Advanced Search
Volume 41 Issue 3
Jun.  2023
Turn off MathJax
Article Contents

FAN TingTing, LIU YiQun, ZHOU DingWu, CHE FeiXiang, YANG HaoKai. Genesis of Calcareous Concretions in Chang 7 Oil Shale, Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 932-944. doi: 10.14027/j.issn.1000-0550.2021.104
Citation: FAN TingTing, LIU YiQun, ZHOU DingWu, CHE FeiXiang, YANG HaoKai. Genesis of Calcareous Concretions in Chang 7 Oil Shale, Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 932-944. doi: 10.14027/j.issn.1000-0550.2021.104

Genesis of Calcareous Concretions in Chang 7 Oil Shale, Southern Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.104
Funds:

National Natural Science Foundation of China 41641018

  • Received Date: 2021-05-07
  • Accepted Date: 2021-09-14
  • Rev Recd Date: 2021-07-24
  • Available Online: 2021-09-14
  • Publish Date: 2023-06-10
  • The mechanism by which carbonate concretions develop in lacustrine oil shale continues to be relatively unclear. This study of the very large calcareous concretions in Chang 7 oil shale in the Yanchang Formation, southern Ordos Basin, included analysis of the conditions and mechanism by field investigation, thin section observations, X-ray diffraction, features of isotopic geochemistry, major and trace elements, microfractures, mineral composition, structure, and texture from inner to outer zones of the concretions. The results add considerably to the study of the formation and evolutionary environment of the associated high-quality argillaceous source rocks. The study suggests that the mineral composition of the nodules is diverse, which indicates that complex biochemistry and chemical deposition took place during the formation process, and the talc and aragonite minerals in the nodules are the products of a hydrothermal process. Four main forms of calcite minerals are present in the nodules. Of these, calcareous spherules are produced by the mineralization of cyanobacterium sheaths. From the edge of the concretions to the inner and outer ring and the nucleus, the content of major and trace elements is clearly different, showing the characteristics of continuous growth and evolution of the concretions in stages. The various 87Sr/86Sr ratios are similar to those of mantle-derived Sr isotopes; enrichment of a range of εNd(t) values is similar to mantle characteristics; δ18O is strongly negative; and Sr and Ba contents are high, all of which indicate that the formation of calcareous nodules is influenced by hydrothermal fluid from a deep source. In addition, fossilized fragments of cod that lived in a deep lake hydrothermal environment, and coprolites, were found in the nodules. The strongly positive bias of δ13C from -1.11‰ to 12.4‰ indicates that the formation of carbonate nodules may be related to methane generation caused by microbial metabolism in the alkane-producing zone. The origin of the calcareous nodules indicates that Chang 7 oil shale in this area possesses good hydrocarbon generation ability and is a source rock of high quality.
  • [1] Sellés-Martínez J. Concretion morphology, classification and genesis[J]. Earth-Science Reviews, 1996, 41(3/4): 177-210.
    [2] Raiswell R. Non-steady state microbiological diagenesis and the origin of concretions and nodular limestones[J]. Geological Society, London, Special Publications, 1987, 36(1): 41-54.
    [3] Raiswell R. The growth of Cambrian and Liassic concretions[J]. Sedimentology, 1971, 17(3/4): 147-171.
    [4] Raiswell R. Evidence for surface reaction-controlled growth of carbonate concretions in shales[J]. Sedimentology, 1988, 35(4): 571-575.
    [5] Mozley P S, Burns S J. Oxygen and carbon isotopic composition of marine carbonate concretions: An overview[J]. Journal of Sedimentary Research, 1993, 63(1): 73-83.
    [6] Kiriakoulakis K, Marshall J D, Wolff G A. Biomarkers in a Lower Jurassic concretion from Dorset (UK)[J]. Journal of the Geological Society, 2000, 157(1): 207-220.
    [7] Raiswell R, Fisher Q J. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition[J]. Journal of the Geological Society, 2000, 157(1): 239-251.
    [8] Hendry J P, Pearson M J, Trewin N H, et al. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis[J]. Sedimentology, 2006, 53(3): 537-565.
    [9] Loyd S J, Berelson W M, Lyons T W, et al. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate[J]. Geochimica et Cosmochimica Acta, 2012, 78: 77-98.
    [10] Stakes D S, Orange D, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California[J]. Marine Geology, 1999, 159(1/2/3/4): 93-109.
    [11] Campbell K A, Nelson C S, Alfaro A C, et al. Geological imprint of methane seepage on the seabed and biota of the convergent Hikurangi margin, New Zealand: Box core and grab carbonate results[J]. Marine Geology, 2010, 272(1/2/3/4): 285-306.
    [12] Pierre C, Blanc-Valleron M M, Caquineau S, et al. Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin (IODP Expedition 323, Sites U1343-U1345)[J] Deep Res[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 125-126: 133-144.
    [13] Oppo D, Viola I, Capozzi R. Fluid sources and stable isotope signatures in authigenic carbonates from the northern Apennines, Italy[J]. Marine and Petroleum Geology, 2017, 86: 606-619.
    [14] Nemra A, Mehadji A O, Munnecke A, et al. Carbonate concretions in Miocene mudrocks in NW Algeria: Types, geochemistry, and origins[J]. Facies, 2019, 65(2): 17.
    [15] 佟宏鹏,陈多福. 西藏日喀则晚白垩世冷泉碳酸盐岩的发现及其特征[J]. 科学通报,2012,57(36):3500-3510.

    Tong Hongpeng, Chen Duofu. First discovery and characterizations of Late Cretaceous seep carbonates from Xigaze in Tibet[J]. Chinese Science Bulletin, 2012, 57(36): 3500-3510.
    [16] 欧莉华,伊海生,夏国清,等. 内蒙古东北部林西组碳酸盐岩结核的成因及油气地质意义[J]. 成都理工大学学报(自然科学版),2013,40(4):438-444.

    Lihua Ou, Yi Haisheng, Xia Guoqing, et al. Origin and petroleum geological significance of carbonate rock concretes in Linxi Formation, northeast of Inner Mongolia, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(4): 438-444.
    [17] 夏国清,伊海生. 羌塘盆地双湖地区曲色组冷泉碳酸盐岩及其地质意义[J]. 沉积与特提斯地质,2015,35(1):68-75.

    Xia Guoqing, Yi Haisheng. Characteristics and significance of the cold-vent carbonate rocks from the Quse Formation in the Shuanghu area, Qiangtang Basin, northern Xizang[J]. Sedimentary Geology and Tethyan Geology, 2015, 35(1): 68-75.
    [18] 杨华,付金华,袁效奇. 鄂尔多斯盆地南缘地质剖面图集[M]. 北京:石油工业出版社,2016:1-396.

    Yang Hua, Fu Jinhua, Yuan Xiaoqi. Geological profile atlas of the southern margin of Ordos Basin[M]. Beijing: Petroleum Industry Press, 2016: 1-396.
    [19] 董杰,胡作维,袁效奇,等. 鄂尔多斯盆地南缘长7油层组碳酸盐结核的特征及石油地质意义[J]. 成都理工大学学报(自然科学版),2017,44(5):553-564.

    Dong Jie, Hu Zuowei, Yuan Xiaoqi, et al. The carbonate concretions of Chang-7 and their hydrocarbon significance in southern Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2017, 44(5): 553-564.
    [20] 苏玲,朱如凯,崔景伟,等. 中国湖相碳酸盐岩时空分布与碳氧同位素特征[J]. 古地理学报,2017,19(6):1063-1074.

    Su Ling, Zhu Rukai, Cui Jingwei, et al. Spatial-temporal distribution of lacustrine carbonate rocks in China and their carbon and oxygen isotopic characteristics[J]. Journal of Palaeogeography, 2017, 19(6): 1063-1074.
    [21] 李云,胡作维,刘灿,等. 鄂尔多斯盆地渭北地区上三叠统延长组长7油层组碳酸盐结核中自生碳酸盐矿物的特征[J]. 古地理学报,2019,21(4):577-588.

    Li Yun, Hu Zuowei, Liu Can, et al. Characteristics of authigenic carbonate minerals in carbonate concretions of the Chang 7 oil-bearing interval of Upper Triassic Yanchang Formation in Weibei area, Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(4): 577-588.
    [22] You J Y, Liu Y Q, Li Y X, et al. Discovery and significance of ancient cod fossils in hydrothermal fluid deposition areas: A case study of Chang 7-3 from the Triassic Yanchang Formation in the Ordos Basin[J]. Historical Biology, 33(2):1-14.
    [23] You J Y, Liu Y Q, Song S S, et al. In situ S isotope analysis and source tracing of pyrite from lacustrine hydrothermal sedimentary rocks: The Chang 7-3 sub-member, Triassic Yanchang Formation, Ordos Basin[J]. Australian Journal of Earth Sciences, 2021, 68(3): 440-451.
    [24] Zhu R K, Cui J W, Luo Z, et al. Isotopic geochemical characteristics of two types of carbonate concretions of Chang 7 member in the Middle-Upper Triassic Yanchang Formation, Ordos Basin, central China[J]. Marine and Petroleum Geology, 2020, 116: 104312.
    [25] 尤继元. 鄂尔多斯盆地南缘三叠系延长组长7喷积岩特征及其与烃源岩关系研究[D]. 西安:西北大学,2020:1-162.

    You Jiyuan. Study on the characteristics of hydrothermal-exhalative sedimentary rocks (HESR) and its relationship with source rocks from Chang 7 section of Triassic Yanchang Formation in the southern margin of Ordos Basin[D]. Xian: Northwest University, 2020: 1-162.
    [26] 孙莎莎,姚艳斌,吝文. 鄂尔多斯盆地南缘铜川地区油页岩元素地球化学特征及古湖泊水体环境[J]. 矿物岩石地球化学通报,2015,34(3):642-645.

    Sun Shasha, Yao Yanbin, Lin Wen. Elemental geochemical characteristics of the oil shale and the paleo-lake environment of the Tongchuan area, southern Ordos Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(3): 642-645.
    [27] 王喆,陈清敏,杨文博,等. 鄂尔多斯盆地铜川地区油页岩特征及资源评价[J]. 非常规油气,2016,3(4):32-39.

    Wang Zhe, Chen Qingmin, Yang Wenbo, et al. Characteristics and resource evaluation for oil shale in Tongchuan area of Ordos Basin[J]. Unconventonal Oil & Gas, 2016, 3(4): 32-39.
    [28] Rona P A. Criteria for recognition of hydrothermal mineral deposits in oceanic crust[J]. Economic Geology, 1978, 73(2): 135-160.
    [29] 徐勇航,赵太平,胡俊良,等. 华北陆块南部古元古代熊耳群硅质岩地球化学特征及其沉积环境[J]. 沉积学报,2008,26(4):602-609.

    Xu Yonghang, Zhao Taiping, Hu Junliang, et al. Geochemical characteristics and sedimentary environments of cherts from the Paleoproterozoic Xiong’er Group in the southern part of the North China Block[J]. Acta Sedimentologica Sinica, 2008, 26(4): 602-609.
    [30] McLennan S M, Taylor S R. Th and U in sedimentary rocks: Crustal evolution and sedimentary recycling[J]. Nature, 1980, 285(5767): 621-624.
    [31] Rollison H R. 岩石地球化学[M]. 杨学明,杨晓勇,陈双喜,译. 合肥:中国科学技术大学出版社,2000:1-118.

    Rollison H R. Rock geochemistry[M]. Yang Xueming, Yang Xiaoyong, Chen Shuangxi, trans. Hefei: University of Scientific and Technological of China Press, 2000: 1-118.
    [32] 魏菊英,王关玉. 同位素地球化学[M]. 北京:地质出版社,1988:1-165.

    Wei Juying, Wang Guanyu. Isotope geochemistry[M]. Beijing: Geological Publishing House, 1988: 1-165.
    [33] Fairbridge R W. The encyclopedia of geochemistry and environmental sciences[M]. New York: Van Nostrand Reinhold Co., 1972: 1321-1326.
    [34] Anderson T F, Arthur M A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems[M]//Arthur M A. Stable isotopes in sedimentary geology, SEPM short course 10. 1983: 111-151
    [35] Aloisi G, Bouloubassi I, Heijs S K, et al. CH4-consuming microorganisms and the formation of carbonate crusts at cold seeps[J]. Earth and Planetary Science Letters, 2002, 203(1): 195-203.
    [36] 王大锐. 油气稳定同位素地球化学[M]. 北京:石油工业出版社,2000:1-240.

    Wang Darui. Stable isotope geochemistry of oil and gas[M]. Beijing: Petroleum Industry Press, 2000: 1-240.
    [37] Mazzullo S J. Organogenic dolomitization in peritidal to deep-sea sediments[J]. Journal of Sedimentary Research, 2000, 70(1): 10-23.
    [38] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280.
    [39] Kenward P A, Goldstein R H, González L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic archaea[J]. Geobiology, 2009, 7(5): 556-565.
    [40] Spencer R J. Origin of Ca-Cl brines in Devonian formations, western Canada sedimentary basin[J]. Applied Geochemistry, 1987, 2(4): 373-384.
    [41] 张帅,伊海生,夏国清,等. 羌塘盆地南部布曲组含油白云岩中自生文石胶结物的鉴定及其成因探讨[J]. 石油实验地质,2016,38(6):772-778.

    Zhang Shuai, Yi Haisheng, Xia Guoqing, et al. Mineral and genesis study of authigenic aragonite in sucrosic dolomites from Middle Jurassic Buqu Formation in southern Qiangtang Basin, Tibet[J]. Petroleum Geology & Experiment, 2016, 38(6): 772-778.
    [42] Yoshida H, Yamamoto K, Minami M, et al. Generalized conditions of spherical carbonate concretion formation around decaying organic matter in early diagenesis[J]. Scientific Reports, 2018, 8(1): 6308.
    [43] Yoshida H, Yamamoto K, Ohe T, et al. Diffusion controlled formation of spherical carbonate concretion in muddy sedimentary matrices[J]. Geochemical Journal, 2020, 54(4): 233-242.
    [44] 李鹏,刘全有,毕赫,等. 火山活动与海侵影响下的典型湖相页岩有机质保存差异分析[J]. 地质学报,2021,95(3):632-642.

    Li Peng, Liu Quanyou, Bi He, et al. Analysis of the difference in organic matter preservation in typical lacustrine shale under the influence of volcanism and transgression[J]. Acta Geologica Sinica, 2021, 95(3): 632-642.
    [45] Aref M A, Taj R J. Recent evaporite deposition associated with microbial mats, Al-Kharrar supratidal⁃intertidal sabkha, Rabigh area, Red Sea coastal plain of Saudi Arabia[J]. Facies, 2018, 64(4): 28.
    [46] Oelkers E H, Gislason S R, Matter J. Mineral carbonation of CO2 [J]. Elements, 2008, 4(5): 333-337.
    [47] 李泯星,屈海洲,程曦,等. 火山作用对碳酸盐岩沉积及成岩的影响[J]. 沉积学报,2020,38(4):810-825.

    Li Minxing, Qu Haizhou, Cheng Xi, et al. Influence of volcanism on carbonate sedimentation and diagenesis[J]. Acta Sedimentologica Sinica, 2020, 38(4): 810-825.
    [48] 张文正,杨华,彭平安,等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学,2009,38(6):573-582.

    Zhang Wenzheng, Yang Hua, Peng Ping’an, et al. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582.
    [49] 孙莎莎,刘人和,拜文华. 鄂尔多斯盆地铜川地区上三叠统油页岩含油率影响因素分析[J]. 中国石油勘探,2011,16(2):79-83.

    Sun Shasha, Liu Renhe, Bai Wenhua. Effect factor analysis of oil content of Upper Triassic oil shale in Tongchuan area, Ordos Basin[J]. China Petroleum Exploration, 2011, 16(2): 79-83.
    [50] 张文正,杨华,解丽琴,等. 鄂尔多斯盆地延长组长7优质烃源岩中超微化石的发现及意义[J]. 古生物学报,2011,50(1):109-117.

    Zhang Wenzheng, Yang Hua, Xie Liqin, et al. Discovery of micro-and nannofossils in high grade hydrocarbon source rocks of the Triassic Yanchang Formation Chang 7 member in Ordos Basin and its scientific significance[J]. Acta Palaeontologica Sinica, 2011, 50(1): 109-117.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(4)

Article Metrics

Article views(319) PDF downloads(80) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-05-07
  • Revised:  2021-07-24
  • Accepted:  2021-09-14
  • Published:  2023-06-10

Genesis of Calcareous Concretions in Chang 7 Oil Shale, Southern Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.104
Funds:

National Natural Science Foundation of China 41641018

Abstract: The mechanism by which carbonate concretions develop in lacustrine oil shale continues to be relatively unclear. This study of the very large calcareous concretions in Chang 7 oil shale in the Yanchang Formation, southern Ordos Basin, included analysis of the conditions and mechanism by field investigation, thin section observations, X-ray diffraction, features of isotopic geochemistry, major and trace elements, microfractures, mineral composition, structure, and texture from inner to outer zones of the concretions. The results add considerably to the study of the formation and evolutionary environment of the associated high-quality argillaceous source rocks. The study suggests that the mineral composition of the nodules is diverse, which indicates that complex biochemistry and chemical deposition took place during the formation process, and the talc and aragonite minerals in the nodules are the products of a hydrothermal process. Four main forms of calcite minerals are present in the nodules. Of these, calcareous spherules are produced by the mineralization of cyanobacterium sheaths. From the edge of the concretions to the inner and outer ring and the nucleus, the content of major and trace elements is clearly different, showing the characteristics of continuous growth and evolution of the concretions in stages. The various 87Sr/86Sr ratios are similar to those of mantle-derived Sr isotopes; enrichment of a range of εNd(t) values is similar to mantle characteristics; δ18O is strongly negative; and Sr and Ba contents are high, all of which indicate that the formation of calcareous nodules is influenced by hydrothermal fluid from a deep source. In addition, fossilized fragments of cod that lived in a deep lake hydrothermal environment, and coprolites, were found in the nodules. The strongly positive bias of δ13C from -1.11‰ to 12.4‰ indicates that the formation of carbonate nodules may be related to methane generation caused by microbial metabolism in the alkane-producing zone. The origin of the calcareous nodules indicates that Chang 7 oil shale in this area possesses good hydrocarbon generation ability and is a source rock of high quality.

FAN TingTing, LIU YiQun, ZHOU DingWu, CHE FeiXiang, YANG HaoKai. Genesis of Calcareous Concretions in Chang 7 Oil Shale, Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 932-944. doi: 10.14027/j.issn.1000-0550.2021.104
Citation: FAN TingTing, LIU YiQun, ZHOU DingWu, CHE FeiXiang, YANG HaoKai. Genesis of Calcareous Concretions in Chang 7 Oil Shale, Southern Ordos Basin[J]. Acta Sedimentologica Sinica, 2023, 41(3): 932-944. doi: 10.14027/j.issn.1000-0550.2021.104
  • 结核是成分、颜色和结构构造等与围岩有明显区别的自生矿物集合体。其中,由方解石、白云石、菱铁矿等矿物构成的碳酸盐结核最受学者关注,优先发育于有机质含量较高的泥页岩[12],其对研究沉积物埋藏和压实期间孔隙流体演化以及微生物代谢活动具有重要意义[39]。目前国内外研究的多为海洋环境中形成的碳酸盐结核,且大多数都与甲烷渗漏有明显成因联系和显著δ13C负异常特征[1017]。而对于湖相油页岩中的碳酸盐结核研究较少。

    鄂尔多斯盆地南缘延长组长7段发育一套半深湖—深湖相黑色泥岩、油页岩,层内有砂质碎屑流、浊积岩和凝灰岩等沉积。近年来,在盆地南缘铜川地区长7油页岩中发现形态多样的“碳酸盐结核”[1824],直径为10~120 cm,其中以霸王庄地区的结核最为发育且形态最丰富,本文以霸王庄采石场剖面油页岩中常见的一个“椭球形”碳酸盐结核为研究对象,研究其岩石学和地球化学特征,分析成因机理,进而探讨该区长7油页岩的特殊沉积环境,为找寻优质烃源岩提供依据。

  • 铜川地区位于鄂尔多斯盆地南缘,构造单元属于渭北隆起区(图1b),处于盆地稳定沉降区与南缘冲断构造带之间的过渡区带,构造活动较为强烈,区内断层比较发育[25]图1a)。铜川地区自二叠纪开始拗陷成为内陆浅湖,并接受沉积,至三叠纪坳陷加大,并在长7期达到顶峰[26]。近年来,一些学者通过对陕西铜川、河南南召等多处野外剖面踏勘,重新界定了鄂尔多斯盆地及周缘长7深湖区的范围,得出盆地南部铜川地区长7期处于湖盆沉积中心位置[18]

    Figure 1.  Regional geological background of study area

    铜川地区延长组长7油页岩发育厚度一般较大,最厚为32.35 m,主要分布在瑶曲—何家坊—淌泥河—马泉头—马庄一带,向东北变薄[27]。由于油页岩是典型的静水沉积产物,其发育越厚通常反映沉积时水体相对越深。

  • 碳酸盐结核分布与油页岩发育厚度有很好的相关性,主要分布在铜川瑶曲镇聂家河、铜川市何家坊、金锁关镇霸王庄、淌泥河以及宜君县套滩等地。根据一些学者[19,24]和笔者研究团队近年来的野外勘查,发现灰岩结核主要赋存于长73段底部油页岩、泥岩序列,白云岩结核主要发育在长72亚段和长73亚段中上段的细砂岩、粉砂质砂岩、泥质粉砂岩和粉砂质泥岩层序中。

    霸王庄地区长7油页岩中的碳酸盐结核,有“椭球形”(图2a~d)、“圆球状”(图2e)、“透镜状”、“飞碟状”(图2f)、“烟囱状”等。结核大小相差悬殊,长2~105 cm。少数长度较大的结核由于油页岩开采已脱离原层位(图2b~d)。根据现今仍保存在油页岩中的结核,其长轴方向多平行于围岩地层,上覆页岩层绕过结核沉积,因此判断这些结核形成的时间较早,是在沉积物固结和压实前形成的。

    Figure 2.  Macroscopic features of Chang 7 limestone concretions of Bawangzhuang in the Tongchuan area

    采样剖面位于霸王庄半截沟村东南山附近的采石场,地理坐标: 35°14′1.7″ N, 109°02′10.5″ E,海拔1 240 m。长73段地层出露较完整,下伏地层为长8段灰绿色砂岩,整合接触;长73段上部覆盖第四系黄土,呈角度不整合接触,未见长72与长71地层。在长73段主体为大面积分布的黑色、深灰色油页岩层、灰褐色粉细砂岩层和厚度不等的凝灰岩夹层(或透镜体)(图1c),总体厚度约23 m,地层整体上风化较严重。油页岩内部可见大量顺层分布的碳酸盐结核和胶磷矿,局部可见沥青脉。结核数量较多,颜色为灰褐色、灰黑色,结合野外观察和显微镜下薄片鉴定,以及前人研究成果[1824],得出霸王庄地区巨型灰岩结核矿物成分和结构差异不大,特别是在采石场剖面,油页岩层中几乎全为长度超过20 cm的椭球形灰岩结核。因此,选择一个长度约60 cm,宽42 cm,高30 cm的椭球形灰岩结核进行研究。

  • 切开结核后发现,内部纹层较明显,从边缘带向内到核部共选择10块样品(图3)进行全岩矿物X衍射分析(表1),得出矿物成分主要为方解石(含量介于59.6%~92.3%)、石英(含量介于2.5%~10.2%)、黄铁矿(含量介于1.2%~5.9%),部分样品含有矿物铁白云石(含量介于0.4%~3.2%)、文石(含量介于3.6%~32.1%)和滑石(含量介于0.5%~0.7%),少数样品还出现了磷灰石、石膏、勃姆石和伊利石。显微镜下磷灰石一般呈球粒状,局部具有化石微形貌,是由生物沉积或生物化学沉积形成的;石膏一般为化学沉积作用的产物;勃姆石又称软水铝石,是铝土矿的主要成分,主要由风化作用形成;伊利石常由白云母或钾长石风化后形成;这些矿物组合说明结核在形成过程中发生了生物化学作用和化学沉积作用,后期又受到了风化作用的影响。

    Figure 3.  Sampling locations within cross⁃sections of ellipsoidal concretions in Bawangzhuang area

    样品编号矿物含量
    方解石铁白云石文石石英磷灰石勃姆石滑石黄铁矿石膏伊利石
    BWZ0185.104.34.5000.74.41.00
    BWZ0277.303.610.20005.903.0
    BWZ0359.6032.14.2000.63.500
    BWZ0471.4023.12.60002.900
    BWZ0686.42.608.5000.52.000
    BWZ0792.33.202.50002.000
    BWZ0890.40.804.53.1001.200
    BWZ0986.60.707.402.80.52.000
    BWZ1091.60.403.901.802.300

    显微镜下观察结核中方解石主要有4种形态:第一种是针状方解石(少数文石晶形也呈针状),集合体常呈纤维状,或围绕某一中心呈放射状排列构成次生球粒(图4a~e);第二种是方解石重结晶后形成多晶镶嵌状或中粗晶方解石,晶粒一般为0.25~0.60 mm,表面裂纹发育(图4f,g);第三种是在正交偏光镜下呈十字消光的方解石晶粒(图4h,i),晶粒通常介于0.05~0.15 mm,集合体常呈纹层或条带状分布;第四种为10~20 μm方解石圆球粒,多个聚集在一起呈团块或条带状分布(图5a,b),局部零星状散布。这种方解石圆球粒已在盆地南缘渭北地区多个长7段露头剖面中的碳酸盐夹层或结核中发现[1819]。根据能谱测试结果,主要为方解石,少部分为白云石或铁白云石。圆球粒大小形状都比较均一,直径一般不超过20 μm,常密集分布在第一种和第三种形态的方解石周围,绝大部分形态完整,圆球粒可见晶体腔和黑色有机质边缘,一般情况下,黑色有机质边缘较薄,少见较厚壳壁和刺状突起。少部分发生溶蚀后被黄铁矿交代,也可见被油迹和有机质完全浸染的现象(图5a)。

    Figure 4.  Microscopic features of Chang 7 limestone concretions in Caishichang section of Bawangzhuang area

    Figure 5.  Microscopic features related to microbial activity in Chang 7 limestone concretions, Caishichang section of Bawangzhuang area

    在结核中观察到一些微弱的起伏纹层,表明某种微生物的活动。具放射状结构的方解石次生球粒核部发现有生物化石碎片(图5c)。此外,在结核内(样品号为BWZ02)还发现一个长5 cm,宽3 cm,高2.5 cm的椭球形生物成因的豆粒。该豆粒显微镜下主要由两部分构成,一类分布较少,以纤维状、放射状的方解石集合体为主,含有黄褐色凝灰物质和一些生物化石碎片(图5d);另一类为主体,由暗色泥质岩纹层构成,富含有机质,还常含有凝灰岩夹层或少量火山碎屑物质。此外,钙质生物化石碎片丰富,常具不规则有机质壳壁,经笔者研究团队确定为破碎的鳕鱼头骨化石(图5e)和鳕鱼鳞片化石[22]图5f)。磷酸盐质球形化石和胶磷质团块也较常见。泥岩纹层可见强烈变形破碎,纹层中平行层面和垂直层面的裂缝发育,充填有粒状方解石(图5e)。

  • 表2所示,灰岩结核的主量元素含量从边缘带到核部有较大变化。如SiO2边缘带含量为6.15%~14.65%,外环带含量为2.23%~3.57%,内环带含量为3.36%~7.63%,核部含量为3.64%~6.18%;MgO含量较低,边缘带含量为0.22%~0.38%,外环带含量为0.50%~0.56%,内环带含量为0.78%~1.18%,核部含量为0.87%~0.89%;CaO边缘带含量为38.41%~46.55%,外环带含量为50.04%~51.15%,内环带含量为47.15%~48.21%,核部含量为46.44%~48.44%。Fe2O3含量在边缘带最高,而MnO含量在核部最高。整体上,从结核的边缘带到外环带、内环带、核部,镁质含量逐渐增加,硅质含量先增加后减少,钙质含量先减少后增加,且各主量元素在边缘带与内、外环带和核部之间相对差异较明显,表现出结核阶段性连续生长演化的特征。

    取样位置边缘带外环带内环带核部
    样品编号BWZ01BWZ02BWZ03BWZ04BWZ05BWZ06BWZ07BWZ08BWZ09BWZ 10
    SiO26.1514.653.572.232.257.633.363.646.184.72
    TiO20.040.080.010.010.010.010.01<0.010.010.01
    Al2O31.512.790.470.580.580.670.640.330.450.78
    TFe2O31.742.790.660.700.700.860.870.720.750.74
    MnO0.180.350.170.150.150.170.821.742.422.17
    MgO0.220.380.500.560.550.781.180.890.870.88
    CaO46.5538.4150.0451.1551.0847.1548.2148.4446.4447.35
    Na2O0.150.700.140.080.080.180.160.370.180.17
    K2O0.260.520.070.090.090.110.100.050.070.13
    P2O50.230.330.250.240.250.320.561.671.761.68
    LOI40.8336.4642.2842.4742.4840.3041.8340.9139.5540.17
    TOTAL97.8697.4698.1698.2698.2298.1897.7498.7698.6898.80
  • 微量元素含量从结核边缘带向核部,变化也较明显(表3)。其中,U、Th含量逐渐降低,结核边缘带U、Th平均含量为12.30×10-6、2.10×10-6,核部平均含量为2.60×10-6、0.46×10-6。而Cr、Ni、Co、Cu、Rb、Nb、Nd等元素从边缘带向核部含量逐渐减少,例如Ni边缘带平均含量为13.45×10-6,核部平均含量为9.69×10-6;Co边缘带平均含量为11.02×10-6,核部平均含量为3.31×10-6;Rb边缘带平均含量为20×10-6,核部平均含量为4.28×10-6;Nd边缘带平均含量为5.39×10-6,核部平均含量为1.17×10-6;还有部分元素含量变化与总体变化相比有差异,如Ba元素从结核边缘带—外环带—内环带—核部平均含量依次为153.50×10-6、576.67×10-6、155.50×10-6和267.00×10-6,表现为含量先升高后降低再升高。Sr元素从结核边缘带—外环带—内环带—核部平均含量依次为1 546.5×10-6、2 206×10-6、1 608×10-6和682.33×10-6,整体表现为先升高再降低。显示出结核整体与局部位置所含元素含量变化的差异性和阶段性生长演化的特征。

    取样位置边缘带外环带内环带核部
    样品编号BWZ01BWZ02BWZ03BWZ04BWZ05BWZ06BWZ07BWZ08BWZ09BWZ10
    Li3.597.712.362.282.233.197.7811.3026.3021.40
    Be0.620.890.180.190.200.530.200.150.170.23
    Sc3.045.111.611.741.752.042.021.091.521.62
    V27.849.712.513.613.414.728.244.753.959.0
    Cr10.1013.604.5939.606.046.793.756.954.725.31
    Co8.2313.807.343.753.506.674.132.613.633.69
    Ni12.5014.408.2529.0010.608.978.0310.309.769.01
    Cu15.9025.304.966.285.986.457.114.885.255.30
    Zn9.2410.601.952.201.974.552.433.203.485.72
    Ga2.364.390.760.870.881.071.381.562.162.43
    Ge0.2400.4200.0860.0970.0930.1600.1200.0790.1200.150
    Rb13.0027.003.914.344.425.475.102.383.636.82
    Sr1 6681 4252 3262 1442 1481 6781 538567643837
    Y5.008.131.602.402.403.972.611.121.541.74
    Zr16.6027.107.587.197.1817.5012.6037.7017.8019.80
    Nb1.742.620.521.100.561.130.620.320.390.60
    Cs0.831.580.240.280.280.360.330.130.230.44
    Ba143164605564561137174165321315
    La3.866.621.201.651.651.761.740.821.211.95
    Ce7.7913.202.283.223.253.433.451.462.283.77
    Pr0.981.630.270.390.400.420.420.180.270.45
    Nd4.116.661.071.561.591.711.680.731.061.72
    Sm0.901.410.220.320.330.380.360.150.210.33
    Eu0.2100.3100.1000.1200.1200.0960.0900.0470.0710.097
    Gd0.891.360.230.350.340.420.370.160.220.31
    Tb0.1300.2000.0340.0510.0530.0690.0590.0240.0320.046
    Dy0.781.250.220.330.340.480.370.150.210.28
    Ho0.1600.2600.0480.0730.0750.1200.0820.0340.0470.057
    Er0.460.770.150.230.230.400.250.100.150.17
    Tm0.0700.1200.0250.0360.0350.0670.0400.0170.0240.026
    Yb0.460.780.170.240.240.480.270.110.160.18
    Lu0.0750.1300.0290.0390.0390.0810.0450.0210.0280.030
    Hf0.360.600.190.200.200.290.260.360.350.42
    Ta0.0760.1400.0350.0350.0350.0440.0360.0160.0280.045
    Pb3.436.280.941.201.191.471.320.590.921.71
    Th1.522.670.420.550.560.620.590.240.410.74
    U10.4014.202.012.842.873.643.712.682.642.47
    ΣREE18.5230.645.498.167.679.328.163.605.318.31

    一般情况下,热水沉积岩中U/Th>1,非热水沉积岩U/Th<1[28]。该灰岩结核U/Th很高,为3.35~11.02,反映其为热水沉积作用形成的。此外,样品相对贫Co、Cu,富Ba(最大值高达605),Co/Ni的比值为0.47,明显小于1,这些也支持其成因为热水沉积作用[29]。此外,样品的Th/U值为0.09~0.30,Rb/Sr为0.002~0.019,低的Th/U和Rb/Sr比值反映了沉积时有富铁镁质物源的加入[30],说明当时研究区存在强烈的扩张裂解作用,在水下伴随岩浆喷溢,沉积了钙质结核,结核形成过程中有深源物质的加入。

    从北美页岩标准化REE配分模式图(图6)可以看出,按结核样品总稀土含量变化可分为两类,一类ΣREE含量稍高(样品BWZ01和BWZ02),为18.52×10-6和30.64×10-6;其余样品为另一类,ΣREE含量极低,为3.60×10-6~9.32×10-6。结核所有样品总稀土含量远低于北美页岩值(173.20×10-6),此外,LREE/HREE值为3.41~6.52,(La/Yb)N值为2.63~7.64。REE配分曲线总体呈平缓左倾趋势,有Ce负异常,除边缘带的BWZ01、BWZ02样品,均具明显的Eu正异常。Ce负异常和Eu正异常也表明样品为热水沉积岩[29],由于热水沉积作用而导致总REE含量极低。

    Figure 6.  NASC⁃normalized REE patterns in limestone concretions

  • Sr-Nd同位素广泛应用于岩石物质来源及其成因研究。锶、钕同位素测试在西北大学大陆动力学国家重点实验室的Nu Plasma HR多接收等离子体质谱仪上完成。对结核进行锶同位素分析(表4),得出87Sr/86Sr值变化范围为0.710 109~0.710 984,平均值为0.710 532,具有边缘带样品的87Sr/86Sr值低于过渡带和核部的特征。一般来说,幔源岩石具有低的87Sr/86Sr值(平均为0.704),壳源岩石具有较高87Sr/86Sr值(平均为0.720),并且锶浓度较低[31]。按灰岩结核的87Sr/86Sr值虽然划为壳源成因,但是其值较低更接近幔源锶同位素值,并且微量元素分析中Sr元素含量非常高。此外,在三叠纪末期全球海水的平均87Sr/86Sr值为0.707 7,而湖相碳酸盐的87Sr/86Sr值通常比海相碳酸盐87Sr/86Sr值高,一般是在湖盆受到火山活动的影响时,幔源物质进入湖盆会使盆地中87Sr/86Sr值降低,基于上述分析认为霸王庄地区灰岩结核形成时受幔源流体的影响。

    取样位置样品编号Sr同位素Nd同位素C同位素O同位素
    87Sr/86SrSE143Nd/144NdSEδ13CV-PDB/‰δ18O V-PDB/‰
    边缘带BWZ010.710 1090.000 0060.511 9410.000 0131.77-17.11
    BWZ020.710 2010.000 0060.511 9780.000 006-1.11-17.64
    过渡带BWZ030.710 6090.000 0060.511 3870.000 0297.55-14.32
    BWZ040.710 5360.000 0050.511 4480.000 0146.10-15.22
    BWZ050.710 5950.000 0070.512 0410.000 028
    BWZ060.710 3540.000 0060.509 8060.000 0354.43-16.68
    BWZ070.710 9300.000 0100.511 9370.000 0296.58-15.23
    核部BWZ080.710 5520.000 0060.511 8150.000 0378.41-13.00
    BWZ090.710 9840.000 0060.511 8760.000 02312.40-10.88
    BWZ100.710 4470.000 0080.507 1790.000 03211.41-11.74

    表4所示,灰岩结核钕同位素值从边缘带到核部差异不大,表现为边缘带样品的143Nd/144Nd值略高于过渡带和核部。143Nd/144Nd值分布范围为0.507 179 ~0.512 041,平均值为0.511 141。当钕同位素值在0.511 0~0.512 1之间时表现为富集地幔特征[32],因此结核样品的钕同位素也反映了结核在形成时受深部幔源流体的影响。

  • 碳、氧同位素分析由中国科学院地球环境研究所在MAT252气体质谱仪上测试完成,所给数据分析精度δ13C优于±0.06‰,δ18O优于±0.08‰。灰岩结核从边缘带到核部的碳、氧同位素值见表4,δ13CV-PDB值变化范围为-1.11‰~12.40‰,平均为6.393‰;分析发现结核不同部位的碳同位素值差异较大,边缘带δ13C=-1.11‰~1.77‰、过渡带δ13C=4.43‰~7.55‰、核部为δ13C=8.41‰~12.40‰,核部δ13C值的正偏移值最高,并且从边缘带至核部碳同位素值正偏移具有逐渐变大的趋势。

    由于碳源无论来自大气、淡水还是海相环境,正常碳酸盐δ13CV-PDB值分布范围均为-10‰~+5‰[3334],而霸王庄灰岩结核经测试有6个样品δ13C值超过5‰。结核形成HCO3-碳源通常为:1)源自结核中腐烂生物体的脂肪酸分解;2)溶解性无机碳,在甲烷渗漏的相关环境中,碳酸盐沉淀主要由微生物化学合成反应维持,即甲烷厌氧氧化与硫酸盐还原(AOM)[35]。通常与有机质有关的碳酸盐δ13C呈明显的负偏,与生物气有关的碳酸盐δ13C呈正偏[36]。研究区灰岩结核中只有BWZ02样品的碳同位素有唯一的负值,其采自结核边缘带的由生物化石碎片形成的豆粒,说明该样品的形成与有机质有关。

    其余灰岩结核样品碳同位素值强烈正偏,而产甲烷带中与产甲烷作用有关的碳酸盐岩碳同位素多为正值[3739]。霸王庄地区长7期水体较深,在无氧和少氧环境中,厌氧微生物的活动活跃。这种微生物反应产生碳酸氢盐,增加碱度,并最终导致自生碳酸盐在缺氧条件下的沉淀。因此,认为碳同位素强烈正偏可能与产烷带微生物代谢活动引起的甲烷生成作用有关。

    氧同位素δ18OV-PDB变化范围为-17.64‰~-10.88‰,平均为-14.647‰,边缘带δ18O=-17.64‰~-17.11‰、过渡带δ18O=-16.68‰~-14.32‰、核部δ18O=-13‰~-10.88‰,核部δ18O的负偏移值最低,并且从边缘带至核部,氧同位素值负偏移具有逐渐变小的趋势。整体上,结核氧同位素值比晚三叠世平均海水氧同位素值强烈负偏得多。而流体氧同位素δ18O值偏重可能是深部来源热液流体的一种典型特征[40]。笔者研究团队在霸王庄、套滩、瑶曲衣食村等地区长7地层剖面中均发现多条近垂直节理,有的裂缝甚至贯穿数十米地层。而且在显微镜下也发现薄片中垂直纹层的微裂缝发育(图5e),这些宏观和微观的裂缝或成为热液流体上涌的通道,也为氧同位素值强烈负偏与深源热液流体密切相关提供依据。

  • 通过对铜川霸王庄采石场剖面长73油页岩中的灰岩结核进行全岩矿物X衍射分析,发现从结核边缘带到核部均分布少量滑石(含量为0.5%~0.7%),滑石通常由富镁矿物经热液蚀变形成。结核边部文石发育,含量可达32.1%,偏光显微镜下文石呈针状或针柱状晶形,集合体放射状,也可形成次生球粒。由于文石在常温常压条件下处于亚稳态,通常转变为低镁方解石,因此在地质历史时期形成的碳酸盐岩中很少发现[41]。通常文石的成因主要有两种,一种是外生作用,由生物化学作用形成,见于一些动物的贝壳或骨骸中;另一种是内生成因,为热液最后阶段的低温产物,而且当溶液中存在Sr2+和Mg2+时,有利于文石形成。对比发现,结核BWZ02样品中含有很多化石碎片,文石含量仅为3.6%,而BWZ03和BWZ04样品中化石很少,文石含量均超过20%,因此判断该结核中文石成因与生物化学作用关系不大,更可能为后期热液作用形成的产物。此外,结核内黄铁矿普遍发育,扫描电镜下常为立方体状,平均含量为2.91%。对霸王庄长7油页岩中黄铁矿进行硫同位素分析,显示δ34SV-CDT介于7.31‰~10.05‰,平均为8.49‰,认为黄铁矿成因也与热液流体有关[23]

    结核中常见的10~20 μm圆球粒,多数为方解石,少数为铁白云石,圆球粒聚集呈团块或条带状分布,少部分被黄铁矿交代或溶蚀后充填有机质。杨华等[18]认为该方解石圆球粒是一种在地幔热液喷口生活的嗜热生物群的化石,命名为球形钙镁质嗜热微化石;董杰等[19]、Zhu et al.[24]认为圆球粒的形成可能是蓝细菌细胞白云石化的结果。根据镜下观察圆球粒形态和分布特征均与蓝绿藻特征非常相似。某些蓝细菌属种可以利用水中的HCO3-进行光合作用,引起细胞外的胶鞘附近pH值上升,从而导致水体中的碳酸钙过饱和,而在其胶鞘(EPS)内部或表面沉淀,发生钙化的蓝细菌胶鞘可以保存为化石,因此认同圆球粒是蓝细菌鞘体矿化的结果。

    在结核中常见一些被充填的裂缝和孔洞,分为:1)缝洞内充填石油或沥青,沿缝洞边部发育结晶程度高的方解石晶粒,双晶和解理发育,部分方解石发生明显溶蚀;2)一些裂缝充填两期脉,即早期方解石脉和晚期的玉髓脉。裂缝中玉髓呈球粒状,泥晶方解石呈条状,该方解石应为交代生物化石碎片形成。3)在一些裂缝中还可见自生石英,为具边界平直呈镶嵌粒状的三边平衡结构高温石英,呈晶粒状结构,表面裂缝发育。应是岩浆热液沿着裂隙带喷出使得湖水中SiO2含量大大提高,最后充填裂缝形成结核中的硅质条带。

    微量元素中Sr的含量为(567~2 326)×10-6,平均含量为1 497.4×10-6;Ba为(137~605)×10-6,平均含量为314.9×10-6,Sr和Ba含量高通常反映其形成受到热液作用的影响。此外,钕同位素值143Nd/144Nd为0.511 0~0.512 1,为富集地幔特征;氧同位素-17.64‰~-10.88‰,平均为-14.647‰,强烈负偏,这些均表明结核形成时,受到了深部地幔流体的影响。

    碳酸盐结核的形成主要与CO2分压、碳酸根、碳酸氢根离子和钙离子浓度密切相关。Yoshida et al.[42]认为这些离子在形成结核过程中是通过扩散机理,服从浓度扩散定律,腐烂有机质中的HCO3-和周围孔隙水中的Ca2+的扩散运移,导致从结核边缘进行的固体碳酸盐沉淀反应。据研究,腐烂有机质周围的碳酸盐球形结核的形成非常迅速。根据过程和速率分析得出,即使是巨大的球形结核也可以在较好的扩散运移机制下在泥质中迅速形成[43]。因此,霸王庄地区长73油页岩中常见的大于20 cm的“巨型”钙质结核的形成速度应该较快。

    长7沉积时期,盆地周围火山、地震活动频发,火山喷发出大量的SO2和H2S等挥发分,以酸雨的形式进入湖盆,会增加水体SO42-浓度,为硫酸盐还原反应作用提供充足的硫源,同时硫酸盐还原菌(SRB)可将各类有机物作为碳源,以SO42-为供体,将对其进行代谢分解,增强水体的还原性。经研究长7段页岩硫酸盐还原指数(SRI)整体小于1.375,指示有机碳的保存比消耗强,有利于形成富有机质的页岩[44]。此外,火山作用带来的火山碎屑、气体等进入湖盆后,会改变水体的化学条件。促进微生物发育,其能够促进N、P等营养物质的溶解和矿物成岩作用,从而有利于碳酸盐矿物的沉淀[45];在富CO2流体的作用下,火山碎屑物质通过与水反应释放出的金属离子越多,越有利于方解石、白云石等矿物的沉淀[46];也能在短时间内提高水体的温度,从而改变碳酸盐岩的沉积环境[47]

    油页岩层中可见大量顺层分布的胶磷矿,显微镜下观察长7油页岩和结核中黄铁矿、胶磷矿较发育,反映长7段水体为还原—强还原环境。油页岩V/(V+Ni)平均值为0.89,Ni/Co平均值为1.41,V/Cr平均值为2.67,Ni/V平均值为0.12,也表明沉积环境还原程度较高。在油页岩和结核中可见鳕鱼化石碎片和鱼粪化石,经研究该鳕鱼生活在一种深湖热液环境[22]。偶见河流—三角洲环境保存的植物化石碎片,反映沉积期长7中后期环境较为动荡,植物化石可随水流漂至半深湖—深湖水域沉降。

    霸王庄长73油页岩夹层中的凝灰岩具有明显的正粒序,说明火山灰可能在空中飘浮较短距离后沉降于湖盆,然后经历湖水的分选作用后沉积形成。长7期火山活动与优质烃源岩的大规模发育在时间上、空间上均具有良好的耦合关系[48]。火山活动不但为湖水中的生物带来丰富营养元素,火山灰落入水体还会造成长7期缺氧的湖泊环境,并且能在短时间内大面积覆盖原先的沉积物,在一定程度上起到保护有机质的作用[49];在沉降过程中还可能吸附一些生物和有机质共同沉积,形成富有机质的沉凝灰岩,从而形成盆地南缘普遍存在的油页岩与沉凝灰岩共存。

    铜川油页岩干酪根显微组分显示,生物来源为陆地高等植物和原地的藻类[49],此外微生物作为生烃母质随研究深入也被认可[50]。这些生烃母质的发育程度与能提供大量热量、营养物质的热水沉积和火山碎屑沉积关系密切。灰岩结核样品碳同位素值强烈正偏,油页岩中的结核形成主要与微生物代谢活动引起的甲烷生成作用有关,后期还受到油气充注、火山活动和热液作用的影响。因此,长7油页岩中富含的巨大的碳酸盐结核,可能指示其良好的生烃能力。由于本文仅是对霸王庄长7油页岩中一个椭球形灰岩结核进行研究,具有一定的局限性。后期拟开展其他地区多种形态钙质结核的研究,并进行结核微区微量元素和同位素测试分析研究,以获得更多古流体和古环境信息。

  • (1) 鄂尔多斯盆地南缘霸王庄地区长73底部油页岩中富含形态多样的钙质结核。其中一个巨型灰岩结核从边缘带到核部的岩石学和地化特征,反映其形成时受到深部热液流体影响,主要表现在:1)结核中含有热液成因的立方体状黄铁矿和少量滑石,结核边部热液成因文石含量高;2)结核中微裂缝常见,内部充填有晶粒状自生高温石英;3)微量元素中Sr、Ba富含而贫Co、Cu,U/Th>1,Co/Ni<1;4)∑REE含量极低,配分曲线具有Ce负异常和明显Eu正异常;5)结核中含有在深湖热液环境中生存的鳕鱼的化石碎片;6)锶同位素平均值为0.710 532,接近幔源锶同位素值;钕同位素平均值为0.511 141,表现为富集地幔特征;氧同位素平均值为-14.647‰,呈现强烈负偏。

    (2) 灰岩结核碳同位素δ13CV-PDB值平均为6.393‰,强烈正偏,应与产烷带微生物代谢活动引起的甲烷生成作用有关。霸王庄地区长7油页岩中富含的巨大的钙质结核可能指示其优质的烃源岩及良好的生烃能力。

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return