HTML
-
Rospondek et al.[9]采用标样相对保留时间对比的方法,首次在沉积有机质中鉴定出苯基菲系列,并计算了各异构体在色谱柱(HP-5MS)上的保留指数。随后,Li et al.[11]通过标样保留指数对比的方法,在湖相页岩中鉴定了该系列化合物,确定了其在芳烃馏分m/z 254质量色谱图中的流出顺序。对苯基菲的系统、准确地鉴定是探讨其油气地球化学应用的前提。本研究采用标样相对保留时间和标准保留指数对比的方法,明确鉴定出煤中的9-、1-、3-、2-苯基菲。通过保留指数系统,精确计算出苯基菲各异构体的保留指数(表1),同时鉴定出4-苯基菲。由此,确定了各异构体具体的流出位置和顺序:4-、9-、1-、3-、2-苯基菲(图1),结果与前人的结论相吻合。另外,本研究测定的苯基菲系列保留指数与前人的报道基本一致,差别都在±1.0指数单元以内,考虑到色谱—质谱实验条件的影响,认为该误差在合理的范围之内。因此,本文计算的苯基菲系列保留指数可以为其他研究人员在相同实验条件下(60 m,HP-5MS色谱柱,升温程序)对该类化合物的鉴定提供依据。
化合物 文献[9] 文献[11] 标样 煤,后峡-1 鉴定结果 I I tR I tR I 菲 300.00 300.00 40.239 300.00 41.615 300.00 菲 4-苯基菲 389.05 388.82 — — 59.974 388.22 4-苯基菲 䓛 400.00 400.00 60.789 400.00 62.425 400.00 䓛 9-苯基菲 405.63 405.08 61.633 404.86 63.184 404.48 9-苯基菲 1-苯基菲 407.82 407.33 62.025 407.12 63.576 406.79 1-苯基菲 3-苯基菲 422.87 422.07 64.602 421.97 66.180 422.14 3-苯基菲 2-苯基菲 427.64 428.07 65.495 427.11 67.076 427.43 2-苯基菲 苉 500.00 500.00 78.147 500.00 79.383 500.00 苉 -
为了对比苯基菲和甲基菲各异构体的热稳定性差异,通过量子化学计算的方法精确计算了两系列不同异构体的热力学性质,包括ΔE、ΔU、ΔH、ΔG等。表2显示,4-苯基菲的热稳定性最低,造成其在地质样品中很难被检测到。1-、9-苯基菲的稳定性较低,2-、3-苯基菲的热稳定性较高,这4个异构体普遍存在于地质体中。苯基菲系列热稳定性大小顺序为:2->3->9->1->4-PhP,与研究人员根据它们在不同成熟度样品中的分布而确定的热稳定大小相符合[9,11]。甲基菲与苯基菲系列各异构体的热稳定性大小顺序一致,为:2->3->9->1->4-MP,与前人通过量子化学计算的结果一致[25]。对比发现,苯基菲和甲基菲系列的相对热稳定性大小由取代位置决定,均为:C-2>C-3>C-9>C-1>C-4,而与取代基类型无关。Szczerba et al.[25]认为甲基菲系列热稳定性的差异主要是由空间位阻效应导致的,由于取代位C-1到C-9的空间位阻效应不同,造成各异构体几何构型产生不同程度的形变,导致热稳定性大小不同。
化合物 ΔE(kcal/mol) ΔU(kcal/mol) ΔH(kcal/mol) ΔG(kcal/mol) Debye(μ) 2-苯基菲 0.00 0.00 0.00 0.00 0.02 3-苯基菲 0.04 0.03 0.03 0.04 0.03 9-苯基菲 2.71 2.74 2.74 2.65 0.14 1-苯基菲 2.81 2.82 2.82 2.79 0.15 4-苯基菲 7.95 7.93 7.93 8.05 0.20 2-甲基菲 0.00 0.00 0.00 0.00 0.58 3-甲基菲 0.12 0.10 0.10 0.15 0.56 9-甲基菲 1.28 1.12 1.12 1.73 0.43 1-甲基菲 1.65 1.51 1.51 2.04 0.39 4-甲基菲 7.86 7.60 7.60 8.15 0.34 采用密度泛函理论计算方法,对苯基菲和甲基菲系列各异构体的分子几何结构进行了优化,确定了最优化条件下的键角。在理想状态下,苯基菲上的苯基与菲之间的夹角为120°,但由于不同取代位置具有不同的空间位阻效应,造成各异构体几何构型产生不同程度的形变,苯基与菲之间的夹角也会改变。如图2所示,苯基菲各异构体几何构型变形程度由大到小依次为:4->1->9->3->2-PhP,与苯基菲的热稳定性大小顺序相反,分子结构变形程度越大,热稳定性越低。与其类似,甲基菲各异构体几何构型变形程度由大到小依次为:4->1->9->3->2-MP,也与甲基菲系列的热稳定性大小顺序相反。同样,苯基菲和甲基菲系列的分子结构变形程度也由取代位置决定,均为:C-4>C-1>C-9>C-3>C-2,而与取代基类型无关。由此认为,苯基菲和甲基菲系列不同取代位置的空间位阻效应大小为:C-4>C-1>C-9>C-3>C-2,不同取代位置的空间位阻效应的不同造成了各异构体的热稳定性差异。
-
本次采集的煤中均检测出苯基菲系列化合物,图3展示了不同成熟度煤中苯基菲的分布特征,随着成熟度的增加,各异构体的相对丰度表现出规律性的变化,表明成熟度是控制该系列分布的重要因素。总体来看,大部分煤均具有较高含量的3-、2-苯基菲,以及较低含量的9-、1-苯基菲。然而,4-苯基菲仅以微量分布于成熟度相对较低的煤中(Ro<0.77%),在成熟度较高的样品中基本检测不到该化合物(图3),这与该化合物具有低的热稳定性有关。比较发现,相对于3-、2-苯基菲,9-、1-苯基菲的丰度随着成熟度的升高而逐渐降低(图3),原因可能是9-、1-苯基菲的热稳定性相对较低。所以,根据不同成熟度样品中苯基菲的分布特征,推测该系列的热稳定性大小顺序为:3-、2->9-、1->4-PhP,与量子化学计算的热稳定性大小顺序基本一致。
基于地化数据和量子化学计算的结果,以苯基菲系列异构体之间热稳定性的差异为基础,本文提出了苯基菲比值(PhPR=(2+3)-PhP/(1+9)-PhP)这一成熟度参数。从图4可以看出,苯基菲比值(PhPR)随着镜质组反射率(Ro)的增加而增大,两者表现出良好的线性正相关性,相关系数(R2)达到0.94,表明苯基菲比值是潜在的成熟度参数。另外,初步建立了通过苯基菲比值定量评价成熟度的换算公式:Rc=0.06×PhPR+0.32(Ro>0.4%),可应用于低熟—高熟原油和烃源岩(II~III型干酪根)的成熟度评价。
-
苯基菲比值能否成为有效的成熟度指标,还需要研究沉积环境对该参数的影响。沉积岩中有机显微组分能够反映生源类型,镜质组和惰质组分别由高等植物木质、纤维组织经过凝胶化作用和丝炭化作用形成,壳质组来源于高等植物类脂的膜质物或分泌物,腐泥组是藻类及其他低等水生生物腐泥化作用的产物[26]。前人研究认为,C29甾烷主要来自陆源高等植物,C27甾烷指示底栖藻类和浮游藻类的贡献[27⁃28]。本研究中准噶尔盆地和鄂尔多斯盆地煤中有机显微组分基本只含有镜质组和惰质组,两者之和占总有机显微组分的94.4%以上,壳质组含量极低(<5.6%),未观测到腐泥组。此外,煤中C29甾烷含量优势明显,而C27甾烷含量极低。由此可知,所研究煤中的有机质生源类型差异不大,主要为陆生高等植物。
姥鲛烷/植烷比值(Pr/Ph)是广泛用于指示沉积环境氧化还原性的参数[28⁃29]。从苯基菲比值与姥鲛烷/植烷比值的关系图中可以看出(图5),两者没有明显的相关性。处于偏还原环境(Pr/Ph<2)的煤,PhPR变化范围很大,介于6.56~27.66。对于偏氧化环境(Pr/Ph>2)的煤,随着Pr/Ph的增加,PhPR基本保持不变,介于2.55~8.27。结果表明,沉积环境对PhPR的影响很小。所以,苯基菲比值可作为良好的成熟度参数,对于还原—氧化沉积环境的烃源岩和原油均适用。
-
Szczerba et al.[25]通过量子化学计算和分子模拟的方法,研究了甲基菲的反应机理,认为在地质条件下甲基菲不同异构体的形成和转化通过甲基迁移作用、甲基化作用及去甲基化作用三种方式完成,其中甲基迁移作用是控制甲基菲分布的主要反应途径。1-MP通过1-,2-甲基迁移转化成2-MP很容易发生,3-MP与2-MP之间转化较容易,1-MP与9-MP之间的转化由于反应能垒较高,很难发生。为了比较苯基菲和甲基菲在反应机理上的差异性,本文将苯基菲比值PhPR与其对应的甲基菲参数((2+3)-MP/(1+9)-MP)做相关图。从图6中可以发现,甲基菲比值和其对应的甲基菲参数表现出良好的线性正相关关系,相关系数为0.92,表明苯基菲的分布可能受控于与甲基菲相似的化学反应机理,即苯基菲的生成和转化可能主要通过苯基迁移作用,随着成熟度的升高,1-PhP通过1-,2-苯基迁移作用转化为2-和3-PhP。
Figure 6. Correlation of PhPR with (2+3)⁃MP/(1+9)⁃MP for the coals from the Junggar and Ordos Basins
Rospondek et al.[30]利用量子化学计算和分子模拟的方法研究了苯基二苯并噻吩(PhDBT)系列的苯基迁移作用,1-PhDBT→2-PhDBT→3-PhDBT→4-PhDBT的反应能垒分别为13.3 kcal/mol、20.2 kcal/mol、16.2 kcal/mol。Yang et al.[24]计算了甲基二苯并噻吩(MDBT)系列的甲基迁移作用,1-MDBT→2-MDBT→3-MDBT→4-MDBT的反应能垒分别为18.7 kcal/mol、24.3 kcal/mol、20.7 kcal/mol。对比可以发现,在相同的取代位之间,苯基在二苯并噻吩上迁移需要克服的反应能垒比甲基的更小。同时,随着成熟度的增加,苯基菲比值比其对应的甲基菲参数变化更快(图6),反映苯基菲之间的转化可能比甲基菲更容易。另外,量子化学计算结果表明苯基菲比甲基菲的偶极矩(Debye)更小,其中1-PhP为极性分子,2-、3-PhP为非极性分子(表2),基于图6的结果认为随着热作用增加,极性分子更容易向非极性分子转化。而1-、2-、3-MP都为极性分子,且2-、3-MP的极性更大,1-MP向2-、3-MP转化需要更多的能量。由此可见,由于苯基比甲基在菲上的迁移需要克服的反应能垒更小,导致苯基菲比值对成熟度的变化更敏感。