Advanced Search
Volume 41 Issue 2
Apr.  2023
Turn off MathJax
Article Contents

WANG JinYi, JIN ZhenKui, WANG XinYao, REN YiLin, CHENG Hao, JIAO PanPan. Factors Influencing Reservoir Quality in Nonmarine Fine-grained Rocks: A case study of the Lower Jurassic in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 646-659. doi: 10.14027/j.issn.1000-0550.2021.092
Citation: WANG JinYi, JIN ZhenKui, WANG XinYao, REN YiLin, CHENG Hao, JIAO PanPan. Factors Influencing Reservoir Quality in Nonmarine Fine-grained Rocks: A case study of the Lower Jurassic in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 646-659. doi: 10.14027/j.issn.1000-0550.2021.092

Factors Influencing Reservoir Quality in Nonmarine Fine-grained Rocks: A case study of the Lower Jurassic in the Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.092
Funds:

National Science and Technology Major Project 2017ZX05036004-002

  • Received Date: 2021-02-04
  • Accepted Date: 2021-09-03
  • Rev Recd Date: 2021-07-06
  • Available Online: 2021-09-03
  • Publish Date: 2023-04-10
  • Reservoirs in nonmarine and marine fine-grained rocks differ in both material composition and sedimentary environment, and the factors influencing reservoir quality are also different. In this study of the Lower Jurassic in the Sichuan Basin, the methods used were whole rock analysis of X-ray diffraction (XRD), He permeability, elemental geochemistry, organic geochemical analysis, scanning electron microscopy (SEM), analysis of nonmarine fine-grained rock composition, reservoir space types and microstructure. The factors controlling the reservoir quality of nonmarine fine-grained rocks are discussed. It is shown that the main minerals of the Lower Jurassic fine-grained rocks in the Sichuan Basin are clay minerals, quartz and carbonate minerals. The contents of clay minerals and quartz are high in the whole section, but the carbonate mineral content is locally enriched. The nonmarine fine-grained rocks mainly consist of five rock types: shale, shell mudstone, silty mudstone, siltstone and shell limestone. The shale and shell mudstone have high organic matter content and good shale gas reservoir physical properties. The reservoir space of the terrestrial fine-grained rock reservoir mainly consists of clay mineral interlamellar pores and microfractures, but fewer organic pores. The reservoir quality is mainly affected by sedimentary environment and diagenesis, and has little relation to its composition. Semi-deep lake conditions control the distribution of organic-rich fine-grained rocks; a reducing depositional environment of low salinity, humidity and sufficient provenance is conducive to the development of pore space in fine-grained rocks and provides the basic material for the formation of reservoirs. The interlaminar pores in clay minerals are preserved by overburden pressure and provide storage space for shale gas enrichment.
  • [1] Jiang F J, Chen D, Wang Z F, et al. Pore characteristic analysis of a lacustrine shale: A case study in the Ordos Basin, NW China[J]. Marine and Petroleum Geology, 2016, 73: 554-571.
    [2] 郭旭升,胡东风,李宇平,等. 海相和湖相页岩气富集机理分析与思考:以四川盆地龙马溪组和自流井组大安寨段为例[J]. 地学前缘,2016,23(2):18-28.

    Guo Xusheng, Hu Dongfeng, Li Yuping, et al. Analyses and thoughts on accumulation mechanisms of marine and lacustrine shale gas: A case study in shales of Longmaxi Formation and Da’anzhai section of Ziliujing Formation in Sichuan Basin[J]. Earth Science Frontiers, 2016, 23(2): 18-28.
    [3] 杨智,侯连华,陶士振,等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发,2015,42(5):555-565.

    Yang Zhi, Hou Lianhua, Tao Shizhen, et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565.
    [4] 党伟,张金川,黄潇,等. 陆相页岩含气性主控地质因素:以辽河西部凹陷沙河街组三段为例[J]. 石油学报,2015,36(12):1516-1530.

    Dang Wei, Zhang Jinchuan, Huang Xiao, et al. Main-controlling geological factors of gas-bearing property of continental shale gas: A case study of member 3rd of Shahejie Formation in western Liaohe Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1516-1530.
    [5] 罗鹏,吉利明. 陆相页岩气储层特征与潜力评价[J]. 天然气地球科学,2013,24(5):1060-1068.

    Luo Peng, Ji Liming. Reservoir characteristics and potential evaluation of continental shale gas[J]. Natural Gas Geoscience, 2013, 24(5): 1060-1068.
    [6] 何发岐,朱彤. 陆相页岩气突破和建产的有利目标:以四川盆地下侏罗统为例[J]. 石油实验地质,2012,34(3):246-251.

    He Faqi, Zhu Tong. Favorable targets of break through and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 246-251.
    [7] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [8] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [9] 蔡苏阳,肖七林,朱卫平,等. 川南龙马溪组页岩储层特征及主控因素[J]. 沉积学报,2021,39(5):1100-1110.

    Cai Suyang, Xiao Qilin, Zhu Weiping, et al. Shale reservoir characteristics and main controlling factors of Longmaxi Formation, southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021,39(5):1100-1110.
    [10] 曹涛涛,宋之光,王思波,等. 下扬子地台二叠系页岩储集物性特征及控制因素[J]. 天然气地球科学,2015,26(2):341-351.

    Cao Taotao, Song Zhiguang, Wang Sibo, et al. Physical property characteristics and controlling factors of Permian shale reservoir in the Lower Yangtze Platform[J]. Natural Gas Geoscience, 2015, 26(2): 341-351.
    [11] 郭旭升,李宇平,刘若冰,等. 四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业,2014,34(6):9-16.

    Guo Xusheng, Li Yuping, Li Ruobing, et al. Characteristics and controlling factors of micro-pore structures of Longmaxi shale play in the Jiaoshiba area, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(6): 9-16.
    [12] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
    [13] 徐杰,高潮,刘刚. 鄂尔多斯盆地陆相页岩储层微观孔隙结构特征及发育控制因素[J]. 科技通报,2020,36(2):17-23.

    Xu Jie, Gao Chao, Liu Gang. Characteristics and controlling factors of microscopic pore structure of continental shale gas in Ordos Basin[J]. Bulletin of Science and Technology, 2020, 36(2): 17-23.
    [14] Jadoon Q K, Roberts E M, Henderson B, et al. Lithological and facies analysis of the Roseneath and Murteree shales, Cooper Basin, Australia[J]. Journal of Natural Gas Science and Engineering, 2016, 37: 138-168.
    [15] 杨晓萍,赵文智,邹才能,等. 低渗透储层成因机理及优质储层形成与分布[J]. 石油学报,2007,28(4):57-61.

    Yang Xiaoping, Zhao Wenzhi, Zou Caineng, et al. Origin of low-permeability reservoir and distribution of favorable reservoir[J]. Acta Petrolei Sinica, 2007, 28(4): 57-61.
    [16] 耿一凯,金振奎,赵建华,等. 川东地区龙马溪组页岩黏土矿物组成与成因[J]. 天然气地球科学,2016,27(10):1933-1941.

    Geng Yikai, Jin Zhenkui, Zhao Jianhua, et al. Composition and origin of clay minerals in the Lower Silurian Longmaxi Formation in eastern Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(10): 1933-1941.
    [17] 张顺. 东营凹陷页岩储层成岩作用及增孔和减孔机制[J]. 中国矿业大学学报,2018,47(3):562-578.

    Zhang Shun. Diagenesis and mechanism of shale reservoir pore increase and reduction in Dongying Sag[J]. Journal of China University of Mining & Technology, 2018, 47(3): 562-578.
    [18] 朱彤,王烽,俞凌杰,等. 四川盆地页岩气富集控制因素及类型[J]. 石油与天然气地质,2016,37(3):399-407.

    Zhu Tong, Wang Feng, Yu Lingjie, et al. Controlling factors and types of shale gas enrichment in the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(3): 399-407.
    [19] 朱彤, 包书景, 王烽. 四川盆地陆相页岩气形成条件及勘探开发前景[J]. 天然气工业, 2012, 32(9): 23-28.

    Zhu Tong, Bao Shujing, Wang Feng. Pooling conditions of non-marine shale gas in the Sichuan Basin and its exploration and development prospect[J]. Natural Gas Industry, 2012, 32(9): 23-28.
    [20] 李英强,何登发. 四川盆地及邻区早侏罗世构造—沉积环境与原型盆地演化[J]. 石油学报,2014,35(2):219-232.

    Li Yingqiang, He Dengfa. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232.
    [21] Whitaker J H M. ‘Gutter casts’, a new name for scour-and-fill structures: With examples from the Llandoverian of Ringerike and Malmöya, southern Norway[J]. Norsk Geologisk Tidsskrift, 1973, 53: 403-417.
    [22] 张林晔,李钜源,李政,等. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J]. 地球科学进展,2014,29(6):700-711.

    Zhang Linye, Li Juyuan, Li Zheng, et al. Advances in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J]. Advances in Earth Science, 2014, 29(6): 700-711.
    [23] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [24] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 31483—2015 页岩气地质评价方法 [S]. 北京:中国标准出版社,2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Geological evaluation methods for shale gas [S]. Beijing: Standards Press of China, 2015.
    [25] Liang C, Jiang Z X, Zhang C M, et al. The shale characteristics and shale gas exploration prospects of the Lower Silurian Longmaxi shale, Sichuan Basin, South China[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 636-648.
    [26] Liang C, Jiang Z X, Cao Y C, et al. Sedimentary characteristics and paleoenvironment of shale in the Wufeng-Longmaxi Formation, north Guizhou province, and its shale gas potential[J]. Journal of Earth Science, 2017, 28(6): 1020-1031.
    [27] 强子同,杨植江,王建民,等. 大安寨石灰岩的成岩作用与成岩圈闭[J]. 地球化学,1981,10(3):232-241,318.

    Qiang Zitong, Yang Zhijiang, Wang Jianmin, et al. Diagenesis and diagenetic trap of Daanzhai limestone[J]. Geochimica, 1981, 10(3): 232-241, 318.
    [28] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
    [29] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764.
    [30] 黄思钦. 四川盆地陆相烃源岩生物标志化合物特征及应用[D]. 成都:西南石油大学,2016:10-25.

    Huang Siqin. Characteristics and application of biomarkers in terrestrial source rocks of Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2016: 10-25.
    [31] 何柳,蔡忠贤. 涪陵地区大安寨段页岩地球化学和储集特征变化规律[J]. 长江大学学报(自科版),2016,13(32):7-13.

    He Liu, Cai Zhongxian. The change rule of geochemistry and reservoir characteristics of shale in Da’anzhai section of Fuling area[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(32): 7-13.
    [32] 李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.

    Li Yanfang, Shao Deyong, Haigang Lü, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483.
    [33] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale member of the Dennis limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99(1/2/3): 65-82.
    [34] 梅水泉. 岩石化学在湖南前震旦系沉积环境及铀来源研究中的应用[J]. 湖南地质,1988,7(3):25-31,49.

    Mei Shuiquan. Application of rock chemistry in the study of presinian sedimentary environment and the source of uranium mineralization in Hunan province[J]. Hunan Geology, 1988, 7(3): 25-31, 49.
    [35] 郭艳琴,余芳,李洋,等. 鄂尔多斯盆地东部石盒子组盒8沉积环境的地球化学表征[J]. 地质科学,2016,51(3):872-890.

    Guo Yanqin, Yu Fang, Li Yang, et al. Geochemical characteristics of sedimentary environment on He 8 member of Shihezi Formation in eastern Ordos Basin[J]. Chinese Journal of Geology, 2016, 51(3): 872-890.
    [36] 田洋,赵小明,王令占,等. 重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J]. 沉积学报,2014,32(6):1035-1045.

    Tian Yang, Zhao Xiaoming, Wang Lingzhan, et al. Geochemical characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1035-1045.
    [37] Schwarzkopf T A. Model for prediction of organic carbon content in possible source rocks[J]. Marine and Petroleum Geology, 1993, 10(5): 478-492.
    [38] Xu Q, Liu B, Ma Y S, et al. Controlling factors and dynamical formation models of lacustrine organic matter accumulation for the Jurassic Da'anzhai member in the central Sichuan Basin, southwestern China[J]. Marine and Petroleum Geology, 2017, 86: 1391-1405.
    [39] Algeo T J, Kuwahara K, Sano H, et al. Spatial variation in sediment fluxes, redox conditions, and productivity in the PermianTriassic Panthalassic Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 65-83.
    [40] Dymond J, Collier R. Particulate barium fluxes and their relationships to biological productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1996, 43(4/5/6): 1283-1308.
    [41] Paytan A, Griffith E M. Marine barite: Recorder of variations in ocean export productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(5/6/7): 687-705.
    [42] 师晶,黄文辉,吕晨航,等. 鄂尔多斯盆地临兴地区上古生界泥岩地球化学特征及地质意义[J]. 石油学报,2018,39(8):876-889.

    Shi Jing, Huang Wenhui, Chenhang Lü, et al. Geochemical characteristics and geological significance of the Upper Paleozoic mudstones from Linxing area in Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(8): 876-889.
    [43] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

    Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
    [44] 陈亮,刘春莲,庄畅,等. 三水盆地古近系下部湖相沉积的稀土元素地球化学特征及其古气候意义[J]. 沉积学报,2009,27(6):1155-1162.

    Chen Liang, Liu Chunlian, Zhuang Chang, et al. Rare earth element records of the Lower Paleogene sediments in the Sanshui Basin and their paleoclimate implications[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1155-1162.
    [45] 陈荷立,汤锡元. 试论泥岩压实作用与油气初次运移[J]. 石油与天然气地质,1981(2):114-122.

    Chen Holi, Tang Hsiyuan. A study of clay compaction and primary migration of oil and gas[J]. Oil & Gas Geology, 1981(2): 114-122.
    [46] 罗群. 泥岩压实动态分析法定量评价石油初次运移[J]. 石油勘探与开发,2002,29(2):71-73.

    Luo Qun. Quantitatively evaluating hydrocarbon primary migration by mudstone compaction dynamic analysis[J]. Petroleum Exploration and Development, 2002, 29(2): 71-73.
    [47] Magara K. Compaction and fluid migration: Practical petroleum geology[M]. Amsterdam: Elsevier, 1978.
    [48] Luo X R, Wang Z M, Zhang L Q, et al. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 91(8): 1123-1139.
    [49] 李超,张立宽,罗晓容,等. 泥岩压实研究中有机质导致声波时差异常的定量校正方法[J]. 中国石油大学学报(自然科学版),2016,40(3):77-87.

    Li Chao, Zhang Likuan, Luo Xiaorong, et al. A quantitative method for revising abnormally high sonic data in rich-organic rock during compaction study[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(3): 77-87.
    [50] 李超,罗晓容,张立宽. 泥岩化学压实作用的超压响应与孔隙压力预测[J]. 中国矿业大学学报,2020,49(5):951-973.

    Li Chao, Luo Xiaorong, Zhang Likuan. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction[J]. Journal of China University of Mining & Technology, 2020, 49(5): 951-973.
    [51] 朱彤. 四川盆地陆相页岩油气富集主控因素及类型[J]. 石油实验地质,2020,42(3):345-354.

    Zhu Tong. Main controlling factors and types of continental shale oil and gas enrichment in Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(3): 345-354.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)  / Tables(4)

Article Metrics

Article views(181) PDF downloads(81) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-02-04
  • Revised:  2021-07-06
  • Accepted:  2021-09-03
  • Published:  2023-04-10

Factors Influencing Reservoir Quality in Nonmarine Fine-grained Rocks: A case study of the Lower Jurassic in the Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.092
Funds:

National Science and Technology Major Project 2017ZX05036004-002

Abstract: Reservoirs in nonmarine and marine fine-grained rocks differ in both material composition and sedimentary environment, and the factors influencing reservoir quality are also different. In this study of the Lower Jurassic in the Sichuan Basin, the methods used were whole rock analysis of X-ray diffraction (XRD), He permeability, elemental geochemistry, organic geochemical analysis, scanning electron microscopy (SEM), analysis of nonmarine fine-grained rock composition, reservoir space types and microstructure. The factors controlling the reservoir quality of nonmarine fine-grained rocks are discussed. It is shown that the main minerals of the Lower Jurassic fine-grained rocks in the Sichuan Basin are clay minerals, quartz and carbonate minerals. The contents of clay minerals and quartz are high in the whole section, but the carbonate mineral content is locally enriched. The nonmarine fine-grained rocks mainly consist of five rock types: shale, shell mudstone, silty mudstone, siltstone and shell limestone. The shale and shell mudstone have high organic matter content and good shale gas reservoir physical properties. The reservoir space of the terrestrial fine-grained rock reservoir mainly consists of clay mineral interlamellar pores and microfractures, but fewer organic pores. The reservoir quality is mainly affected by sedimentary environment and diagenesis, and has little relation to its composition. Semi-deep lake conditions control the distribution of organic-rich fine-grained rocks; a reducing depositional environment of low salinity, humidity and sufficient provenance is conducive to the development of pore space in fine-grained rocks and provides the basic material for the formation of reservoirs. The interlaminar pores in clay minerals are preserved by overburden pressure and provide storage space for shale gas enrichment.

WANG JinYi, JIN ZhenKui, WANG XinYao, REN YiLin, CHENG Hao, JIAO PanPan. Factors Influencing Reservoir Quality in Nonmarine Fine-grained Rocks: A case study of the Lower Jurassic in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 646-659. doi: 10.14027/j.issn.1000-0550.2021.092
Citation: WANG JinYi, JIN ZhenKui, WANG XinYao, REN YiLin, CHENG Hao, JIAO PanPan. Factors Influencing Reservoir Quality in Nonmarine Fine-grained Rocks: A case study of the Lower Jurassic in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(2): 646-659. doi: 10.14027/j.issn.1000-0550.2021.092
  • 随着对细粒岩油气勘探开发的不断深入,学者们发现我国不仅存在海相细粒岩层系,陆相和海陆过渡相细粒岩层系同样发育,三者总资源量达25.08×1012 m3,且资源量基本相当,各占三分之一[15]。前人通过老井复查和重新评价,在四川盆地元坝、涪陵、建南地区下侏罗统陆相细粒岩层位大安寨段、东岳庙段均获得良好的页岩油气显示和工业气流[6]

    细粒沉积物指的是颗粒直径小于0.062 5 mm的泥和粉砂级沉积物,包括长英质矿物、黏土矿物、碳酸盐矿物和有机物[78]。细粒岩包括泥岩和细粉砂岩,其中页岩为页理(水平层理)发育的泥岩。学者们通过研究海相细粒岩储层孔隙类型和微观结构,分析了海相页岩储层的控制因素,其认为富有机质页岩孔隙主要为有机孔和黏土矿物片间孔,其中有机孔主要受TOC含量控制,而黏土矿物片间孔受黏土矿物含量控制,且都呈正相关[911];Ross et al.[12]认为页岩气储层中黏土矿物具有较高的微孔隙体积和较大的比表面积,与前人研究海相页岩储层取得的结论相似;徐杰等[13]研究鄂尔多斯延长组陆相页岩储层时发现,有机碳含量和脆性矿物含量是控制纳米级孔隙发育的主要因素。从前人研究成果中不难发现,细粒岩储层质量可能受组成成分影响,包括黏土矿物、脆性矿物和有机质。

    除此之外,Jadoon et al.[14]研究澳大利亚Roseneath和Murteree湖相沉积环境时发现,富有机质页岩主要发育在风暴浪基面附近的半深湖和深湖环境;杨晓萍等[15]认为沉积环境为储层的形成提供了基础条件。同时,非常规储层之所以低孔低渗,很大程度是由于其独特的成岩作用决定的,尤其是成岩早期在压实作用下孔隙快速减小,胶结物占据孔隙空间大幅降低了油气流动性;耿一凯等[16]通过四川龙马溪海相页岩的组成成分和垂向变化,发现自生石英可以抑制地层压实,从而改善储集空间;张顺[17]根据东营凹陷古近系湖相页岩油储层成岩序列与孔隙演化的关系认为溶蚀作用和有机质生烃作用可以增加储层物性。

    由此可见前人在研究细粒岩储层质量的控制因素时,探讨了细粒岩组成成分、沉积环境和成岩作用,但多从单方面和两方面研究。因此,为准确地确定陆相细粒岩储层的主控因素,本次研究从陆相细粒岩的组成成分、沉积环境和成岩作用3个方面展开探讨,旨在通过分析四川盆地下侏罗统陆相细粒岩储层质量的主要控制因素,为陆相细粒岩储层的分布预测和油气勘探提供理论支撑。

  • 四川盆地位于扬子地台西部,是一个在上扬子克拉通基础上发展起来的叠合盆地。由川西坳陷、川中隆起、川东高陡和川南低陡4个一级构造单元组成,以西部龙门山,北部米仓上和大巴山,东部齐耀山,南部娄山为界[1820]图1)。四川盆地早侏罗世,龙门山逆冲推覆作用减弱,米仓山—大巴山逆冲推覆运动活跃,导致四川盆地沉积中心由龙门山前缘向米仓山—大巴山转换。下侏罗自流井组地层是在印支晚幕运动后形成的湖相泥页岩与粉砂、灰岩互层的半深湖—浅湖沉积,其物源多数来自北部米仓山构造带。中上侏罗统,盆地湖平面逐渐变浅,盆地内部主要发育河流—三角洲沉积环境。侏罗统陆相细粒岩主要分布在下侏罗统自流井组地层[18,20]。自流井组自下而上可以分为珍珠冲段、东岳庙段、马鞍山段和大安寨段[1820]。研究区为四川盆地元坝、涪陵地区,地层旋回特征完整。

    Figure 1.  Tectonic map and lithologies of the Sichuan Basin

  • X射线衍射全岩分析表明,下侏罗统细粒岩主要组成矿物为石英、黏土矿物、碳酸盐矿物,以及少量的长石和黄铁矿。其中,石英矿物含量介于15.3%~77.3%,平均值为46.1%;黏土矿物含量介于7.9%~63.7%,平均值为40.6%;碳酸盐矿物含量介于0~63.8%,平均值为9.3%(图2)。对各层段进行统计发现,大安寨段石英矿物含量介于19.1%~72.7%,平均值为40.7%;黏土矿物含量介于7.9%~59.6%,平均值为37.40%;碳酸盐矿物含量介于0~63.8%,平均值为21.9%(表1)。马鞍山段石英矿物含量介于31.7%~51.3%,平均值为43.0%;黏土矿物含量介于42.2%~55.2%,平均值为47.3%;碳酸盐矿物含量介于0~22.3%,平均值为9.7%。东岳庙段石英矿物含量介于15.3%~77.3%,平均值为53.1%;黏土矿物含量介于12.7%~63.7%,平均值为42.3%;碳酸盐矿物含量介于0~27.5%,平均值为3.7%。综上表明,各层段细粒岩石英矿物和黏土矿物平均含量差异不大,方解石矿物在大安寨段含量最高。整体表现为黏土矿物与石英含量高,碳酸盐矿物局部富集的特征。

    Figure 2.  Mineralogy triangle diagram of Lower Jurassic fine⁃grained rocks, Sichuan Basin

    层段石英黏土矿物碳酸盐矿物
    大安寨段15.3%~77.3%(46.1%)7.9%~63.7%(40.6%)0~63.8%(21.9%)
    马鞍山段31.7%~51.3%(43.0%)42.2%~55.2%(47.3%)0~22.3%(9.7%)
    东岳庙段15.3%~77.3%(53.1%)12.7%~63.7%(42.3%)0~27.5%(3.7%)

    通过岩心、偏光显微镜观察和XRD分析,将研究区细粒岩类型划分为页岩、介壳泥岩、粉砂质泥岩、粉砂岩和介壳灰岩(图3,4)。下侏罗统湖相沉积环境中存在大量瓣鳃类生物,导致介壳灰岩发育。由于陆相沉积环境变化快,陆相岩石非均质性强,介壳灰岩与页岩频繁互层。为方便整体叙述,将位于同层段的泥岩、粉砂岩和石灰岩统归为细粒岩。其中,灰黑色的页岩则指示了安静、还原的沉积环境,主要发育于碎屑岩半深湖环境(图3a)。粉砂质泥岩、粉砂岩分选较好。呈块状沉积构造的灰色粉砂岩指示了强水动力条件下的快速沉积(图3c)。在粉砂岩中也可见交错层理、韵律层理发育,说明了沉积水动力季节性变化,指示了浅湖滩坝微相的存在(图3d)。

    Figure 3.  Characteristics of Lower Jurassic fine⁃grained rock, Sichuan Basin (well YL4)

    Figure 4.  Polarizing microscope images of Lower Jurassic fine⁃grained rock from well YL4, Sichuan Basin (well YL4)

    介壳泥岩中的沉积构造,包括沟槽铸模、冲刷面、波状层理和递变层理的出现,说明介壳泥岩和粉砂质介壳泥岩是在风暴主导的半深湖中沉积的。部分贝壳在浅水湖泊中被风暴破坏,搬运到半深湖,与泥岩一起沉积。风暴侵蚀了底层的地层,可形成不规则的槽模[21]。风暴过后,湖水恢复了平静。半深湖中的细粒沉积物沉积在贝壳层上,形成一个突变接触的界面(图3b)。多重风暴沉积叠加形成介壳泥岩和介壳灰岩互层沉积。

  • 使用氦气法测量研究区大安寨段细粒沉积岩的孔隙度和渗透率,得到研究区细粒沉积岩孔隙度介于0.92%~8.12%,平均为3.35%,且绝大部分样品孔隙度在2%以上;渗透率介于(0.001~33.93)×10-3 μm2,平均为6.83×10-3 μm2。东岳庙段细粒岩孔隙度介于0.55%~6.72%,平均为2.84%。渗透率介于(0.001~1.46)×10-3 μm2,平均为0.51×10-3 μm2。与北美进行商业开采的页岩孔隙度和渗透率相比(孔隙度为2%~15%,渗透率为(1×10-4~1)×10-3 μm2),研究区细粒岩物性总体适中,为页岩气储集提供了空间[2223]。四川盆地下侏罗统细粒岩层日产气0.4~50.7 ×104 m3。现场含气量解吸测试数据表明,细粒岩含气量分布在0.5~5.8 m3/t,平均1.37 m3/t,含气性较好(含气量大于1.00 m3/t)。其中,富有机质(TOC大于2.00%)的大安寨段和东岳庙段介壳泥岩和页岩含气量最好,含气量为1.05~5.8 m3/t,平均2.6 m3/t。通过对关键钻井下侏罗统岩心的物性测试分析,细粒岩中灰黑色页岩孔隙度介于2.37%~5.96%,平均为3.99%,渗透率介于(0.002~7.97)×10-3 μm2,平均为2.83×10-3 μm2;灰黑色介壳泥岩孔隙度介于0.92%~8.12%,平均为2.69%,渗透率介于(0.001~13.83)×10-3 μm2,平均为3.78×10-3 μm2表2)。根据国家标准GB/T 31483—2015《页岩气地质评价方法》富有机质陆相页岩的孔隙度标准(Φ>2%)、渗透率标准(K>0.1×10-3 μm2)、有机质含量标准(TOC>1%),以及陆相页岩气最低工业性气流量标准(日产气大于0.5×104 m3),认为下侏罗统页岩与介壳泥岩可作为良好的陆相细粒岩储层[24]

    岩石类型储层类型储集空间类型主要分布层位TOC/%孔隙度/%渗透率/10-3 μm2
    范围平均值范围平均值范围平均值
    页岩孔隙型黏土矿物片间孔、粒间孔、有机孔大安寨段、东岳庙段0.17~3.841.102.37~5.963.990.002~7.9702.83
    介壳泥岩孔隙型黏土矿物片间孔、粒间孔、有机孔大安寨段、东岳庙段0.37~2.431.070.92~8.122.690.001~13.8303.78
    粉砂质泥岩孔隙型黏土矿物片间孔、粒间孔、有机孔马鞍山段0.06~1.060.460.61~4.122.240.001~6.8401.54
    介壳灰岩孔隙—裂缝型黏土矿物片间孔、粒间孔、溶蚀孔、裂缝大安寨段、东岳庙段0.05~0.860.491.34~3.661.990.001~13.2201.48
    粉砂岩孔隙—裂缝型粒间孔、裂缝马鞍山段0.06~0.900.320.78~1.561.070.001~1.0460.06
  • 前人依据细粒岩孔隙成因,将细粒岩储集空间分为粒间孔、粒内孔、有机质孔和裂缝孔隙[23]。为了探讨细粒岩储集空间的形成机理和控制因素,根据陆相细粒岩储集空间的成因,将下侏罗统细粒岩储集空间划分为3大类:无机孔、有机孔和微裂缝。其中,无机孔可细分为粒间孔和粒内孔,粒间孔包括颗粒间孔和粒缘孔,粒内孔分为黏土矿物片间孔、溶蚀孔和少量的莓状黄铁矿内孔(图5)。

    Figure 5.  Pore characteristics of Lower Jurassic nonmarine shale

    在扫描电镜下可以观察到常发育于矿物颗粒接触处的粒间孔,孔径大小为10 nm~2 μm(图5a,b)。粒间孔主要形成于同生成岩阶段—早成岩阶段。在成岩过程中,除了压实作用会减少粒间孔外,胶结作用也会降低孔隙度。其中,颗粒间孔发育在相互支撑的脆性矿物颗粒间或黏土矿物与脆性矿物之间,呈三角形或不规则多边形。粒缘孔沿脆性矿物颗粒边缘分布,可勾勒出脆性矿物形态(图5b)。主要发育于早成岩阶段,连通性较差。

    成岩溶蚀孔发育在相对不稳定的长石、碳酸盐矿物内部,形状不规则,连通性差,以宏孔为主,直径为2~5 μm(图5c)。在中成岩A期,有机质热成熟产生的有机酸溶蚀长石或碳酸盐矿物,形成溶蚀孔。

    黏土矿物片间孔主要出现在相互支撑的片状黏土矿物之间,连通性较好,可被黄铁矿、有机质充填。这种片间孔孔径一般为10~50 nm,与黏土矿物解理面平行分布(图5d)。由于黏土矿物抗压性差,可见弯曲状的黏土矿物片间孔。陆相页岩中黏土矿物含量高,故黏土矿物片间孔含量较多,为主要的孔隙类型。

    莓球状黄铁矿内的孔隙在页岩与介壳泥岩中普遍存在,这种孔隙多被有机质或自生黏土矿物堵塞,孔径范围较广,一般为10~30 nm。由于莓状黄铁矿为缺氧环境下的化学沉积的产物,周围黏土矿物呈现被压实的形态。因此,莓球状黄铁矿以及它内部的孔隙形成于压实作用之前的同生成岩—早成岩阶段(图5e)。

    有机孔是有机质生烃演化过程中由于烃类的生成和排出而在有机质内部产生的大量孔隙。有机质多为狭长状或不规则形状,直径为30~50 nm,整体连通性较差(图5f)。在自流井组陆相页岩中的有机孔很少,仅在富有机质的页岩和介壳泥岩中出现,观察不同岩石类型的场发射扫描电镜FE-SEM大面积拼接图像,识别各种类型孔隙,并用颜色标记(图6)。利用ImageJ软件计算不同岩石类型中的各种孔隙占比。大面积拼接的FE-SEM图像能够避免因岩石非均质性导致的孔隙统计结果不准。分析统计结果发现,ImageJ软件计算的页岩不同孔隙面孔率与实验测试得到的孔隙度呈正相关,说明利用场发射扫描电镜图像识别配合ImageJ软件计算孔隙占比的方法,准确可靠(表3图7)。利用此方法识别研究区陆相细粒岩中微裂缝、无机孔、有机孔占比。统计发现,无机孔最多,微裂缝次之,有机孔占比最少,不到10%(表3)。这是由于研究区陆相细粒岩中的有机质主要为II2与III型有类型,生油、气能力较差。无机孔中以黏土矿物片间孔为主。因此,物性较好的介壳泥岩、页岩发育大量的黏土矿物片间孔和微裂缝。

    Figure 6.  SEM large area mosaic image

    研究区层位岩石类型孔隙度/%面孔率/%微裂缝/%有机孔/%无机孔/%
    黏土矿物片间孔粒间孔溶蚀孔
    元坝大安寨介壳灰岩1.4191.6534.665.1454.9033.5011.4015.30
    元坝大安寨介壳泥岩1.7391.9214.287.7866.9353.0022.592.34
    元坝马鞍山粉砂质泥岩1.0711.0417.189.9172.9151.6121.300
    元坝马鞍山灰绿色泥岩1.3461.2620.0513.6043.3536.876.480
    元坝东岳庙泥质粉砂岩2.0592.4428.3929.3542.2630.2112.050
    涪陵东岳庙黑色页岩3.4203.9819.2011.5569.2542.1827.070
    涪陵东岳庙介壳泥岩3.0403.3116.227.1773.5043.3530.123.13
    涪陵东岳庙介壳灰岩0.4200.7524.002.3370.6720.0033.5323.10
    涪陵东岳庙粉砂岩1.2801.4433.197.6459.1723.4435.730
    涪陵东岳庙泥质粉砂岩1.6902.1430.288.4161.3117.7743.540

    Figure 7.  Relationship between pore face ratio calculated by ImageJ software and measured porosity

  • 陆相细粒岩与海相细粒岩形成于不同的沉积环境,且经历了独特的成岩作用,其储层特征差异较大。综合前人对页岩储层质量控制因素的研究方法,从陆相页岩的组成成分、沉积环境和成岩作用3方面分析陆相页岩储层质量的主控因素。

  • 石英是细粒岩成分中抗压能力最强的矿物,可以形成矿物格架,提供粒间孔隙。学者们在北美和四川海相页岩中皆观察到支撑粒间孔的石英颗粒[23,2526]。同时,细粒岩中的石英可以使细粒岩储层的脆性增加,使其在开发过程中更易压裂。在下侏罗统细粒岩中的存在以方解石为主要成分的生物壳,既可被溶解形成溶蚀孔,也可在成岩后期发生重结晶作用[27]。黏土矿物对于储层的影响包括正交细粒岩储层孔隙比表面积,有利于细粒岩储层对油气的吸附;黏土矿物转化为伊利石,孔体积增加改善储层空间;黏土转化作用可以产生石英,石英可以增加岩石的整体脆性[2829]。通过分析下侏罗统自流井组细粒岩样品孔隙度与渗透率的相关性可知,二者呈正相关,即孔隙度越大,渗透率越好(图8)。

    Figure 8.  Relationship between porosity and permeability of nonmarine fine⁃grained rocks

    但将陆相细粒岩的孔隙度与黏土矿物、石英和碳酸盐矿物含量进行相关性分析发现,其相关性并不明显(图9)。这可能是由于陆相细粒岩岩性变化快,所含矿物类型较多,含量变化大,比海相更为复杂。因此,细粒岩的组成矿物不是控制储层质量的主要因素。

    Figure 9.  Relationship between composition and porosity of nonmarine shale

  • 细粒岩中的有机质含量是指示生烃潜力的重要指标,控制有机孔的发育。通过下侏罗统细粒岩TOC含量与孔隙度相关性分析可知,随着TOC含量的增加,细粒岩孔隙度增加,与前人研究结论一致(图9d)[811]。这是因为随着TOC含量增加,有机孔数量增加,从而影响细粒岩整体孔隙度的增加。

    研究发现,下侏罗统细粒岩中的TOC含量较典型海相富有机质页岩低,有机孔含量较少,仅占总孔隙的10%(表3)。同时,有机质主要为II2与III型,成熟度偏低,生油、气能力较海相页岩差[3031]。TOC与比表面积、孔体积相关性较弱,反映了陆相页岩有机质内部结构复杂(图10)。因此,有机质含量并不是控制陆相细粒岩储层质量的主要因素。

    Figure 10.  Relationship between TOC content and pore structure of fine⁃grained rocks

  • 四川盆地下侏罗统主要发育三角洲、滨湖、浅湖和半深湖相。近物源的元坝地区珍珠冲段主要沉积中砂岩、粉砂岩和砂砾互层,以三角洲平原和前缘亚相为主[18,20]。东岳庙段沉积环境以半深湖相为主,沉积富有机质灰黑色页岩和介壳泥岩;马鞍山段发生湖退,湖泊面积减小,沉积环境以滨浅湖为主,主要沉积粉砂岩和灰绿色泥岩;大安寨段四川盆地沉降速率加大,再次发生湖侵,湖平面范围最大,浅湖—半深湖相发育,沉积厚层页岩和介壳泥岩。根据上文分析可知广泛发育于东岳庙段和大安寨段半深湖相的页岩和介壳泥岩的有机质含量高,物性较好,可作为良好的油气储层。因此,半深湖相可为油气的聚集和保存提供良好条件。

    元素地球化学可以有效地指示古环境变化。可通过分析页岩的地化指标与孔隙结构的关系,探讨页岩储层形成过程中的沉积环境对储层的影响。为了避免元素分析的不确定性,利用多种参数分析古环境控制因素,包括古氧化还原环境、古盐度、古生产力、古气候和陆源输入情况。

    V/(V+Ni)和Cu/Zn常用来指示古环境氧化还原性。其中,在厌氧环境中V和Ni富集;在富氧条件下,V和Ni相对较少。因此,V/(V+Ni)与氧化性呈负相关[3233]。Cu和Zn在沉积过程中,随着环境中氧气含量的不同,发生沉积分异,Cu/Zn与氧气含量呈正相关[34]。统计可知,V/(V+Ni)与SBET、VBJHr=0.67, 0.67)呈正相关;Cu/Zn与SBET、VBJHr=-0.62,-0.57)呈负相关(表4)。这说明孔隙结构受古氧化还原性影响,且还原条件下孔隙比表面积和体积较大。下侏罗统半深湖还原环境的还原性最好,可沉积富有机质的介壳泥岩和页岩,其黏土矿物含量高,黏土矿物片间孔较多,可为页岩油气提供了充足的储集空间。

    SBETVBJHDAV/(V+Ni)Cu/ZnSr/Ba100×MgO/Al2O3P/TiBa/AlREEFe/MnAlTi
    SBET1.000.97-0.670.67-0.62-0.50-0.55-0.310.200.780.640.880.85
    VBJH1.00-0.490.67-0.57-0.51-0.60-0.340.110.730.680.870.83
    DA1.00-0.370.590.370.22-0.73-0.22-0.63-0.25-0.53-0.51

    在自然水介质中,Sr比Ba迁移的距离更远。因为当淡水与咸水混合时,淡水中的Ba2+与咸水中的SO42-结合生成BaSO4沉淀下来;而SrSO4溶解度高,可以运移得更远并在生物作用下沉淀[35]。随着水体咸度的增加,MgO含量增加,Al2O3含量降低。因此,Sr/Ba和MgO/Al2O3与湖水古盐度皆呈正比[36]。统计发现,Sr/Ba、100*MgO/Al2O3与SBETr=-0.50,-0.55)呈负相关,与VBJHr=-0.51,-0.60)呈负相关。这说明高盐度的沉积环境会减少储层空间。相对较高盐度的湖水适合微生物发育,有助于大量瓣鳃类生物的生存。因此,高盐度的环境,介壳灰岩大量存在,由于方解石胶结物充填孔隙,导致储层物性较差。

    Ti、Al是典型的陆源输入标志。陆源元素Al、Ti越高,说明陆源输入越多[3740]。研究区下侏罗世Al、Ti与SBETr=0.88,0.85)呈正相关,与VBJHr=0.87,0.83)呈正相关,说明陆源输入越多,孔隙空间越发育。陆源碎屑供给可以提供有机质生产所需的养分,从而有利于有机孔的形成。

    P是判别生物生产力高低的重要标志。为了减少陆源输入的影响,利用P/Ti判别古生产力的大小[3940]。重晶石含量(BaSO4)与古生产力呈正相关,可以利用Ba/Al判别古生产力的大小[41]。对比生产力与储集空间的参数关系发现,P/Ti、Ba/Al与SBETr=-0.31,0.20)关系较弱,与VBJHr=-0.34,0.11)关系较弱,说明古生产力与孔隙关系较弱。古生产力高,有机质含量高,从而有机质孔增加,孔隙度增加。

    Mn在湖泊中常以Mn2+的形式存在,当湖水中Mn2+达到饱和时,Mn会发生沉淀。因此,稳定的Mn含量指示了相对温暖潮湿的气候[4243]。相反,岩石中的高Mn含量指示了干旱炎热的古气候条件;在潮湿气候条件下,Fe以Fe(OH)3胶体形式沉淀下来。因此,高Fe/Mn反映了温暖潮湿的气候,低Fe/Mn则反映了干旱炎热的气候。岩石中的稀土元素总量∑REE(∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu)也能指示古气候条件变化[44]。低∑REE,表明气候干旱炎热,高∑REE表明气候温暖湿润。统计发现,∑REE和Fe/Mn与SBETr=0.78,0.64)呈正相关,与VBJHr=0.73,0.68)呈正相关,说明温暖湿润的气候有利于孔隙空间的形成。沉积环境越潮湿,说明湖水深度越大,黏土矿物含量多且有机质发育,黏土矿物片间孔和有机质孔增加,储层质量较好。

    综上所述,沉积环境可以影响陆相细粒岩储集空间的变化。半深湖控制富有机质细粒岩的分布,还原、低盐度、潮湿和物源充足的沉积环境有利于细粒岩孔隙空间的发育。

  • 分析研究区YL4井、FY1井大安寨段、东岳庙段黏土矿物组合均为I+I/S+C+K,其中I/S普遍为15%。黏土矿物组合特征及有序I/S矿物的大量出现。同时,下侏罗统富有机质页岩的镜质体反射率介于1.20%~2.10%,Tmax普遍大于430 ℃,表明陆相页岩已进入中成岩B期阶段。因此,四川盆地自流井组页岩成岩演化可划分为同生成岩阶段、早成岩阶段A期、早成岩阶段B期、中成岩阶段A期和中成岩阶段B期(图11)。陆相页岩在沉积后经历压实、胶结、溶蚀、黏土矿物转化及脱水等一系列成岩作用,不同阶段页岩储层的孔隙结构是不同的。

    Figure 11.  Variation of porosity of nonmarine shale with diagenetic stage

  • 在同生成岩阶段,细粒沉积物沉积后尚未完全脱离上覆水体,沉积物疏松,原生孔隙发育,沉积物孔隙度为60%~80%。在早成岩阶段,沉积盆地逐渐沉降,沉积物持续沉积,机械压实成为这一阶段最主要的成岩作用。压实作用使松散的沉积物被压实为弱固结—半固结状态,导致原生粒间孔孔体积减少。岩石孔隙度迅速减少,此时细粒岩的孔隙主要为原生粒间孔。介壳泥岩中的生物介壳在压实作用下紧密平行排列甚至破裂,同时文石向方解石转化。

    中成岩阶段A期,沉积物埋藏深度大于2 000 m,压实作用强烈,岩石已完全固结。有机质生烃演化和黏土矿物之间的相互转化是主要的成岩作用。镜质体反射率Ro值介于0.50%~1.30%,有机质处于成熟阶段,有机酸大量生成,有机质孔的丰度也随之增加。有机酸溶解长石颗粒和碳酸盐胶结物,形成溶蚀孔。黏土矿物经转化作用,析出层间水,形成大量黏土矿物片间孔。细粒岩孔隙度减小速度减缓,下降到5%~10%。中成岩阶段B期,沉积物埋藏深度大于4 000 m,镜质体反射率Ro值介于1.30%~2.00%,有机质已处于高成熟阶段,无机孔逐渐减小趋于稳定。有机酸的含量在这一阶段降低,酸性减弱,溶蚀作用减弱,胶结作用开始增强。细粒岩可受后期构造作用产生微裂缝。

    综上所述,研究区自流井组经过早成岩阶段的压实作用,孔隙度大幅度降低;中成岩阶段A期,随着有机酸大量生成,有机质孔发育;中成岩阶段B期,无机孔趋于稳定,受构造运动影响可形成微裂缝。

  • 利用声波时差也可以反映岩石孔隙度,声波时差越高,岩石孔隙度越高[4548]。分析自流井组页岩层段的声波时差与孔隙度关系可知,声波时差与孔隙度呈较好的正相关,说明声波时差能够反映孔隙度的变化(图12)。通过观察研究区井位的声波时差测井曲线发现,随着地层埋藏深度的增加,声波时差逐渐降低,但是在下侏罗统产气层段的声波时差值普遍较高。下侏罗统2 600 m附近的声波时差测井曲线幅度与1 000 m以上的曲线幅度相似,说明下侏罗统存在超压(图13)。虽然近年来,有学者发现泥页岩中的有机质会导致声波时差异常,并建立相应定量公式[49]。Δtfm=(1-ΦT)Δtma+ΦTΔtom。式中:Δtfm为烃源岩骨架声波时差;ΦT为有机质含量;Δtma为岩石骨架声波时差,μs/m;Δtom为有机质声波时差,μs/m。但四川盆地元坝地、涪陵地区下侏罗统泥页岩整体上有机质含量较低,其中元坝有机质含量平均为1.05%,东岳庙段有机质含量平均为1.56%,涪陵有机质含量为1.36%。较低的有机质含量对声波时长影响较小,可以忽略不计。

    Figure 12.  Relationship between acoustic time and porosity of nonmarine shale strata in Ziliujing Formation

    Figure 13.  Compaction characteristics of well FY1

    通过野外实测可知,下侏罗统页岩层厚度为20~30 m,厚度较大,封闭性强。随着地层埋藏深度的增加,当地层温度超过100 ℃,细粒岩不仅受机械压实作用,也受化学压实作用[50]。化学压实作用可以增加细粒岩的封闭性,促进超压的发育。如黏土矿物发生转化作用所需的K+往往来自于钾长石或云母的溶解,从而导致细粒岩中的负载颗粒遭到破坏或溶解,细粒岩内部颗粒间的支撑力下降,上覆地层压力转移至孔隙流体,从而产生超压[50]。同时,固态有机质成熟转化为烃类,导致有机质所承受负载减少,孔隙流体体积膨胀,孔隙流体压力增加。因此,在细粒岩超压带中,孔隙流体由于机械压实和化学压实导致的地层致密而不能及时排出,会承受来自上覆岩石骨架的压力,从而支撑黏土矿物片间孔,使其保存下来,为页岩气富集提供有利的储存空间。

    同时,前人研究发现,四川盆地下侏罗统页岩层段普遍存在超压。涪陵地区大安寨段页岩层段压力系数为1.1~1.4;元坝地区大安寨段,页岩层段压力系数为1.33~2.07[51]。这说明压实作用是控制陆相细粒岩储层质量的主要作用。超压带内的页岩、介壳泥岩是优质陆相细粒岩储层。因此,在预测优质页岩储层时,可在欠压实带内寻找半深湖相灰黑色页岩和灰黑色介壳泥岩,即为优质储层部位。

    综上,优质细粒岩储层主要受两方面控制,即合适的沉积环境和独特的成岩作用。二者是富有机质细粒岩储层形成的必备条件。其中,半深湖控制富有机质细粒岩的分布,还原、低盐度、潮湿、物源充足的沉积环境有利于细粒岩孔隙空间的发育;细粒沉积物在沉积埋藏过程中经历的成岩作用,尤其是受到压实作用的改造,储层空间发生了巨变,为油气的储集提供了有效空间。可在欠压实带内寻找半深湖相页岩,即为有利的勘探位置。

  • (1) 四川盆地下侏罗统细粒岩主要组成矿物为石英、黏土矿物、碳酸盐矿物,以及少量的长石和黄铁矿。其中,脆性矿物(石英、长石和碳酸盐矿物)含量大于50%,黏土矿物与石英在各层段的含量都较高,碳酸盐矿物则在大安寨段含量最高。

    (2) 大安寨段和东岳庙段富有机质页岩和介壳泥岩物性、含气性较好,可作为良好的陆相细粒岩储层。介壳泥岩、页岩的储集空间以黏土矿物片间孔、微裂缝和少量有机孔为主。

    (3) 下侏罗统细粒岩储层质量主要受沉积环境和成岩作用控制。半深湖控制富有机质细粒岩的分布,还原、低盐度、潮湿、物源充足的沉积环境有利于细粒岩孔隙空间的发育,为储层的形成提供物质基础。细粒岩储层中的黏土矿物片间孔在超压作用下保存下来,为页岩气富集提供了储存空间。提出了预测优质页岩储层和有利勘探部位的方法,即首先寻找页岩欠压实带,然后在欠压实带中寻找富含有机质的半深湖灰黑色页岩和灰黑色介壳泥岩。

Reference (51)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return