Advanced Search
Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents

LIN Xu, CHEN JiXin, WU ZhongHai, LIU HaiJin, ZHANG Yang. In-situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implications for provenance tracing studies in the Yangtze River[J]. Acta Sedimentologica Sinica, 2022, 40(4): 861-870. doi: 10.14027/j.issn.1000-0550.2021.103
Citation: LIN Xu, CHEN JiXin, WU ZhongHai, LIU HaiJin, ZHANG Yang. In-situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implications for provenance tracing studies in the Yangtze River[J]. Acta Sedimentologica Sinica, 2022, 40(4): 861-870. doi: 10.14027/j.issn.1000-0550.2021.103

In-situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implications for provenance tracing studies in the Yangtze River

doi: 10.14027/j.issn.1000-0550.2021.103
Funds:

National Natural Science Foundation of China 41972212

  • Received Date: 2021-04-06
  • Rev Recd Date: 2021-07-14
  • Publish Date: 2022-08-10
  • The Yangtze River is the largest river in East Asia, connecting the Tibetan Plateau and the western Pacific Ocean. The study of its source and sink process is of great scientific significance for understanding the processes of sediment denudation, transport and deposition. In situ analysis of trace elements and 87Sr/86Sr ratios in apatite commonly found in river sediments found from a two-dimensional scatter plot that the distribution area of the Jinsha River was significantly different from that of the Dadu, Minjiang and Jialing Rivers. The Yangtze River mainstream samples in the Fengdu section overlap with those from the Dadu, Minjiang and Jialing Rivers. When combined with the results from a multidimensional scaling (MDS) judgement chart, it was indicated that the material in the main stream of the Yangtze River in the Fengdu Section mainly comes from the Longmen Mountain. The in situ geochemical analysis of apatite effectively distinguished the materials originating from the Jinsha River in the southeastern Tibetan Plateau and from the Dadu, Minjiang and Jialing Rivers in the Longmen Mountain. This provides a better reference for future provenance-tracing studies of the whole Yangtze River Basin. However, due to the important influence of current construction of the Jinsha River cascade hydropower station on the composition of its downstream sediment, caution should be exercised when applying this method in such future studies.
  • [1] Guo R H, Hu X M, Garzanti E, et al. How faithfully do the geochronological and geochemical signatures of detrital zircon, titanite, rutile and monazite record magmatic and metamorphic events? A case study from the Himalaya and Tibet[J]. Earth-Science Reviews, 2020, 201: 103082.
    [2] 胡修棉,薛伟伟,赖文,等. 造山带沉积盆地与大陆动力学[J]. 地质学报,2021,95(1):139-158.

    Hu Xiumian, Xue Weiwei, Lai Wen, et al. Sedimentary basins in orogenic belt and continental geodynamics[J]. Acta Geologica Sinica, 2021, 95(1): 139-158.
    [3] 刘静,张金玉,葛玉魁,等. 构造地貌学:构造—气候—地表过程相互作用的交叉研究[J]. 科学通报,2018,63(30):3070-3088.

    Liu Jing, Zhang Jinyu, Ge Yukui, et al. Tectonic geomorphology: An interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin, 2018, 63(30): 3070-3088.
    [4] 林旭,刘静. 江汉和洞庭盆地与周缘造山带盆山耦合研究进展[J]. 地震地质,2019,41(2):499-520.

    Lin Xu, Liu Jing. A review of mountain-basin coupling of Jianghan and Dongting basins with their surrounding mountains[J]. Seismology and Geology, 2019, 41(2): 499-520.
    [5] 陈淑慧,侯元立,邵磊,等. 台湾始新统—中新统沉积物源与沉积环境[J]. 沉积学报,2020,38(2):319-330.

    Chen Shuhui, Hou Yuanli, Shao Lei, et al. Eocene-Miocene sediment source and environmental study of Taiwan[J]. Acta Sedimentologica Sinica, 2020, 38(2): 319-330.
    [6] 段知非,李超,毕磊,等. 崇明岛H12孔百年来长江入海沉积物来源变化及原因[J]. 沉积学报,2020,38(6):1204-1214.

    Duan Zhifei, Li Chao, Bi Lei, et al. Provenance tracing of sediment in Changjiang Estuary in the past 150 years and the implications: Case study in core H12 at Chongming Island[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1204-1214.
    [7] Yang S Y, Wang Z B, Guo Y, et al. Heavy mineral compositions of the Changjiang (Yangtze River) sediments and their provenance-tracing implication[J]. Journal of Asian Earth Sciences, 2009, 35(1): 56-65.
    [8] Xiang F, Zhu L D, Wang C S, et al. Quaternary sediment in the Yichang area: Implications for the formation of the Three Gorges of the Yangtze River[J]. Geomorphology, 2007, 85(3/4): 249-258.
    [9] Zheng H, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(19): 7556-7561.
    [10] Kong P, Zheng Y, Caffee M W. Provenance and time constraints on the formation of the first bend of the Yangtze River[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6): Q06017.
    [11] Zhang Y F, Li C A, Wang Q L, et al. Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges[J]. Chinese Science Bulletin, 2008, 53(4): 584-590.
    [12] 林旭,刘静,吴中海,等. 中国北部陆架海碎屑锆石U-Pb年龄和钾长石主微量元素物源示踪研究[J]. 地质学报,2020,94(10):3024-3035.

    Lin Xu, Liu Jing, Wu Zhonghai, et al. Study of provenance indicators of detrital zircon in main rivers around the Bohai Bay Basin[J]. Acta Geologica Sinica, 2020, 94(10): 3024-3035.
    [13] 姚檀栋,邬光剑,徐柏青,等. “亚洲水塔” 变化与影响[J]. 中国科学院院刊,2019,34(11):1203-1209.

    Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34(11): 1203-1209.
    [14] 张信宝,刘彧,王世杰,等. 黄河、长江的形成演化及贯通时间[J]. 山地学报,2018,36(5):661-668.

    Zhang Xinbao, Liu Yu, Wang Shijie, et al. On the chronology of the Yellow Rivers and the Yangtze Rivers[J]. Mountain Research, 2018, 36(5): 661-668.
    [15] Yue W, Jin B F, Zhao B C. Transparent heavy minerals and magnetite geochemical composition of the Yangtze River sediments: Implication for provenance evolution of the Yangtze delta[J]. Sedimentary Geology, 2018, 364: 42-52.
    [16] Liu X B, Chen J, Maher B A, et al. Connection of the proto-Yangtze River to the East China Sea traced by sediment magnetic properties[J]. Geomorphology, 2018, 303: 162-171.
    [17] Fu X W, Zhu W L, Geng J H, et al. The present-day Yangtze River was established in the Late Miocene: Evidence from detrital zircon ages[J]. Journal of Asian Earth Sciences, 2021, 205: 104600.
    [18] Yang C F, Vigier N, Yang S Y, et al. Clay Li and Nd isotopes response to hydroclimate changes in the Changjiang (Yangtze) Basin over the past 14,000 years[J]. Earth and Planetary Science Letters, 2021, 561: 116793.
    [19] Yang S Y, Jiang S Y, Ling H F, et al. Sr-Nd isotopic compositions of the Changjiang sediments: Implications for tracing sediment sources[J]. Science in China Series D: Earth Sciences, 2007, 50(10): 1556-1565.
    [20] Shao L, Li C A, Yuan S Y, et al. Neodymium isotopic variations of the Late Cenozoic sediments in the Jianghan Basin: Implications for sediment source and evolution of the Yangtze River[J]. Journal of Asian Earth Sciences, 2012, 45: 57-64.
    [21] He M Y, Zheng H B, Clift P D. Zircon U-Pb geochronology and Hf isotope data from the Yangtze River sands: Implications for major magmatic events and crustal evolution in Central China[J]. Chemical Geology, 2013, 360-361: 186-203.
    [22] Wang P, Zheng H B, Liu S F, et al. Late Cretaceous drainage reorganization of the middle Yangtze River[J]. Lithosphere, 2018, 10(3): 392-405.
    [23] 林旭,刘静,彭保发,等. 青藏高原周围河流基岩和碎屑矿物低温热年代学研究进展[J]. 地震地质,2017,39(6):1091-1110.

    Lin Xu, Liu Jing, Peng Baofa, et al. A review of low tem-perature thermochronology on bedrock and detritus from rivers around the Tibetan Plateau[J]. Seismology and Geology, 2017, 39(6): 1091-1110.
    [24] Li Y W, Zhao J X, Li C A, et al. Cadmium and clay mineral analysis of Late Pliocene-Pleistocene deposits from Jianghan Basin, central China: Implications for sedimentary provenance and evolution of the Yangtze River[J]. Quaternary International, 2021, 598: 1-14.
    [25] Jiang H J, Li C A, Kang C G, et al. Provenance discrimination of upper Yangtze River Basin sediments: New insights from heavy mineral signatures and detrital magnetite geochemistry[J]. Quaternary International, 2020, 568: 79-89.
    [26] Chappell J, Zheng H B, Fifield K. Yangtse River sediments and erosion rates from source to sink traced with cosmogenic 10Be: Sediments from major rivers[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 241(1): 79-94.
    [27] Vezzoli G, Garzanti E, Limonta M, et al. Erosion patterns in the Changjiang (Yangtze River) catchment revealed by bulk-sample versus single-mineral provenance budgets[J]. Geomorphology, 2016, 261: 177-192.
    [28] Zheng H B, Clift P D, He M Y, et al. Formation of the First Bend in the Late Eocene gave birth to the modern Yangtze River, China[J]. Geology, 2021, 49(1): 35-39.
    [29] Yan Y, Carter A, Huang C Y, et al. Constraints on Cenozoic regional drainage evolution of SW China from the provenance of the Jianchuan Basin[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q03001.
    [30] Wei C Y, Voinchet P, Zhang Y F, et al. Chronology and provenance of the Yichang Gravel Layer deposits in the Jianghan Basin, middle Yangtze River valley, China: Implications for the timing of channelization of the Three Gorges Valley[J]. Quaternary International, 2020, 550: 39-54.
    [31] He M Y, Zheng H B, Huang X T, et al. Yangtze River sediments from source to sink traced with clay mineralogy[J]. Journal of Asian Earth Sciences, 2013, 69: 60-69.
    [32] Fan D D, Li C X, Yokoyama K, et al. Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China Series D: Earth Sciences, 2005, 48(10): 1718-1727.
    [33] Foster G L F, Carter A. Insights into the patterns and locations of erosion in the Himalaya—A combined fission-track and in situ Sm-Nd isotopic study of detrital apatite[J]. Earth and Planetary Science Letters, 2007, 257(3/4): 407-418.
    [34] Malusà M G, Wang J G, Garzanti E, et al. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology[J]. Lithos, 2017, 290-291: 48-59.
    [35] Jepson G, Carrapa B, George S W M, et al. Resolving mid-to Upper-crustal exhumation through apatite petrochronology and thermochronology[J]. Chemical Geology, 2021, 565: 120071.
    [36] Deng B, Chew D, Mark C, et al. Late Cenozoic drainage reorganization of the Paleo-Yangtze River constrained by multi-proxy provenance analysis of the Paleo-lake Xigeda[J]. GSA Bulletin, 2021, 133(1/2): 199-211.
    [37] Fisher C M, Bauer A M, Luo Y, et al. Laser ablation split-stream analysis of the Sm-Nd and U-Pb isotope compositions of monazite, titanite, and apatite–Improvements, potential reference materials, and application to the Archean Saglek Block gneisses[J]. Chemical Geology, 2020, 539: 119493.
    [38] Gillespie J, Glorie S, Khudoley A, et al. Detrital apatite U-Pb and trace element analysis as a provenance tool: Insights from the Yenisey Ridge (Siberia)[J]. Lithos, 2018, 314-315: 140-155.
    [39] Shen C B, Donelick R A, O'Sullivan P B, et al. Provenance and hinterland exhumation from LA-ICP-MS zircon U-Pb and fission-track double dating of Cretaceous sediments in the Jianghan Basin, Yangtze block, central China[J]. Sedimentary Geology, 2012, 281: 194-207.
    [40] 苏建超,李长安,吴中海,等. 江汉盆地周缘主要河流沉积物碎屑磷灰石的微量元素特征及其物源判别指标分析[J]. 地球学报,2021,42(5):641-650.

    Su Jianchao, Li Chang’an, Wu Zhonghai, et al. Detrital apatite trace element characteristics of main rivers around Jianghan Basin and an analysis of their provenance discriminant indicators[J]. Acta Geoscientica Sinica, 2021, 42(5): 641-650.
    [41] 林旭,刘静,吴中海,等. 渤海钻孔物源示踪和河流沉积物扩散研究:碎屑锆石U-Pb年龄和磷灰石原位地球化学元素双重约束[J]. 地质力学学报,2021,27(2):304-316.

    Lin Xu, Liu Jing, Wu Zhonghai, et al. Study on borehole provenance tracing and fluvial sediment diffusion in the Bohai Sea: Double constraints from detrital zircon U-Pb age and in-situ geochemical element of apatite grains[J]. Journal of Geomechanics, 2021, 27(2): 304-316.
    [42] 刘海金, 龚志军, 林旭.渤海主要汇入河流碎屑磷灰石地球化学特征及成因[J]. 海洋地质与第四纪地质,2021,41(4): 74-86.

    Liu Haijin, Gong Zhijun, Lin Xu. Geochemical characteristics and genesis of detrital apatites from the surrounding rivers into the Bohai Sea[J]. Marine Geology & Quaternary Geology, 2021, 41(4): 74-86.
    [43] 杨守业. 亚洲主要河流的沉积地球化学示踪研究进展[J]. 地球科学进展,2006,21(6):648-655.

    Yang Shouye. Advances in sedimentary geochemistry and tracing applications of Asian river[J]. Advances in Earth Science, 2006, 21(6): 648-655.
    [44] 石学法,乔淑卿,杨守业,等. 亚洲大陆边缘沉积学研究进展(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(2):319-336.

    Shi Xuefa, Qiao Shuqing, Yang Shouye, et al. Progress in sedimentology research of the Asian continental margin (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 319-336.
    [45] 张信宝,文安邦, Walling D E,等. 大型水库对长江上游主要干支流河流输沙量的影响[J]. 泥沙研究,2011(4):59-66.

    Zhang Xinbao, Wen Anbang, Walling D E, et al. Effects of large-scale hydropower reservoirs on sediment loads in upper Yangtze River and its major tributaries[J]. Journal of Sediment Research, 2011(4): 59-66.
    [46] Paton C, Hellstrom J, Paul B, et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(12): 2508-2518.
    [47] Jochum K P, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2): Q02008.
    [48] Vermeesch P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341: 140-146.
    [49] Belousova E A, Griffin W L, O’Reilly S Y, et al. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J]. Journal of Geochemical Exploration, 2002, 76(1): 45-69.
    [50] O'Sullivan G, Chew D, Kenny G, et al. The trace element composition of apatite and its application to detrital provenance studies[J]. Earth-Science Reviews, 2020, 201: 103044.
    [51] 张宏飞,高山. 地球化学[M]. 北京:地质出版社,2012:130-136.

    Zhang Hongfei, Gao Shan. Geochemistry[M]. Beijing: Geological Press, 2012: 130-136.
    [52] 黄湘通,郑洪波, Chappell J,等. 长江流域河流沉积物宇宙成因核素10Be特征与侵蚀速率估算[J]. 第四纪研究,2013,33(4):671-683.

    Huang Xiangtong, Zheng Hongbo, Chappell J, et al. Characteristics of cosmogenic nuclide 10Be in the Yangtze Riverine sediments and estimations of erosion rate[J]. Quaternary Sciences, 2013, 33(4): 671-683.
    [53] He M Y, Zheng H B, Bookhagen B, et al. Controls on erosion intensity in the Yangtze River Basin tracked by U-Pb detrital zircon dating[J]. Earth-Science Reviews, 2014, 136: 121-140.
    [54] 王中波,杨守业,王汝成,等. 长江河流沉积物磁铁矿化学组成及其物源示踪[J]. 地球化学,2007,36(2):176-184.

    Wang Zhongbo, Yang Shouye, Wang Rucheng, et al. Magnetite compositions of Changjiang River sediments and their tracing implications[J]. Geochimica, 2007, 36(2): 176-184.
    [55] 秦蕾蕾,董先勇,杜泽东,等. 金沙江下游水沙变化特性及梯级水库拦沙分析[J]. 泥沙研究,2019,44(3):24-30.

    Qin Leilei, Dong Xianyong, Du Zedong, et al. Processes of water-sediment and deposition in cascade reservoirs in the lower reach of Jinsha River[J]. Journal of Sediment Research, 2019, 44(3): 24-30.
    [56] Zhou Y J, Li D F, Lu J Y, et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River Basin of the Yangtze River, southwestern China[J]. CATENA, 2020, 193: 104593.
    [57] Yang H F, Yang S L, Xu K H, et al. Human impacts on sediment in the Yangtze River: A review and new perspectives[J]. Global and Planetary Change, 2018, 162: 8-17.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(1)

Article Metrics

Article views(502) PDF downloads(154) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-04-06
  • Revised:  2021-07-14
  • Published:  2022-08-10

In-situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implications for provenance tracing studies in the Yangtze River

doi: 10.14027/j.issn.1000-0550.2021.103
Funds:

National Natural Science Foundation of China 41972212

Abstract: The Yangtze River is the largest river in East Asia, connecting the Tibetan Plateau and the western Pacific Ocean. The study of its source and sink process is of great scientific significance for understanding the processes of sediment denudation, transport and deposition. In situ analysis of trace elements and 87Sr/86Sr ratios in apatite commonly found in river sediments found from a two-dimensional scatter plot that the distribution area of the Jinsha River was significantly different from that of the Dadu, Minjiang and Jialing Rivers. The Yangtze River mainstream samples in the Fengdu section overlap with those from the Dadu, Minjiang and Jialing Rivers. When combined with the results from a multidimensional scaling (MDS) judgement chart, it was indicated that the material in the main stream of the Yangtze River in the Fengdu Section mainly comes from the Longmen Mountain. The in situ geochemical analysis of apatite effectively distinguished the materials originating from the Jinsha River in the southeastern Tibetan Plateau and from the Dadu, Minjiang and Jialing Rivers in the Longmen Mountain. This provides a better reference for future provenance-tracing studies of the whole Yangtze River Basin. However, due to the important influence of current construction of the Jinsha River cascade hydropower station on the composition of its downstream sediment, caution should be exercised when applying this method in such future studies.

LIN Xu, CHEN JiXin, WU ZhongHai, LIU HaiJin, ZHANG Yang. In-situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implications for provenance tracing studies in the Yangtze River[J]. Acta Sedimentologica Sinica, 2022, 40(4): 861-870. doi: 10.14027/j.issn.1000-0550.2021.103
Citation: LIN Xu, CHEN JiXin, WU ZhongHai, LIU HaiJin, ZHANG Yang. In-situ Geochemical Analysis of Modern Fluvial Detrital Apatite: Implications for provenance tracing studies in the Yangtze River[J]. Acta Sedimentologica Sinica, 2022, 40(4): 861-870. doi: 10.14027/j.issn.1000-0550.2021.103
  • 河流是塑造地表形态,串联地球岩石圈、水圈、大气圈物质循环的重要介质[14]。因而保存于河流中的碎屑沉积物(砾、砂、泥)对理解构造变形、气候变化和地表侵蚀作用之间的联系具有广泛意义[512]。“亚洲水塔”青藏高原与多个亚洲边缘海盆地及亚洲内陆湖泊组成了规模巨大的源—汇系统[1314]。认识这一源—汇系统的发展过程,包括河流砾、砂、泥的产生、搬运与沉积过程,不仅为探索地球海陆交互作用等关键过程提供基础支撑,也能提供水系演化的信息[1523]。其中尤以亚洲最大河流,发源于青藏高原东部,流经云贵高原、四川盆地、江汉盆地和长江中下游平原,最终流入太平洋西部陆架边缘海(东海)的长江最受关注[4,11,24]图1)。而长江的发育和形成综合反映东亚中—新生代以来构造体制转换、气候变化等重要信息,对中国三大地势阶梯的建立具有重要指示意义,也是探索青藏高原构造—气候—沉积系统科学研究的重要组成部分[2531]。因而,国内外研究者从环境磁学[11]、全岩地球化学[1820,24]、重矿物组成[7,15,25,30]、黏土矿物组成[31]、单颗粒矿物年龄谱对比[810,32]等方面,对其源汇过程开展了广泛研究。然而,全岩地球化学组成更多代表沉积物均一化的物源信息;矿物组合研究,有时因流域内缺乏标型矿物,增加了物源解析的难度;锆石矿物硬度大,可以经历多期次物质沉积循环过程,仅仅依靠单一的U-Pb年龄谱对比,并不能很好的限定潜在物源区。

    Figure 1.  Location of Yangtze River Basin

    近年来,在河流沉积物物源示踪研究中,越来越多的学者开始对某一矿物(例如锆石和磷灰石)同时进行原位物源信息(U-Pb年龄,Sr-Nd同位素等)的获取[3339],已被证明在界定物源区,识别构造活动引起的水系变化等方面十分有效。进而避免分析单一矿物引起物源示踪结果的不确定性。尽管磷灰石在重矿物中的含量十分低,在搬运过程中也容易出现磨蚀,在大型河流物源示踪研究中会存在代表性不强的现象。但在大河流域的个别流域,比如流域内存在磷灰石成分特别高的母岩,或者不同支流流域中磷灰石含量差异巨大等情况,可以起到很好的物源示踪效果[3435]。分析河流下游或者沉积盆地中的碎屑磷灰石的原位地球化学元素组成,将其与上游河流或潜在源区进行对比,从而建立源汇关系。近年来,磷灰石这一物源示踪方法被广泛应用于河流物源示踪[4042]、盆地古流向重建[36]等方面。但在长江流域这项工作还未开展。因而,我们对长江上游主要干支流开展碎屑磷灰石原位微量元素和Sr同位素分析,将金沙江、大渡河、岷江、嘉陵江支流与丰都段长江干流的结果进行对比,来探索这一方法在长江上游物源示踪研究的可行性。

  • 长江发源于青藏高原的唐古拉山脉,在上海市崇明岛以东注入东海,连接了地球上最高的高原和最大的大洋,全长约6 300 km,流域面积约1.8×106 km2,是亚洲最大河流。从源头到宜昌是其上游河段。伴随着晚新生代以来青藏高原的隆升,在亚洲东亚和南亚季风气候控制下,长江流域产生并携带巨量的水沙进入太平洋西岸陆架海,对流域生态环境和边缘海的海洋环境产生重大影响,在全球变化中扮演重要角色,是国内外众多重大研究计划的靶区[4,4344]

    宜昌以上长江流域面积为1.0×106 km2,1956—2007年的年均径流量达到4.3×1011 m3,年均输沙量为4.5×108 t[45]。长江上游的四大支流金沙江(图2)、岷江(包含大渡河)、嘉陵江和乌江流域面积分别为5×105 km2、2.2×105 km2、1.6×105 km2、0.87×105 km2,总面积8.8×105 km2,占长江上游流域面积的87.9%。金沙江年均输沙量为2.4×108 t,占长江宜昌水文站的54.2%。岷江年输沙量为0.47×108 t,占宜昌水文站的10.4%。嘉陵江年输沙量(1.1×108 t)占宜昌站的24.1%。乌江流域是长江南岸最大支流,但主要流经云贵高原的喀斯特高山地区,与上述河流相比,河流流域面积和年均输沙量小(0.05×108 t),占宜昌站的5.6%。因而乌江并不是宜昌以上长江干流的主要物质输送河流,本次研究未对其开展样品分析。

    Figure 2.  Column chart of basin area and mean sediment discharge 1956⁃2007 in the upper reaches of the Yangtze River (data from reference [45])

  • 对宜昌以上长江干支流进行样品采集,每个点大约采集3~5 kg样品(图1)。为了采样更具有代表性,每一个样品由多个采样点组成,同时避免人为污染源。金沙江样品在宜宾市上游金沙江干流河漫滩采集(28°44′36″ N,104°35′50″ E)。大渡河样品采自白岩坎镇河漫滩(29°32′46″ N,103°44′18″ E),岷江样品采自乐山市岷江下游河漫滩(29°37′44″ N,103°45′11″ E)。嘉陵江干流河漫滩样品采自施家梁镇(29°47′36″ N,106°28′25″ E)。长江上游干流样品采自丰都河漫滩(29°52′30″ N,107°27′33″ E)。上述样品主要采集砂级沉积物。

    将野外采集回来的碎屑样品经重砂分析、磁性分选等一系列过程,将磷灰石分离出来,并在双目显微镜下进行人工挑选提纯。每个样品随机挑选>300颗制成环氧树脂靶,并对靶片进行表面抛光处理。然后对所有样品进行背散射图像拍摄,圈定磷灰石颗粒的分析位置,避开包裹体和裂隙部位,提高分析精度。

  • 磷灰石原位微量元素和Sr同位素分析在南京宏创地质勘查技术服务有限公司微区分析实验室使用激光剥蚀—电感耦合等离子体质谱仪(LA-ICPMS)完成。激光剥蚀平台采用Resolution SE型193 nm深紫外激光剥蚀进样系统(Applied Spectra,美国),配备S155型双体积样品池。质谱仪采用Agilent 7900型电感耦合等离子体质谱仪(Agilent,美国),采用束斑直径50 μm、剥蚀频率10 Hz、能量密度3.5 J/cm2、扫描速度3 μm/s的激光参数剥蚀NIST 612,调节气流以获得高信号强度(238U约为6×105 cps)、低氧化物产率(ThO/Th<0.2%)。选用100 μm束斑线扫NIST 610对待测元素进行P/A调谐。磷灰石样品固定在环氧树脂靶上,抛光后在超纯水中超声清洗,分析前用分析级甲醇擦拭样品表面。采用5个激光脉冲对每个剥蚀区域进行预剥蚀(剥蚀深度~0.3 μm),以去除样品表面可能的污染。在束斑直径50 μm、剥蚀频率5 Hz、能量密度2 J/cm2的激光条件下分析样品。数据处理采用Iolite程序[46],以NIST 610 作为外标,43Ca作为内标计算微量元素含量,内标值假定化学计量式。

    采用L1、L2、L4、L4、H1、H2和H3法拉第杯组合接收Kr、Rb、Er、Yb和Sr相关质量数的信号。标准溶液NBS 987的87Sr/86Sr测定值为0.710 245±0.000 025,与TIMS测定值0.710 236在不确定度范围内一致[47]。测量前,测定并校正法拉第杯的电子噪音背景,以及放大器的接收增益。在束斑直径50 μm、剥蚀频率8 Hz、能量密度6 J/cm2的激光条件下分析样品。通常采集20 s的气体空白,35~40 s的信号区间,信号积分时间0.262 s。剔除88Sr信号强度低于0.35 V低信号点以及超出两倍标准偏差的异常点。使用86Sr/88Sr=0.119 4,按指数规律对其他同位素比值的仪器质量分馏进行在线校正。每隔10~15个样品测试两次Durango磷灰石标样,监控仪器状态。

    磷灰石微量元素含量可直接使用非矩阵多维标度MDS(Multidimensional Scaling)统计分析[48],它是基于K-S统计方法,利用数据之间的相似性对数据进行成分分析,这种相似性分析早已被广泛应用到了碎屑锆石U-Pb年龄、磷灰石微量元素组成、重矿物数据分析中,获得了较好的效果。因此,我们采用该方法对宜昌以上长江干支流碎屑磷灰石的微量元素组成进行MDS统计分析,进行磷灰石微量元素含量相似/向异性分析,从而判断各个支流的磷灰石组成与丰都段长江干流的磷灰石的相关关系。

  • 磷灰石颗粒的阴极发光图像如图3所示。金沙江、大渡河、岷江、嘉陵江和丰都段长江干流的碎屑磷灰石颗粒以次棱角和棱角长柱状为主,说明这些磷灰石没有经历多期次的沉积循环过程,反映了各自流域内最近磷灰石颗粒的外形特征。磷灰石微量元素和Sr同位素分析结果见表1。可以看出,金沙江的磷灰石P元素含量,尤其是平均值(178 486)与大渡河、岷江、嘉陵江和长江干流明显不同。金沙江的磷灰石Sr元素平均值含量为1 006×10-6,超过其他各个河流,而其稀土元素总量(∑REE)又是本次所有河流中最低的(506.5×10-6)。在87Sr/86Sr比值结果中,来自龙门山的三条河流(大渡河、岷江和嘉陵江)要比金沙江和丰都长江干流的高。因而,总体来说金沙江下游的磷灰石原位微量元素组成与龙门山的河流和长江干流明显不同。

    Figure 3.  In situ geochemical analysis of apatite cathodoluminescence images

    样品元素 P/×10-6 Sc/×10-6 Sr/×10-6 ∑REE/×10-6 87Sr/86Sr比值
    金沙江(n=60) 最小值 174 300 1.3 99.7 52.1 0.702 80
    最大值 195 000 10.8 3 503 6 090.5 0.714 42
    平均值 178 486 2.1 1 006 506.5 0.709 43
    大渡河(n=60) 最小值 183 600 1.3 31.3 16.5 0.704 45
    最大值 192 300 2.2 3 114 4 822 0.792 35
    平均值 187 610 1.6 486 1 512.7 0.717 21
    岷江(n=60) 最小值 178 600 1.5 82.6 19.2 0.704 19
    最大值 193 100 4.1 5 592 20 879 0.761 44
    平均值 188 244 1.9 748.9 2 461.4 0.710 36
    嘉陵江(n=60) 最小值 168 300 1.3 58.4 61.9 0.703 23
    最大值 191 200 16.9 5 816 7 744.2 0.779 79
    平均值 186 237 2.1 657.5 2 470.7 0.714 97
    长江(n=60) 最小值 169 100 1.3 81.1 20.6 0.703 62
    最大值 191 800 6.2 13 220 7 742.7 0.738 37
    平均值 187 138 1.7 751.5 2 367.9 0.709 84

    Table 1.  Descriptive statistics of in situ geochemical data for apatite grains

    在P元素和Sc元素含量(图4a)、P元素含量和87Sr/86Sr比值二维散点图中(图4b),金沙江的分布区域与大渡河、岷江和嘉陵江的明显不同,而丰都段长江干流样品与大渡河、岷江和嘉陵江样品彼此间形成重叠区域。在∑REE和P元素含量二维散点图中(图4c),金沙江下游的磷灰石颗粒分布区域没有和其他流域重叠在一起。在Sr元素含量和87Sr/86Sr比值形成的二维散点图中(图4d),尽管各个流域的分布区域相对集中,但依然能看到金沙江形成特定的分布区域。

    Figure 4.  Two⁃dimensional scatter plots of (a) P and Sc; (b) P and 87Sr/86Sr; (c) ∑REE and P; (d) Sr and 87Sr/86Sr contents of fluvial detrital apatite grains

    在MDS分析结果中(图5),金沙江的磷灰石P元素含量与其他流域的磷灰石P元素含量判别距离较远,而嘉陵江、岷江和大渡河的磷灰石P元素含量与丰都段长江干流具有相近性。据此判断,长江上游干流的磷灰石主要来自发源于龙门山的河流。

    Figure 5.  MDS identification diagram of apatite grains

  • 磷灰石富集P 和Sr等不相容元素,其含量变化由全岩SiO2含量和所在熔体的分配系数控制,因而母岩的分异程度是磷灰石化学组成的主要控制因素[49]。此外,磷灰石中的87Rb经过β-衰变后变成87Sr,在剥蚀、搬运和沉积过程中最初的87Sr/86Sr比值不发生变化[33]。而这一比值在不同地区、不同时代岩体有明显差异,这是将其运用于大河物源示踪研究的基础。稀土元素(REE)由15个镧系元素(La~Lu)组成,由于它们具有相似的物理和化学性质,在地质体中都倾向于成组出现,在自然界REE的分配形成存在差异[5051],这一差异也被广泛用来开展沉积物物源示踪研究。因而,将磷灰石的P、Sr和REE等元素的含量或比值与其他元素做散点图的方法用于物源示踪研究最为普遍[4951]。对比碎屑磷灰石原位地球化学组成发现,丰都段长江干流的磷灰石颗粒的P、Sr、Sc和∑REE元素含量与大渡河、岷江和嘉陵江的样品存在重叠,而与金沙江下游的磷灰石颗粒分布区域明显不同(图4)。另外,由于P元素是磷灰石的特征元素,对其进行MDS相似/向异性分析更具有代表性。金沙江下游磷灰石与丰都段长江干流磷灰石的P元素组成判别距离较远,而丰都段长江干流磷灰石P元素组成和嘉陵江、岷江和大渡河的P元素组成判别距离相近(图5)。这说明丰都段长江物质主要来自发源于龙门山的河流,而金沙江对其碎屑物质的贡献不大。但长江流域的沉积物以轻矿物为主,作为重矿物的磷灰石所占比例低,将其用于长江水系的物源示踪研究时,需要考虑这一影响因素。

    从石英宇成核素10Be物源示踪和地表侵蚀速率结果[26,52]来看(图6a),金沙江流域的侵蚀速率较低,长江上游干流物质主要来自嘉陵江、大渡河和岷江;Vezzoli et al.[27]的重矿物组合和主成分分析结果表明嘉陵江成为长江上游干流碎屑物质的主要输送河流。长江上游黏土矿物物源示踪结果显示,大渡河、嘉陵江、岷江对长江干流的物质贡献大[31]。上述结果与水文站观察到的输沙量结果吻合[45]图6b)。尽管碎屑锆石U-Pb年龄[53]和磁铁矿化学组成[54]物源示踪结果表明,长江上游干流的碎屑物质除了主要来自嘉陵江外,金沙江的作用也不可忽视。但考虑到随着金沙江中下游溪洛渡和向家坝水库的建设并投入使用,其输沙量减少至0.02×108 t[55],泥沙主体部分被拦截在这些梯级水库内部,导致其输沙量甚至已经低于乌江(0.05×108 t)[45],对长江干流的泥沙贡献率显著下降。He et al.[53]分析的锆石U-Pb年龄封闭温度高,具有强抗风化性,先前保存于河床的碎屑锆石后期经历多期次沉积再循环过程;王中波等[54]的采样时间早于金沙江下游溪洛渡和向家坝水库投入使用的时间(2012年)。因而,长江干流依然能出现金沙江以前输入的物质信号。此外,尽管嘉陵江[56]、岷江[57](包含大渡河)的输沙量由于人类活动、气候变化和修建水库显著下降,但下降的幅度低于金沙江,嘉陵江和岷江依然有相对充足的碎屑物质供给。嘉陵江及岷江进入丰都段长江的距离远小于金沙江,发源于龙门山的河流输入的碎屑物质“稀释”了金沙江的碎屑物质信号,导致丰都段长江干流现代河流物质主要受发源于龙门山河流的影响。因而,利用长江流域现代河流碎屑磷灰石原位地球化学组成,可以很好地区分龙门山和青藏高原东南缘的河流物质信号。利用这一方法在江汉盆地的新生代地层中识别金沙江的物质信号,可能具有很好的物源示踪效果,但该方法无法进一步有效区分发源于龙门山的各条河流的物质信号。因此,在今后利用该方法开展长江流域物源示踪研究时,结合其他方法可以达到精准建立长江源汇关系的研究目的。

    Figure 6.  (a) Map of sampling points in the study area, quartz 10Be[26,52], heavy minerals[27], zircon U⁃Pb age[54]; (b) Variation of annual runoff and sediment discharge in Jinsha River (modified from reference [45])

  • 通过对长江上游干支流开展碎屑磷灰石原位微量元素和87Sr/86Sr比值分析,在二维散点图中发现金沙江的分布区域与大渡河、岷江和嘉陵江的明显不同,而丰都段长江干流样品与大渡河、岷江和嘉陵江样品彼此间形成重叠区域;进一步结合MDS判断图结果揭示,丰都段长江干流的物质主要来自龙门山。磷灰石原位地球化学分析方法可以有效区分发源于青藏高原东南的金沙江和发源于龙门山的大渡河、岷江和嘉陵江的物质。但其无法进一步有效区分发源于龙门山的各条河流的物质信号。建议将这一方法与其他物源示踪方法联合使用,可以有效建立长江的源汇关系。

Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return