 2018, 36(6): 1218-1232. |
[88] | Tarasewicz J P T, Woodcock N H, Dickson J A D, 2005: Carbonate dilation breccias: Examples from the damage zone to the Dent Fault, northwest England[J]. GSA Bulletin, 117, 736-745. | |
[89] | Wang X L, Chou I M, Hu W X, 2013: In situ4[J]. Geochimica et Cosmochimica Acta, 103, 1-10. | |
[90] | 潘文庆, 刘永福, DicksonJ A D, 2009: 塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J]. 沉积学报, 27, 983-994. | Pan Wenqing, Liu Yongfu, Dickson J A D, et al. The geological model of hydrothermal activity in outcrop and the characteristics of carbonate hydrothermal karst of Lower Paleozoic in Tarim Basin[J]. Acta Sedimentologica Sinica, 2009, 27(5): 983-994. |
[91] | Qing H R, Mountjoy E W, 1994: Origin of dissolution vugs, caverns, and breccias in the Middle Devonian Presqu’ile barrier, host of Pine Point mississippi valley-type deposits[J]. Economic Geology, 89, 858-876. | |
[92] | Jiang L, Worden R H, Yang C B, 2018: Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality[J]. Geochimica et Cosmochimica Acta, 223, 127-140. | |
[93] | Hutcheon I, Krouse H R, Abercrombie H J. Controls on the origin and distribution of elemental sulfur, H2S, and CO2 in Paleozoic hydrocarbon reservoirs in western Canada[M]//Vairavamurthy M A, Schoonen M A A, Eglinton T I, et al. Geochemical transformations of sedimentary sulfur. Washington, DC, American: ACS, 1995: 426-438. | |
[94] | Moore C H, Druckman Y, 1981: Burial Diagenesis and porosity evolution, Upper Jurassic Smackover, Arkansas and Louisiana[J]. AAPG Bulletin, 65, 597-628. |