[1]
|
王成善,王天天,陈曦,等. 深时古气候对未来气候变化的启示[J]. 地学前缘,2017,24(1):1-17.
Wang Chengshan, Wang Tiantian, Chen Xi, et al. Paleoclimate implications for future climate change[J]. Earth Science Frontiers, 2017, 24(1): 1-17. |
[2]
|
Hesselbo S P, Gröcke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event[J]. Nature, 2000, 406(6794): 392-395. |
[3]
|
Gómez J J, Goy A, Canales M L. Seawater temperature and carbon isotope variations in belemnites linked to mass extinction during the Toarcian (Early Jurassic) in central and northern Spain. Comparison with other European sections[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 258(1/2): 28-58. |
[4]
|
Müller T, Jurikova H, Gutjahr M, et al. Ocean acidification during the Early Toarcian extinction event: Evidence from boron isotopes in brachiopods[J]. Geology, 2020, 48(12): 1184-1188. |
[5]
|
Cecca F, Macchioni F. The two Early Toarcian (Early Jurassic) extinction events in ammonoids[J]. Lethaia, 2004, 37(1): 35-56. |
[6]
|
Dera G, Neige P, Dommergues J L, et al. High-resolution dynamics of Early Jurassic marine extinctions: The case of Pliensbachian⁃Toarcian ammonites (Cephalopoda)[J]. Journal of the Geological Society, 2010, 167(1): 21-33. |
[7]
|
Gómez J J, Arias C. Rapid warming and ostracods mass extinction at the Lower Toarcian (Jurassic) of central Spain[J]. Marine Micropaleontology, 2010, 74(3/4): 119-135. |
[8]
|
邓胜徽,卢远征,樊茹,等. 早侏罗世Toarcian期大洋缺氧事件及其在陆地生态系统中的响应[J]. 地球科学:中国地质大学学报,2012,37(增刊2):23-38.
Deng Shenghui, Lu Yuanzheng, Fan Ru, et al. Toarcian (Early Jurassic) oceanic anoxic event and the responses in terrestrial ecological system[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(Suppl.2): 23-38. |
[9]
|
邓胜徽,卢远征,赵怡,等. 中国侏罗纪古气候分区与演变[J]. 地学前缘,2017,24(1):106-142.
Deng Shenghui, Lu Yuanzheng, Zhao Yi, et al. The Jurassic palaeoclimate regionalization and evolution of China[J]. Earth Science Frontiers, 2017, 24(1): 106-142. |
[10]
|
Jenkyns H C, Clayton C J. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic[J]. Sedimentology, 1986, 33(1): 87-106. |
[11]
|
Jenkyns H C. The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary, and geochemical evidence[J]. American Journal of Science, 1988, 288(2): 101-151. |
[12]
|
Jenkyns H C, Clayton C J. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: Chemostratigraphic signals and the Early Toarcian anoxic event[J]. Sedimentology, 1997, 44(4): 687-706. |
[13]
|
Xu W M, Ruhl M, Jenkyns H C, et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event[J]. Nature Geoscience, 2017, 10(2): 129-134. |
[14]
|
Jin X, Shi Z Q, Baranyi V, et al. The jenkyns event (Early Toarcian OAE) in the Ordos Basin, North China[J]. Global and Planetary Change, 2020, 193: 103273. |
[15]
|
Liu M, Sun P, Them II T R, et al. Organic geochemistry of a lacustrine shale across the Toarcian Oceanic Anoxic Event (Early Jurassic) from NE China[J]. Global and Planetary Change, 2020, 191: 103214. |
[16]
|
高瑞珍. 柴北缘早侏罗世古气候演化对Toarcian大洋缺氧事件的响应[D].河南:河南理工大学,2017:12-87.
Gao Ruizhen.Paleoclimatic evolution of the Early Jurassic in the northern Qaidam Basin and its response to the Toarcian ocean anoxic events[D],Henan: Henan Polytechnic University,2017:12-87 |
[17]
|
王招明,钟端,赵培荣,等. 库车前陆盆地露头区油气地质[M]. 北京:石油工业出版社,2004.
Wang Zhaoming, Zhong Duan, Zhao Peirong, et al. Petroleum geology of outcrops areas in Kuche Foreland Basin[M]. Beijing: Petroleum Industry Press, 2004. |
[18]
|
罗正江,吴新莹,王睿,等. 库车孢型体Kuqaia研究的新认识[J]. 新疆石油地质,2003,24(5):424-426.
Luo Zhengjiang, Wu Xinying, Wang Rui, et al. New understanding of Kuqaia sporomorph[J]. Xinjiang Petroleum Geology, 2003, 24(5): 424-426. |
[19]
|
刘兆生. 塔里木盆地北缘侏罗纪孢粉组合[J]. 微体古生物学报,1998,15(2):144-165.
Liu Zhaosheng. Jurassic palynological assemblages from the northern margin in the Tarim Basin of Xinjiang, NW China[J]. Acta Micropalaeontologica Sinica, 1998, 15(2): 144-165. |
[20]
|
张望平,李永安. 新疆拜城阿合组、阳霞组及克孜勒努尔组的孢粉组合[J]. 新疆地质,1990,8(3):256-271.
Zhang Wangping, Li Yong’an. Sporopollen assemblage of Ahe, Yengisar and Kezilenur Formations in Beicheng county, Xinjiang[J]. Xinjiang Geology, 1990, 8(3): 256-271. |
[21]
|
吴朝东,林畅松,申延平,等. 库车坳陷侏罗纪沉积环境和层序地层分析[J]. 沉积学报,2002,20(3):400-407.
Wu Chaodong, Lin Changsong, Shen Yanping, et al. Sequence stratigraphy and depositional environments of the Kuche Depression[J]. Acta Sedimentologica Sinica, 2002, 20(3): 400-407. |
[22]
|
Xu W M, Ruhl M, Jenkyns H C, et al. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)[J]. Earth and Planetary Science Letters, 2018, 484: 396-411. |
[23]
|
Fox C P, Cui X Q, Whiteside J H, et al. Molecular and isotopic evidence reveals the end-Triassic carbon isotope excursion is not from massive exogenous light carbon[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30171-30178. |
[24]
|
Storm M S, Hesselbo S P, Jenkyns H C, et al. Orbital pacing and secular evolution of the Early Jurassic carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(8): 3974-3982. |
[25]
|
Moulin M, Fluteau F, Courtillot V, et al. Eruptive history of the Karoo lava flows and their impact on Early Jurassic environmental change[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(2): 738-772. |
[26]
|
Percival L M E, Cohen A S, Davies M K, et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change[J]. Geology, 2016, 44(9): 759-762. |
[27]
|
Rodrigues B, Silva R L, Reolid M, et al. Sedimentary organic matter and δ13CKerogen variation on the southern Iberian palaeomargin (Betic Cordillera, SE Spain) during the Latest Pliensbachian⁃Early Toarcian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 534: 109342. |
[28]
|
Dera G, Donnadieu Y. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event[J]. Paleoceanography, 2012, 27(2): PA2211. |
[29]
|
Cohen A S, Coe A L, Harding S M, et al. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering[J]. Geology, 2004, 32(2): 157-160. |
[30]
|
Them T R, Gill B C, Selby D, et al. Evidence for rapid weathering response to climatic warming during the Toarcian Oceanic Anoxic Event[J]. Scientific Reports, 2017, 7: 5003. |
[31]
|
Baker S J, Hesselbo S P, Lenton T M, et al. Charcoal evidence that rising atmospheric oxygen terminated Early Jurassic ocean anoxia[J]. Nature Communications, 2017, 8: 15018. |
[32]
|
Hesselbo S P, Pieńkowski G. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin)[J]. Earth and Planetary Science Letters, 2011, 301(1/2): 365-372. |
[33]
|
De Lena L F, Taylor D, Guex J, et al. The driving mechanisms of the carbon cycle perturbations in the Late Pliensbachian (Early Jurassic)[J]. Scientific Reports, 2019, 9(1): 1-12. |
[34]
|
Krencker F N, Fantasia A, Danisch J, et al. Two-phased collapse of the shallow-water carbonate factory during the Late Pliensbachian⁃Toarcian driven by changing climate and enhanced continental weathering in the northwestern Gondwana Margin[J]. Earth-Science Reviews, 2020, 208: 103254. |
[35]
|
Remírez M N, Algeo T J. Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event[J]. Earth-Science Reviews, 2020, 209: 103283. |
[36]
|
Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene[J]. Paleoceanography, 1995, 10(6): 965-971. |
[37]
|
Qi M H, Lidorikis E, Rakich P T, et al. A three-dimensional optical photonic crystal with designed point defects[J]. Nature, 2004, 429(6991): 538-542. |
[38]
|
Arens N C, Jahren A H, Amundson R. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide?[J]. Paleobiolog, 2000, 26(1): 137-164. |
[39]
|
Rosales I, Robles S, Quesada S. Elemental and oxygen isotope composition of Early Jurassic belemnites: Salinity vs. temperature signals[J]. Journal of Sedimentary Research, 2004, 74(3): 342-354. |