Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

WANG XiaoJun, SONG Yong, GUO XuGuang, CHANG QiuSheng, KONG YuHua, ZHENG MengLin, QIN ZhiJun, YANG XiaoFa. Classification of Fine-grained Sedimentary Rocks in Saline Lacustrine Basins and Its Petroleum Geological Significance[J]. Acta Sedimentologica Sinica, 2023, 41(1): 303-317. doi: 10.14027/j.issn.1000-0550.2021.080
Citation: WANG XiaoJun, SONG Yong, GUO XuGuang, CHANG QiuSheng, KONG YuHua, ZHENG MengLin, QIN ZhiJun, YANG XiaoFa. Classification of Fine-grained Sedimentary Rocks in Saline Lacustrine Basins and Its Petroleum Geological Significance[J]. Acta Sedimentologica Sinica, 2023, 41(1): 303-317. doi: 10.14027/j.issn.1000-0550.2021.080

Classification of Fine-grained Sedimentary Rocks in Saline Lacustrine Basins and Its Petroleum Geological Significance

doi: 10.14027/j.issn.1000-0550.2021.080
Funds:

Science and Technology Major Project, CNPC 2019E-2602

  • Received Date: 2020-12-27
  • Accepted Date: 2021-07-20
  • Rev Recd Date: 2021-06-09
  • Available Online: 2021-07-20
  • Publish Date: 2023-02-10
  • Fine-grained sedimentary rock, as the most common type of rock in the surface of the earth's crust, is rich in oil and gas resources and recently has become a research hotspot in the oil and gas industry. Because fine-grained sedimentary rocks are mainly composed of grains or crystals with a grain size less than 0.062 5 mm, their composition is diverse and complex, leading to confusion in the use of rock type terms. This problem is particularly prominent in the fine-grained sedimentary rocks from terrigenous lacustrine basins. In order to build a clear and consistent communication platform between researchers, this paper proposes a set of three-level naming and classification schemes, which are sedimentary structure, texture and composition, and salt component, respectively. First, rock types can be divided into laminated fine-grained sedimentary rock and massive fine-grained sedimentary rock based on the sedimentary structure. Then, they can be divided into seven main rock types based on the sedimentary texture and composition. Finally, according to the salt composition, they can be divided into different rock types in different evolution stages of the continental lake basin. Based on the descriptive attribute as the standard of classification, the scheme is progressively described with the genetic significance reflecting the provenance, hydrodynamic conditions, and the evolution of the saline lacustrine basin. The petrological classification of fine-grained sedimentary rocks in continental lacustrine basin is not only helpful for understanding the stratigraphic attribution and evolution of source rock types and abundance in fine-grained sedimentary rock systems, but also in predicting the spatial distribution of geological "sweet spots". It is significant to the theory and practice of petroleum geology, such as oil and gas resource evaluation, scientific targets optimization, and improving the overall efficiency of petroleum exploration and development.
  • [1] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1-11.

    Jia Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
    [2] Zou C N. Unconventional petroleum geology[M]. 2nd ed. Amsterdam: Elsevier, 2017: 1-481.
    [3] 童晓光,郭建宇,王兆明. 非常规油气地质理论与技术进展[J]. 地学前缘,2014,21(1):9-20.

    Tong Xiaoguang, Guo Jianyu, Wang Zhaoming. The progress of geological theory and technology for unconventional oil and gas[J]. Earth Science Frontiers, 2014, 21(1): 9-20.
    [4] 刘可禹,刘畅. “化学—沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质,2019,40(3):491-503.

    Liu Keyu, Liu Chang. “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503.
    [5] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560-568.

    Du Jinhu, Hu Suyun, Pang Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560-568.
    [6] 金之钧,白振瑞,高波,等. 中国迎来页岩油气革命了吗?[J]. 石油与天然气地质,2019,40(3):451-458.

    Jin Zhijun, Bai Zhenrui, Gao Bo, et al. Has China ushered in the shale oil and gas revolution?[J]. Oil & Gas Geology, 2019, 40(3): 451-458.
    [7] 黎茂稳,马晓潇,蒋启贵,等. 北美海相页岩油形成条件、富集特征与启示[J]. 油气地质与采收率,2019,26(1):13-28.

    Li Maowen, Ma Xiaoxiao, Jiang Qigui, et al. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America[J]. Petroleum geology and Recovery Efficiency, 2019, 26(1): 13-28.
    [8] 刘招君,孙平昌,柳蓉,等. 中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报,2016,18(4):525-534.

    Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Genetic types and deposit features of oil shale in continental basin in China[J]. Journal of Palaeogeography (Chinese Edition), 2016, 18(4): 525-534.
    [9] 卢双舫,李俊乾,张鹏飞,等. 页岩油储集层微观孔喉分类与分级评价[J]. 石油勘探与开发,2018,45(3):436-444.

    Lu Shuangfang, Li Junqian, Zhang Pengfei, et al. Classification of microscopic pore-throats and the grading evaluation on shale oil reservoirs[J]. Petroleum Exploration and Development, 2018, 45(3): 436-444.
    [10] 聂海宽,张培先,边瑞康,等. 中国陆相页岩油富集特征[J]. 地学前缘,2016,23(2):55-62.

    Nie Haikuan, Zhang Peixian, Bian Ruikang, et al. Oil accumulation characteristics of China continental shale[J]. Earth Science Frontiers, 2016, 23(2): 55-62.
    [11] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [12] 宋国奇,张林晔,卢双舫,等. 页岩油资源评价技术方法及其应用[J]. 地学前缘,2013,20(4):221-228.

    Song Guoqi, Zhang Linye, Lu Shuangfang, et al. Resource evaluation method for shale oil and its application[J]. Earth Science Frontiers, 2013, 20(4): 221-228.
    [13] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569-575.

    Sun Huanquan, Cai Xunyu, Zhou Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569-575.
    [14] 孙龙德,邹才能,贾爱林,等. 中国致密油气发展特征与方向[J]. 石油勘探与开发,2019,46(6):1015-1026.

    Sun Longde, Zou Caineng, Jia Ailin, et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development, 2019, 46(6): 1015-1026.
    [15] Picard M D. Classification of fine-grained sedimentary rocks[J]. Journal of Sedimentary Research, 1971, 41(1): 179-195.
    [16] Blatt H. Sedimentary petrology[M]. San Francisco: W. H. Freeman, 1982: 1-564.
    [17] Aplin A C, Macquaker J H S. Mudstone diversity: Origin and implications for source, seal, and reservoir properties in petroleum systems[J]. AAPG Bulletin, 2011, 95(12): 2031-2059.
    [18] Clarke F. The data of geochemistry[M]. Washington: Government Printing Office, 1924: 1-770.
    [19] Wickman F E. The “total” amount of sediments and the composition of the “average igneous rock”[J]. Geochimica et Cosmochimica Acta, 1954, 5(3): 97-110.
    [20] 邹才能,杨智,张国生,等. 常规—非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发,2014,41(1):14-27.

    Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14-27.
    [21] Jiang Z X, Duan H J, Liang C, et al. Classification of hydrocarbon-bearing fine-grained sedimentary rocks[J]. Journal of Earth Science, 2017, 28(6): 693-976.
    [22] Lazar O R, Bohacs K M, Macquaker J H S, et al. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: Nomenclature and description guidelines[J]. Journal of Sedimentary Research, 2015, 85(3): 230-246.
    [23] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.
    [24] 贺波. 细粒沉积岩分类命名与旋回划分研究[C]//2018油气田勘探与开发国际会议(IFEDC 2018)论文集. 西安:西安华线网络信息服务有限公司,2018:659-671.

    He Bo. Classification and cycle division of fine-grained sedimentary rocks [C]//Proceedings of 2018 international conference on oil and gas exploration and development (IFEDC 2018). Xi’an: Xi’an Huaxian Network Information Service Co., Ltd., 2018: 659-671.
    [25] Lewan M D. Laboratory classification of very fine grained sedimentary rocks[J]. Geology, 1978, 6(12): 745-748.
    [26] Ulmer-Scholle D S, Scholle P A, Schieber J, et al. Mudrocks: Siltstones, mudstones, claystones & shales[M]//Ulmer-Scholle D S, Scholle P A, Schieber J, et al. A color guide to the petrography of sandstones, siltstones, shales and associated rocks. Tulsa: American Association of Petroleum Geologists, 2015.
    [27] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [28] 陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208.

    Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208.
    [29] 赵贤正,蒲秀刚,韩文中,等. 细粒沉积岩性识别新方法与储集层甜点分析:以渤海湾盆地沧东凹陷孔店组二段为例[J]. 石油勘探与开发,2017,44(4):492-502.

    Zhao Xianzheng, Pu Xiugang, Han Wenzhong, et al. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2017, 44(4): 492-502.
    [30] 张玉玺,周江羽,陈建文,等. 下扬子地区幕府山组陆缘海—台地黑色细粒沉积岩系沉积学和孔隙结构特征[J]. 地球科学,2021,46(1):186-199.

    Zhang Yuxi, Zhou Jiangyu, Chen Jianwen, et al. Sedimentology and porosity structures of the epicontinental sea -platform fine-grained deposits of Mufushan Formation in Lower Yangtze area[J]. Earth Science, 2021, 46(1): 186-199.
    [31] 张顺,刘惠民,陈世悦,等. 中国东部断陷湖盆细粒沉积岩岩相划分方案探讨:以渤海湾盆地南部古近系细粒沉积岩为例[J]. 地质学报,2017,91(5):1108-1119.

    Zhang Shun, Liu Huimin, Chen Shiyue, et al. Classification scheme for lithofacies of fine-grained sedimentary rocks in faulted basins of eastern China: Insights from the fine-grained sedimentary rocks in Paleogene, southern Bohai Bay Basin[J]. Acta geologica Sinica, 2017, 91(5): 1108-1119.
    [32] 吴靖,姜在兴,王欣. 湖相细粒沉积岩三—四级层序地层划分方法与特征:以渤海湾盆地东营凹陷古近系沙四上亚段为例[J]. 天然气地球科学,2018,29(2):199-210.

    Wu Jing, Jiang Zaixing, Wang Xin. Sequence stratigraphy characteristics of lacustrine fine-grained sedimentary rocks: A case study of the upper Fourth member of Paleogene Shahejie Formation, Dongying Sag, Bohai Bay Basin[J]. Natural Gas Geoscience, 2018, 29(2): 199-210.
    [33] 李哲萱,柳益群,焦鑫,等. 火山—热液作用相关细粒沉积岩研究现状及前沿探索[J]. 古地理学报,2019,21(5):727-742.

    Li Zhexuan, Liu Yiqun, Jiao Xin, et al. Progress and present research on volcanic-hydrothermal related fine-grained sedimentary rocks[J]. Journal of Palaeogeography, 2019, 21(5): 727-742.
    [34] 李森,朱如凯,崔景伟,等. 鄂尔多斯盆地长7段细粒沉积岩特征与古环境:以铜川地区瑶页1井为例[J]. 沉积学报,2020,38(3):554-570.

    Li Sen, Zhu Rukai, Cui Jingwei, et al. Sedimentary characteristics of fine-grained sedimentary rock and Paleo-environment of Chang 7 member in the Ordos Basin: A case study from well Yaoye 1 in Tongchuan[J]. Acta Sedimentologica Sinica, 2020, 38(3): 554-570.
    [35] 石巨业,金之钧,刘全有,等. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分[J]. 石油与天然气地质,2019,40(6):1205-1214.

    Shi Juye, Jin Zhijun, Liu Quanyou, et al. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory[J]. Oil & Gas Geology, 2019, 40(6): 1205-1214.
    [36] 熊周海,操应长,王冠民,等. 湖相细粒沉积岩纹层结构差异对可压裂性的影响[J]. 石油学报,2019,40(1):74-85.

    Xiong Zhouhai, Cao Yingchang, Wang Guanmin, et al. Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks[J]. Acta petrolei Sinica, 2019, 40(1): 74-85.
    [37] 支东明,唐勇,郑孟林,等. 准噶尔盆地玛湖凹陷风城组页岩油藏地质特征与成藏控制因素[J]. 中国石油勘探,2019,24(5):615-623.

    Zhi Dongming, Tang Yong, Zheng Menglin, et al. Geological characteristics and accumulation controlling factors of shale reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(5): 615-623.
    [38] 赵文智,胡素云,侯连华,等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发,2020,47(1):1-10.

    Zhao Wenzhi, Hu Suyun, Hou Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
    [39] 赵文智,胡素云,侯连华. 页岩油地下原位转化的内涵与战略地位[J]. 石油勘探与开发,2018,45(4):537-545.

    Zhao Wenzhi, Hu Suyun, Hou Lianhua. Connotation and strategic role of in-situ conversion processing of shale oil underground in the onshore China[J]. Petroleum Exploration and Development, 2018, 45(4): 537-545.
    [40] 邹才能,朱如凯,白斌,等. 致密油与页岩油内涵、特征、潜力及挑战[J]. 矿物岩石地球化学通报,2015,34(1):1-17.

    Zou Caineng, Zhu Rukai, Bai Bin, et al. Significance, geologic characteristics, resource potential and future challenges of tight oil and shale oil[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 1-17.
    [41] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.

    Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
    [42] 柳波,石佳欣,付晓飞,等. 陆相泥页岩层系岩相特征与页岩油富集条件:以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例[J]. 石油勘探与开发,2018,45(5):828-838.

    Liu Bo, Shi Jiaxin, Fu Xiaofei, et al. Petrological characteristics and shale oil enrichment of lacustrine fine-grained sedimentary system: A case study of organic-rich shale in First member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2018, 45(5): 828-838.
    [43] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534.

    Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 524-534.
    [44] 赵贤正,周立宏,蒲秀刚,等. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破:以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例[J]. 石油勘探与开发,2018,45(3):361-372.

    Zhao Xianzheng, Zhou Lihong, Pu Xiugang, et al. Geological characteristics of shale rock system and shale oil exploration in a lacustrine basin: A case study from the Paleogene 1st sub-member of Kong 2 member in Cangdong Sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2018, 45(3): 361-372.
    [45] 王民,马睿,李进步,等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发,2019,46(4):789-802.

    Wang Min, Ma Rui, Li Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802.
    [46] 王勇,刘惠民,宋国奇,等. 济阳坳陷泥页岩细粒沉积体系[J]. 石油学报,2019,40(4):395-410.

    Wang Yong, Liu Huimin, Song Guoqi, et al. Lacustrine shale fine-grained sedimentary system in Jiyang Depression[J]. Acta Petrolei Sinica, 2019, 40(4): 395-410.
    [47] 邓远,蒲秀刚,陈世悦,等. 细粒混积岩储层特征与主控因素分析:以渤海湾盆地沧东凹陷孔二段为例[J]. 中国矿业大学学报,2019,48(6):1301-1316.

    Deng Yuan, Pu Xiugang, Chen Shiyue, et al. Characteristics and controlling factors of fine-grained mixed sedimentary rocks reservoir: A case study of the 2nd member of Kongdian Formation in Cangdong Depression, Bohai Bay Basin[J]. Journal of China University of Mining & Technology, 2019, 48(6): 1301-1316.
    [48] 王越,陈世悦,张关龙,等. 咸化湖盆混积岩分类与混积相带沉积相特征:以准噶尔盆地南缘芦草沟组与吐哈盆地西北缘塔尔朗组为例[J]. 石油学报,2017,38(9):1021-1035,1065.

    Wang Yue, Chen Shiyue, Zhang Guanlong, et al. Classifications of mixosedimentite and sedimentary facies characteristics of mixed sedimentary facies belt in saline lacustrine basin: Taking examples as the Lucaogou Formation in the south of Junggar Basin and the Taerlang Formation in the northwest of Tuha Basin[J]. Acta Petrolei Sinica, 2017, 38(9): 1021-1035, 1065.
    [49] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及其页岩油意义:以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J]. 石油勘探与开发,2015,42(5):598-607.

    Liu Bo, Yanfang Lü, Meng Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration: A case study of Permian Lucaogou Formation in Malang Sag, Santanghu Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 598-607.
    [50] 周立宏,蒲秀刚,陈长伟,等. 陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例[J]. 地球科学,2018,43(10):3625-3639.

    Zhou Lihong, Pu Xiugang, Chen Changwei, et al. Concept, characteristics and prospecting significance of fine-grained sedimentary oil gas in terrestrial lake basin: A case from the Second member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin[J]. Earth Science, 2018, 43(10): 3625-3639.
    [51] 高岗,向宝力,都鹏燕,等. 准噶尔盆地玛湖凹陷风城组泥岩与泥质白云岩热模拟产物特征对比[J]. 地球科学与环境学报,2016,38(1):93-103.

    Gao Gang, Xiang Baoli, Du Pengyan, et al. Comparison of thermal simulation product characteristics of mudstone and argillaceous dolomite from Fengcheng Formation in Mahu Sag of Junggar Basin[J]. Journal of earth Sciences and Environment, 2016, 38(1): 93-103.
    [52] 朱如凯,邹才能,吴松涛,等. 中国陆相致密油形成机理与富集规律[J]. 石油与天然气地质,2019,40(6):1168-1184.

    Zhu Rukai, Zou Caineng, Wu Songtao, et al. Mechanism for generation and accumulation of continental tight oil in China[J]. Oil & Gas Geology, 2019, 40(6): 1168-1184.
    [53] Potter P E, Maynard J B, Depetris P J. Mud and mudstones[M]. New York: Springer, 2005: 1-297.
    [54] O'Brien N R, Slatt R M. Argillaceous rock atlas[M]. New York: Springer, 1990: 1-156.
    [55] Weaver C E. Clays, muds, and shales: Developments in sedimentology 44[M]. Amsterdam: Elsevier, 1989: 1-819.
    [56] Scott E D, Bouma A H, Bryant W R. Siltstones, mudstones and shales: Depositional processes and characteristics[M]. Tulsa: SEPM Society for Sedimentary Geology, 2003: 1-554.
    [57] Boggs S, Jr. Mudstones and shales[C]//Boggs S, Jr. Petrology of sedimentary rocks. 2nd ed. New York: Cambridge University Press, 2009: 194-219.
    [58] Middleton G V, Church M J, Coniglio M, et al. Encyclopedia of sediments and sedimentary rocks[M]. Dordrecht: Springer, 2003: 1-821.
    [59] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale[M]. New York: Springer, 1980: 1-310.
    [60] Weaver C E. Fine-grained rocks: Shales or physilites[J]. Sedimentary Geology, 1980, 27(4): 301-313.
    [61] 郝运轻,谢忠怀,周自立,等. 非常规油气勘探领域泥页岩综合分类命名方案探讨[J]. 油气地质与采收率,2012,19(6):16-19,24.

    Hao Yunqing, Xie Zhonghuai, Zhou Zili, et al. Discussion on multi-factors identification of mudstone and shale[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 16-19, 24.
    [62] Twenhofel W H. Terminology of the fine-grained mechanical sediments: Report of the committee on sedimentation for 1936-1937[R]. Washington: National Research Council, 1937.
    [63] McKee E D, Weir G W. Terminology for stratification and cross-stratification in sedimentary rocks[J]. GSA Bulletin, 1953, 64(4): 381-390.
    [64] Ingram R L. Fissility of mudrocks[J]. GSA Bulletin, 1953, 64(8): 869-878.
    [65] Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3): 151-158.
    [66] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968.
    [67] Pettijohn F. Sedimentary rocks[M]. 3rd ed. New York: Harper & Row, 1975: 1-628.
    [68] Flemming B W. A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams[J]. Continental Shelf Research, 2000, 20(10/11): 1125-1137.
    [69] Folk R L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature[J]. The Journal of Geology, 1954, 62(4): 344-359.
    [70] Wentworth C K. A scale of grade and class terms for clastic sediments[J]. The Journal of Geology, 1922, 30(5): 377-392.
    [71] Milliken K L. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks—reply[J]. Journal of Sedimentary Research, 2016, 86(1): 6-10.
    [72] Camp W K, Egenhoff S, Schieber J, et al. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks—discussion[J]. Journal of Sedimentary Research, 2016, 86(1): 1-5.
    [73] Milliken K L, Shen Y, Ko L T, et al. Grain composition and diagenesis of organic-rich lacustrine Tarls, Triassic Yanchang Formation, Ordos Basin, China[J]. Interpretation, 2017, 5(2): SF189-SF210.
    [74] 鄢继华,蒲秀刚,周立宏,等. 基于X射线衍射数据的细粒沉积岩岩石定名方法与应用[J]. 中国石油勘探,2015,20(1):48-54.

    Yan Jihua, Pu Xiugang, Zhou Lihong, et al. Naming method of fine-grained sedimentary rocks on basis of X-ray diffraction data[J]. China Petroleum Exploration, 2015, 20(1): 48-54.
    [75] 张少敏,操应长,朱如凯,等. 湖相细粒混合沉积岩岩石类型划分:以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例[J]. 地学前缘,2018,25(4):198-209.

    Zhang Shaomin, Cao Yingchang, Zhu Rukai, et al. Lithofacies classification of fine-grained mixed sedimentary rocks in the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin[J]. Earth Science Frontiers, 2018, 25(4): 198-209.
    [76] 刘忠宝,刘光祥,胡宗全,等. 陆相页岩层系岩相类型、组合特征及其油气勘探意义:以四川盆地中下侏罗统为例[J]. 天然气工业,2019,39(12):10-21.

    Liu Zhongbao, Liu Guangxiang, Hu Zongquan, et al. Lithofacies types and assemblage features of continental shale strata and their significance for shale gas exploration: A case study of the Middle and Lower Jurassic strata in the Sichuan Basin[J]. Natural Gas Industry, 2019, 39(12): 10-21.
    [77] 葸克来,操应长,朱如凯,等. 吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征[J]. 石油学报,2015,36(12):1495-1507.

    Xi Kelai, Cao Yingchang, Zhu Rukai, et al. Rock types and characteristics of tight oil reservoir in Permian Lucaogou Formation, Jimsar Sag[J]. Acta Petrolei Sinica, 2015, 36(12): 1495-1507.
    [78] Schieber J, Zimmerli W, Sethi P S. Shales and mudstones II: Petrography, petrophysics, geochemistry, and economic geology[M]. Stuttgart: Schweizerbart'sche Verlagsbuchhandlung, 1998: 1-296.
    [79] Folk R L. Petrology of sedimentary rocks[M]. Austin, Texas: Hemphill Publishing Company, 1980: 1-182.
    [80] Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744.
    [81] 郑绵平. 盐湖学的研究与展望[J]. 地质论评,2006,52(6):737-746.

    Zheng Mianping. Salinology: Research and prospects[J]. Geological Review, 2006, 52(6): 737-746.
    [82] 夏刘文,曹剑,徐田武,等. 盐湖生物发育特征及其烃源意义[J]. 地质论评,2017,63(6):1549-1562.

    Xia Liuwen, Cao Jian, Xu Tianwu, et al. Development characteristics of biologies in saline lake environments and their implications for hydrocarbon source[J]. Geological Review, 2017, 63(6): 1549-1562.
    [83] 郑绵平,张永生,刘喜方,等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报,2016,90(9):2123-2166.

    Zheng Mianping, Zhang Yongsheng, Liu Xifang, et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica, 2016, 90(9): 2123-2166.
    [84] 胡东生. 盐湖地学的研究进展和发展方向[J]. 地球科学进展,1997,12(5):411-415.

    Hu Dongsheng. Research progress and developmental direction in the geology of salt lakes[J]. Advance in Earth Sciences, 1997, 12(5): 411-415.
    [85] 贾承造,邹才能,杨智,等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发,2018,45(4):546-560.

    Jia Chengzao, Zou Caineng, Yang Zhi, et al. Significant progress of continental petroleum geology theory in basins of central and western China[J]. Petroleum Exploration and Development, 2018, 45(4): 546-560.
    [86] 瓦里亚什科. 钾盐矿床形成的地球化学规律[M]. 范立,译. 北京:中国工业出版社,1965:1-354.

    Валяшко М Г. Geochemical regularities of the formation of potash salt deposits[M]. Fan Li, trans. Beijing: China Industrial Press, 1965: 1-354.
    [87] 汪梦诗. 玛湖凹陷风城组岩矿类型及其指示意义[J]. 地质论评,2017,63(增刊1):305-306.

    Wang Mengshi. Minerals of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin and their indicating significance[J]. Geological Review, 2017, 63(Suppl. 1): 305-306.
    [88] 赵研,郭佩,鲁子野,等. 准噶尔盆地下二叠统风城组硅硼钠石发育特征及其富集成因探讨[J]. 沉积学报,2020,38(5):966-979.

    Zhao Yan, Guo Pei, Lu Ziye, et al. Genesis of reedmergnerite in the Lower Permian Fengcheng Formation of the Junggar Basin, NE China[J]. Acta Sedimentologica Sinica, 2020, 38(5): 966-979.
    [89] 田孝茹,张元元,卓勤功,等. 准噶尔盆地玛湖凹陷下二叠统风城组致密油充注特征:碱性矿物中的流体包裹体证据[J]. 石油学报,2019,40(6):646-659.

    Tian Xiaoru, Zhang Yuanyuan, Zhuo Qingong, et al. Tight oil charging characteristics of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin: Evidence from fluid inclusions in alkaline minerals[J]. Acta Petrolei Sinica, 2019, 40(6): 646-659.
    [90] 张志杰,袁选俊,汪梦诗,等. 准噶尔盆地玛湖凹陷二叠系风城组碱湖沉积特征与古环境演化[J]. 石油勘探与开发,2018,45(6):972-984.

    Zhang Zhijie, Yuan Xuanjun, Wang Mengshi, et al. Alkaline-lacustrine deposition and paleoenvironmental evolution in Permian Fengcheng Formation at the Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 972-984.
    [91] 曹剑,雷德文,李玉文,等. 古老碱湖优质烃源岩:准噶尔盆地下二叠统风城组[J]. 石油学报,2015,36(7):781-790.

    Cao Jian, Lei Dewen, Li Yuwen, et al. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation, Junggar Basin[J]. Acta petrolei Sinica, 2015, 36(7): 781-790.
    [92] 支东明,曹剑,向宝力,等. 玛湖凹陷风城组碱湖烃源岩生烃机理及资源量新认识[J]. 新疆石油地质,2016,37(5):499-506.

    Zhi Dongming, Cao Jian, Xiang Baoli, et al. Fengcheng alkaline lacustrine source rocks of Lower Permian in Mahu Sag in Junggar Basin: Hydrocarbon generation mechanism and petroleum resources reestimation[J]. Xinjiang Petroleum Geology, 2016, 37(5): 499-506.
    [93] 汪梦诗,张志杰,周川闽,等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖岩石特征与成因[J]. 古地理学报,2018,20(1):147-162.

    Wang Mengshi, Zhang Zhijie, Zhou Chuanmin, et al. Lithological characteristics and origin of alkaline lacustrine of the Lower Permian Fengcheng Formation in Mahu Sag, Junggar Basin[J]. Journal of Palaeogeography, 2018, 20(1): 147-162.
    [94] 秦志军,陈丽华,李玉文,等. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景[J]. 新疆石油地质,2016,37(1):1-6.

    Qin Zhijun, Chen Lihua, Li Yuwen, et al. Paleo-sedimentary setting of the Lower Permian Fengcheng alkali lake in Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2016, 37(1): 1-6.
    [95] 刘群,陈郁华,许德明,等. 潜江凹陷钾盐沉积特征及形成条件[C]//中国地质科学院矿床地质研究所文集(10). 北京:中国地质学会,1983:22-36.

    Liu Qun, Chen Yuhua, Xu Deming, et al. Sedimentation characteristics of the potash beds in the Qianjiang Depression and the conditions of their formation[C]//Collected works of Institute of deposit geology, Chinese Academy of Geological Sciences ( 10). Beijing: Institute of Deposit Geology, Chinese Academy of Geological Sciences, 1983: 22-36.
    [96] 张永生,王国力,杨玉卿,等. 江汉盆地潜江凹陷古近系盐湖沉积盐韵律及其古气候意义[J]. 古地理学报,2005,7(4):461-470.

    Zhang Yongsheng, Wang Guoli, Yang Yuqing, et al. Rhythms of saline lake sediments of the Paleogene and their paleoclimatic significance in Qianjiang Sag, Jianghan Basin[J]. Journal of Palaeogeography, 2005, 7(4): 461-470.
    [97] 孙镇城,杨藩,张枝焕,等. 中国新生代咸化湖泊沉积环境与油气生成[M]. 北京:石油工业出版社,1997:1-307.

    Sun Zhencheng, Yang Fan, Zhang Zhihuan, et al. Sedimentary environments and hydrocarbon generation of Cenozoic salified lakes in China[M]. Beijing: Petroleum Industry Press, 1997: 1-307.
    [98] 曾承,安芷生,刘卫国,等. 湖泊沉积物记录的湖水古盐度定量研究进展[J]. 盐湖研究,2007,15(4):13-19.

    Zeng Cheng, An Zhisheng, Liu Weiguo, et al. Quantitative research progress on palaeo-salinity deduced from lacustrine sediments[J]. Journal of Salt Lake Research, 2007, 15(4): 13-19.
    [99] 李进龙,陈东敬. 古盐度定量研究方法综述[J]. 油气地质与采收率,2003,10(5):1-3.

    Li Jinlong, Chen Dongjing. Summary of quantified research method on paleosalinity[J]. Petroleum Geology and Recovery Efficiency, 2003, 10(5): 1-3.
    [100] 王小军,王婷婷,曹剑. 玛湖凹陷风城组碱湖烃源岩基本特征及其高效生烃[J]. 新疆石油地质,2018,39(1):9-15.

    Wang Xiaojun, Wang Tingting, Cao Jian. Basic characteristics and highly efficient hydrocarbon generation of alkaline-lacustrine source rocks in Fengcheng Formation of Mahu Sag[J]. Xinjiang Petroleum Geology, 2018, 39(1): 9-15.
    [101] 黄健玲,傅强,邱旭明,等. 咸化断陷湖盆混积岩特征及沉积模式:以金湖凹陷阜二段为例[J]. 岩性油气藏,2020,32(2):54-66.

    Huang Jianling, Fu Qiang, Qiu Xuming, et al. Characteristics and sedimentary models of diamictite in saline faulted lacustrine basin: A case study of Fu 2 member in Jinhu Sag, Subei Basin[J]. Lithologic Reservoirs, 2020, 32(2): 54-66.
    [102] 王小军,杨智峰,郭旭光,等. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望[J]. 新疆石油地质,2019,40(4):402-413.

    Wang Xiaojun, Yang Zhifeng, Guo Xuguang, et al. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin[J]. Xinjiang Petroleum Geology, 2019, 40(4): 402-413.
    [103] 王小军,梁利喜,赵龙,等. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价[J]. 石油与天然气地质,2019,40(3):661-668.

    Wang Xiaojun, Liang Lixi, Zhao Long, et al. Rock mechanics and fracability evaluation of the Lucaogou Formation oil shales in Jimusaer Sag, Junggar Basin[J]. Oil & Gas Geology, 2019, 40(3): 661-668.
    [104] 江继纲,彭平安,傅家谟,等. 盐湖油气的形成、演化和运移聚集[M]. 广州:广东科技出版社,2004:1-364.

    Jiang Jigang, Peng Ping’an, Fu Jiamo, et al. Generation, migration and accumlation of oils and gases in hypersaline lacustrine basin, China[M]. Guangzhou: Guangdong Science & Technology Press, 2004: 1-364.
    [105] 张斌,何媛媛,陈琰,等. 柴达木盆地西部咸化湖相优质烃源岩地球化学特征及成藏意义[J]. 石油学报,2017,38(10):1158-1167.

    Zhang Bin, He Yuanyuan, Chen Yan, et al. Geochemical characteristics and oil accumulation significance of the high quality saline lacustrine source rocks in the western Qaidam Basin, NW China[J]. Acta Petrolei Sinica, 2017, 38(10): 1158-1167.
    [106] 吴因业,吕佳蕾,方向,等. 湖相碳酸盐岩—混积岩储层有利相带分析:以柴达木盆地古近系为例[J]. 天然气地球科学,2019,30(8):1150-1157.

    Wu Yinye, Jialei Lü, Fang Xiang, et al. Analysis of favorable facies belts in reservoir of lacustrine carbonate rocks-hybrid sediments: Case study of Paleogene in Qaidam Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1150-1157.
    [107] 徐田武,张洪安,李继东,等. 渤海湾盆地东濮凹陷盐湖相成烃成藏特征[J]. 石油与天然气地质,2019,40(2):248-261.

    Xu Tianwu, Zhang Hong’an, Li Jidong, et al. Characters of hydrocarbon generation and accumulation of salt-lake facies in Dongpu Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2019, 40(2): 248-261.
    [108] 金强,朱光有. 中国中新生代咸化湖盆烃源岩沉积的问题及相关进展[J]. 高校地质学报,2006,12(4):483-492.

    Jin Qiang, Zhu Guangyou. Progress in research of deposition of oil source rocks in saline lakes and their hydrocarbon generation[J]. Geological Journal of China Universities, 2006, 12(4): 483-492.
    [109] 邹才能,杨智,张国生,等. 非常规油气地质学建立及实践[J]. 地质学报,2019,93(1):12-23.

    Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 93(1): 12-23.
    [110] Warren K J. Evaporites: A geological compendium[M]. 2nd ed. Cham: Springer, 2016: 1-1822.
    [111] Peters K E, Walters C C, Moldowan J M. The biomarker guide: Volume 2, biomarkers and isotopes in petroleum systems and earth history[M]. 2nd ed. Cambridge: Cambridge University Press, 2007: 1-704.
    [112] Cao Z, Liu G D, Zhan H B, et al. Geological roles of the siltstones in tight oil play[J]. Marine and Petroleum Geology, 2017, 83: 333-344.
    [113] Gao G, Zhang W W, Xiang B L, et al. Geochemistry characteristics and hydrocarbon-generating potential of lacustrine source rock in Lucaogou Formation of the Jimusaer Sag, Junggar Basin[J]. Journal of Petroleum Science and Engineering, 2016, 14 : 168-182.
    [114] Cao Z, Liu G D, Xiang B L, et al. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin[J]. AAPG Bulletin, 2017, 101(1): 39-72.
    [115] 杨智,侯连华,陶士振,等. 致密油与页岩油形成条件与“甜点区”评价[J]. 石油勘探与开发,2015,42(5):555-565.

    Yang Zhi, Hou Lianhua, Tao Shizhen, et al. Formation conditions and “sweet spot” evaluation of tight oil and shale oil[J]. Petroleum Exploration and Development, 2015, 42(5): 555-565.
    [116] 郭旭光,何文军,杨森,等. 准噶尔盆地页岩油“甜点区”评价与关键技术应用:以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学,2019,30(8):1168-1179.

    Guo Xuguang, He Wenjun, Yang Sen, et al. Evaluation and application of key technologies of “sweet area” of shale oil in Junggar Basin: Case study of Permian Lucaogou Formation in Jimusar Depression[J]. Natural Gas Geoscience, 2019, 30(8): 1168-1179.
    [117] 潘仁芳,陈美玲,张超谟,等. 济阳坳陷渤南洼陷古近系页岩油“甜点”地震预测及影响因素分析[J]. 地学前缘,2018,25(4):142-154.

    Pan Renfang, Chen Meiling, Zhang Chaomo, et al. Seismic prediction of Paleogene shale oil “sweet spots” and its influencing factor analysis in the Bonan sub-sag, Jiyang Depression[J]. Earth Science Frontiers, 2018, 25(4): 142-154.
    [118] 宋永,周路,郭旭光,等. 准噶尔盆地吉木萨尔凹陷芦草沟组湖相云质致密油储层特征与分布规律[J]. 岩石学报,2017,33(4):1159-1170.

    Song Yong, Zhou Lu, Guo Xuguang, et al. 2017. Characteristics and occurrence of lacustrine dolomitic tight-oil reservoir in the Middle Permian Lucaogou Formation, Jimusaer Sag, southeastern Junggar Basin[J]. Acta Petrologica Sinica, 33(4): 1159-1170.
    [119] Donovan A D, Evenick J, Banfield L, et al. An organofacies-based mudstone classification for unconventional tight rock and source rock plays[C]//Proceedings of SPE/AAPG/SEG unconventional resources technology conference. Austin, Texas: Unconventional Resources Technology Conference, 2017: 15.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(3)

Article Metrics

Article views(389) PDF downloads(197) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-27
  • Revised:  2021-06-09
  • Accepted:  2021-07-20
  • Published:  2023-02-10

Classification of Fine-grained Sedimentary Rocks in Saline Lacustrine Basins and Its Petroleum Geological Significance

doi: 10.14027/j.issn.1000-0550.2021.080
Funds:

Science and Technology Major Project, CNPC 2019E-2602

Abstract: Fine-grained sedimentary rock, as the most common type of rock in the surface of the earth's crust, is rich in oil and gas resources and recently has become a research hotspot in the oil and gas industry. Because fine-grained sedimentary rocks are mainly composed of grains or crystals with a grain size less than 0.062 5 mm, their composition is diverse and complex, leading to confusion in the use of rock type terms. This problem is particularly prominent in the fine-grained sedimentary rocks from terrigenous lacustrine basins. In order to build a clear and consistent communication platform between researchers, this paper proposes a set of three-level naming and classification schemes, which are sedimentary structure, texture and composition, and salt component, respectively. First, rock types can be divided into laminated fine-grained sedimentary rock and massive fine-grained sedimentary rock based on the sedimentary structure. Then, they can be divided into seven main rock types based on the sedimentary texture and composition. Finally, according to the salt composition, they can be divided into different rock types in different evolution stages of the continental lake basin. Based on the descriptive attribute as the standard of classification, the scheme is progressively described with the genetic significance reflecting the provenance, hydrodynamic conditions, and the evolution of the saline lacustrine basin. The petrological classification of fine-grained sedimentary rocks in continental lacustrine basin is not only helpful for understanding the stratigraphic attribution and evolution of source rock types and abundance in fine-grained sedimentary rock systems, but also in predicting the spatial distribution of geological "sweet spots". It is significant to the theory and practice of petroleum geology, such as oil and gas resource evaluation, scientific targets optimization, and improving the overall efficiency of petroleum exploration and development.

WANG XiaoJun, SONG Yong, GUO XuGuang, CHANG QiuSheng, KONG YuHua, ZHENG MengLin, QIN ZhiJun, YANG XiaoFa. Classification of Fine-grained Sedimentary Rocks in Saline Lacustrine Basins and Its Petroleum Geological Significance[J]. Acta Sedimentologica Sinica, 2023, 41(1): 303-317. doi: 10.14027/j.issn.1000-0550.2021.080
Citation: WANG XiaoJun, SONG Yong, GUO XuGuang, CHANG QiuSheng, KONG YuHua, ZHENG MengLin, QIN ZhiJun, YANG XiaoFa. Classification of Fine-grained Sedimentary Rocks in Saline Lacustrine Basins and Its Petroleum Geological Significance[J]. Acta Sedimentologica Sinica, 2023, 41(1): 303-317. doi: 10.14027/j.issn.1000-0550.2021.080
  • 非常规油气规模快速发展,已带来全球能源行业资源格局的重大转变[1-3]。非常规油气突破对石油天然气地质学创新和世界石油工业发展均具有重大战略影响[1]。细粒沉积岩作为非常规油气资源中致密油气、页岩油气的重要烃源岩和储集层[1,4-14],近年来正发展成为国内外最热门的研究领域之一。目前陆相页岩油气已成为我国非常规油气资源的重要组成部分,对于陆相湖盆细粒沉积岩的分类等基础研究引起了石油领域的高度关注。

    细粒沉积岩是地球表面最丰富的岩石类型[15-16],海相、陆相皆有发育,占全球沉积岩的70%以上[17-19]。细粒沉积学基础研究在非常规油气地质评价中非常重要[20],而细粒沉积岩的分类则是细粒沉积岩石学研究的基础。目前,国内外学者一般认为细粒沉积岩是指粒径小于0.062 5 mm[17,21-23](也有部分国内学者用0.1 mm[20,24],国外学者用0.005 mm[25]),并且颗粒含量大于50%(部分学者用45%[25])的沉积岩,主要由黏土和粉砂等陆源碎屑颗粒组成,也包含盆地内生的碳酸盐等颗粒。这意味着细粒沉积岩跨越了黏土与粉砂的边界[26]。本文中细粒沉积岩指粒径小于0.062 5 mm的长英质矿物、岩屑矿物、黏土矿物、碳酸盐矿物及其他自生矿物等细粒沉积物组成的沉积岩,这些细粒沉积物的总含量超过50%,可以通过描述岩石的成分、结构和沉积构造等关键岩石属性来进行分类命名。一直以来,对于细粒沉积岩[4,27-36]术语的运用混乱,国内学者常用的术语包括页岩[9-10,12,37-45]、泥页岩[46]、细粒混积岩[47-48]、细粒岩[49-50]、泥岩[51],以及部分致密岩[40,52]等。国际上,描述细粒沉积岩的术语也较多,包括mudrock、mudstone、shale、siltstone、claystone、lutite、pelite [23,26,53-58],甚至涵盖不同变质程度的argillite、slate、phyllite[59-60]。以页岩气和页岩油气中的“页岩”为例,泛指聚集天然气或油气的烃源岩,该类地层由不同岩石类型构成,包括泥岩、页岩及灰质泥岩、灰质页岩、泥质灰岩、粉砂质泥岩等过渡岩性,甚至包括灰岩、云岩及粉砂岩等其他岩石类型[61]

    Twenhofel[62]根据成分、硬化程度和变质程度创建了一个分类,他将泥岩作为一个通用术语,包括所有细粒碎屑岩。McKee et al.[63]和Ingram[64]主要根据细粒层状岩石的层理创建了分类,无论是具有易剥裂性还是层理[63-64]。有许多基于三端元图的结构分类[15,23,65-69],其三个端元分别为黏土、粉砂和砂(Shepard[65];Folk et al. [66];Flemming[68]和Folk[69])。尽管Shephard对比例大致相等的砂—粉土—黏土混合物没有名称,但其他人(如Flemming)将这种不同粒度的混合物称为“泥(mud)”。但令人遗憾的是,黏土(clay)的双重含义,一是指粒径小于0.003 9 mm[70],二是矿物成分(层状硅酸盐),造成了没完没了的混淆[71-72]。Milliken et al.[23,73]回顾了国外细粒沉积物和沉积岩主要的分类方案,并提出陆源碎屑和火山碎屑颗粒(Terrigenous and Volcanic Grains/Extrabasinal grains)—钙质异化颗粒(Calcareous allochems)—生物硅质异化颗粒(Bio-siliceous allochems)三端元组分分类方案,用新的术语tarl、carl和sarl来定义细粒沉积岩分类的三种主要类型。Camp et al.[72]认为Milliken尝试的这种分类依靠的是颗粒成因解释,实际操作不具有可行性。Lazar et al.[22]提出一种以O’Brien et al.[54]所总结的以野外与实验室方法为基础的综合性描述性命名方案,同时考虑了结构、层理和成分三个关键岩石属性。整体而言,国外学者所讨论的细粒沉积岩均属于海相沉积的范畴。

    陆相湖盆细粒沉积岩相对海相盆地而言,矿物成分多样、非均质性强,岩石类型更加复杂。国内学者继承了海相细粒沉积岩分类的基本思路,对陆相湖盆细粒沉积的分类也进行了有益的探索和发展。如鄢继华等[74]提出基于X射线衍射数据的细粒沉积岩组分分类方案及岩石定名方法,采用三端元、四组分划分体系,以碳酸盐矿物、黏土矿物和长英质矿物为3个端元,而将特征矿物方沸石作为第四组分。张少敏等[75]针对准噶尔盆地二叠系芦草沟组细粒沉积岩,提出成因—成分分类方案,将陆源碎屑、火山碎屑和碳酸盐作为岩石类型三角图解的3个端元。这些分类方案主要适用于具体的研究地区。姜在兴等[27]在细粒沉积岩的粉砂、黏土和碳酸盐为三端元组分分类基础上,提出以有机质(TOC)、碳酸盐及黏土矿物三端元划分岩石类型;并于2017年进一步明确提出基于TOC丰度的含油气细粒沉积岩的三端元四组分分类方案和岩石命名[21];刘忠宝等[76]、葸克来等[77]在不同地区的陆相湖盆中也提出了类似的TOC分级方案[76-77]。但是TOC含量的测试需要专业设备和技术,阻碍了在地质工作者中广泛应用。

    可以看出,细粒沉积岩非常丰富,到目前为止还没有令人满意的分类[23,53,78],缺乏一个广泛使用的、一致的命名法[22]。细粒沉积岩的分类是一个复杂的问题,由于细粒沉积岩的沉积与成岩作用是一个复杂的地质作用过程,不同环境形成的细粒沉积岩的地质特征千差万别,而当前的技术水平和研究程度尚未达到完全符合客观实际的阶段。在主观方面,不同的研究者采用的分类基础、分类原则、分类方法不尽相同,分类方案也有很大的差异。总而言之,造成细粒沉积岩分类困难的原因较多,主要包括:1)颗粒与晶体的尺寸非常小,直接观测比较困难[57,69,79];2)碎屑颗粒组合的成分变化大大超过了其他类别沉积物所具有的非均质性[23,53,80];3)成岩作用对细颗粒的改造识别有难度[22-23]

    本文针对陆相咸化湖盆,重新审视了细粒沉积岩的分类方案和命名,这对于丰富陆相沉积岩石学基础理论,指导陆相含油气盆地细粒沉积岩(致密岩、泥页岩)油气资源评价、区带目标优选、提升勘探开发整体效益等方面具有重要的理论和实践意义,同时对海相含盐盆地的细粒沉积岩分类也有借鉴意义。

  • 岩石分类应使研究人员能够轻松地对所研究的岩石进行分类,并以简洁、易懂的方式将信息传达给其他人。分类特别适用于将物质分组为类似的特性,以得出样品、地层和相之间的内在关系。砂岩和碳酸盐岩分类的历史清楚地表明,基于易于观察的特征(手标本和薄片)的描述性分类通常比基于成因的分类更优越,也更广泛地被接受。一个可靠的描述比不断变化的成因解释更具有生命力[59]。基于Lazar et al.[22]、Potter et al.[59]、Pettijohn[67]、Camp et al.[72]的岩石学分类的核心思想,本次针对细粒沉积岩分类的基本原则确定如下:1)确定讨论的范围,确保分类既不重复,也不遗漏;2)确定分类的标准,确保只能按所确定的标准进行合理的分类,而且以客观的或描述性的属性作为分类的标准;3)确定分类的级次,确保逐级进行,不能越级、重叠。

    按上述分类基本原则,本次细粒沉积岩分类讨论的范围是陆相咸化湖盆细粒沉积岩。以易于观察的沉积结构(主要是粒度)和矿物组分的描述性分类为核心,开展陆相湖盆细粒沉积岩的分类。分类标准采用客观上可描述的自然属性,按级次分别为沉积构造(层理)、沉积结构(主要是粒度)与岩石组分,再根据咸化湖盆的特征属性矿物进一步划分。应当反映细粒沉积岩形成的三个主要问题:1)物质成分的来源;2)沉积时的介质条件;3)陆相湖盆咸化过程或成盐阶段。

    另外,需要注意以下几点:1)本次分类是基于沉积物沉积时颗粒组合的成分;2)在分类时忽略充填原生粒间或粒内孔隙空间的胶结物和沉积后的沉淀物,但如果技术条件允许,建议对填隙物进行量化统计并参与命名;3)成岩作用造成的颗粒交代的识别是颗粒识别中的另一个关键环节。

  • 当使用公认的标准术语时,细粒沉积岩分类将是一个有用的工具,它将为具有不同背景的科研人员建立清晰、高效的沟通渠道。

  • 首先根据沉积构造特征,将粒径小于0.062 5 mm且含量大于50%的细粒沉积岩划分为层状细粒沉积岩和块状细粒沉积岩(图1)。按沉积厚度将层划分,层状指层厚小于1 m的沉积层,包括厚层(1~0.5 m)、中层(0.5~0.1 m)、薄层(0.1~0.01 m)、页状层(小于0.01 m);块状指按沉积厚度(大于1 m)的沉积层。其中层状可以进一步遵循成因方法来定义纹层、纹层组和层,并描述纹层的几何形态、连续性和形状。

    Figure 1.  Category of fine⁃grained sedimentary rocks and classification of rock types based on sedimentary structures

  • 根据沉积结构(主要是粒度)和岩石成分,采用国际上流行的三端元分类法,以三角形图解的形式进一步细分层状细粒沉积岩和块状细粒沉积岩。湖盆细粒沉积物通常具有多物源的特点,成分复杂多样,时常伴有混积沉积的特征。依据主要成分特征,主要是陆源机械搬运至湖盆的母岩风化细粒产物、火山灰尘物质等外生沉积物,以及化学沉积作用、生物沉积作用等形成的内生沉积物(图2)。

    Figure 2.  Schematic diagram of the composition of fine⁃grained sediment components (terrigenous and endogenous components)

    基于湖盆细粒沉积物的整体特征,本次提出了一套新的细粒沉积岩三角形图解,其3个端元分别是泥、粒屑、粉砂(图3,4)。对端元组分进行归类,泥端元组分包括碳酸盐岩泥和陆源碎屑泥,反映沉积介质的流动特征或沉淀机制;粉砂端元包括石英、长石和岩屑,反映机械沉积作用的陆源组分来源;粒屑端元包括砂屑、生屑、藻粒等,反映化学沉积作用及生物沉积作用的碳酸盐岩组分来源。可以看出,这种基于沉积结构和岩石成分的细粒沉积岩三角分类图解兼具重要的成因意义。三角形图解内部共分为7个区,即7种岩石类型,层状细粒岩和块状细粒岩的划分情况分别见图3图4。以准噶尔盆地二叠系咸化湖相细粒沉积岩为例,典型的层状湖相细粒沉积岩微观特征如图5

    Figure 3.  Rock classification diagram of layered fine⁃grained sedimentary rocks

    Figure 4.  Rock classification diagram of massive fine⁃grained sedimentary rocks

    Figure 5.  Micrographs of typical rock types of layered fine⁃grained sedimentary rocks

  • 咸化湖盆(盐湖类盆地)顾名思义是一种含盐的湖泊盆地,是湖盆咸化的结果[81-82]。陆相湖盆的水面是随构造、气候综合作用而波动变化的,湖盆演变旋回形成的沉积层序是记录自然环境中不同时期沉积的碎屑矿物、黏土矿物、无机盐类矿物、有机质、生物等的重要载体。盐湖沉积则是特定自然地理和地质环境的产物,是能够较全面地记录古环境的载体[83-84]。这种集构造、环境、物质为一体的地质过程,既有地域的特殊性、又具有全球性的普遍意义[84]。咸化湖盆是有机质堆积和优质烃源岩形成的有利场所,是重要的陆相油气来源[85]

    大陆湖盆在成盐环境的持续演化过程中,卤水体积逐渐浓缩,饱和盐类矿物依次沉淀,其标型矿物沉积顺序为:碳酸盐→硫酸盐→氯化物[84]。目前常用库尔纳科夫—瓦里亚什科的水化学分类方案,把盐湖卤水分为碳酸盐型、硫酸盐型和氯化物型[86]。盐湖卤水是经天然水连续演化而形成的,碳酸盐类型的卤水饱和流对应相关的盐类主序列矿物有水碱、方解石、白云石、水菱镁矿、碳酸钠镁矿;硫酸盐类型卤水饱和流对应相关的盐类主序列矿物有芒硝、石膏、泻利盐;氯化物类型卤水饱和流对应相关的盐类主序列矿物有石盐、光卤石、水氯镁石、南极石[84]。咸化湖盆所处构造、气候条件上的特殊性,使得沉积层中的无机盐类矿物的组合也非常复杂。以碳酸盐化合物类型为例,广温相盐类矿物有白云石、方解石、菱镁矿、单斜钠钙石、氯碳酸钠镁石、硫碳镁钠石(杂芒硝)、苏打石(重碳酸钠石)、天然碱[81],这种无机盐矿物组合在新疆准噶尔盆地二叠系细粒沉积岩中较为发育[87-94]。江汉盆地含盐层系的韵律层含有丰富的各类无机盐类矿物,记录古湖盆经历了多期的碳酸盐—硫酸盐—氯化物的成盐过程[95-96]

    湖泊(包括古湖泊)通常根据水体含盐量或矿化度划分为淡水、半咸水、咸水、盐水四大类,后三类水体统称为咸化湖水[97]。对于古湖泊盐度的定量分类仍有不少困难,常采用的方法有微量元素法、元素比值法、同位素法、生物标志物法等,还可以基于上述湖盆咸化各阶段不同的矿物组合、特定矿物、古生物及其组合等划分古盐湖的类型[97-100]。结合古盐度划分标准,对陆相咸化湖盆的细粒沉积岩形成时期的古湖泊进行进一步划分,包括半咸化湖、咸化湖和盐湖。图6为咸化湖盆各阶段层状细粒沉积岩分类图解,块状细粒沉积岩各阶段分类与之类似,可参照图4。另外,也可以根据无机盐矿物组合含量划分为碳酸盐型、硫酸盐型和氯化物型。

    Figure 6.  Classification of fine⁃grained sedimentary rocks in different stages of the evolution of the continental saline lake basins

  • 建议细粒沉积岩的其他客观属性,包括颜色、特殊沉积构造、沉积结构、化石含量、有机成分类型、特定矿物等,可以用作基本名称的附加修饰词。

  • 根据上述提出的分类方案,陆相咸化湖盆细粒沉积岩的分类命名步骤如下。

    (1) 根据三端元四组分中不同成因类型的结构组分及矿物组分含量确定岩石的基本名称,对于不同成因类型的四组分中,含量大于50%(或含量最多)的作为确定岩石基本名称的依据,对于以内源颗粒或陆源碎屑为主体的岩类,根据内源颗粒或陆源碎屑中的各组分的矿物和碎屑类型及含量,确定岩石的基本名称(图3,4)。

    (2) 次要组分及矿物作为附加修饰词置于基本名之前;含量小于10%的组分通常不参与命名;含量为10%及小于25%的组分以含××作为附加修饰词;含量为25%~50%的组分通常以××质作为附加修饰词。

    (3) 无机盐矿物含量作为盆地演化阶段的重要指示矿物,含量大于5%参与命名,以微含××作为附加修饰词,其他同(2)的次要组分命名方法。

    (4) 胶结物作为附加修饰词;通常某种胶结物含量小于10%,不参与命名;胶结物含量为10%及小于25%,以含××作为附加修饰词;含量为25%~50%的以××质作为附加修饰词;对于碳酸盐岩类,主要填隙物结构类型为亮晶碳酸盐的岩类,以“亮晶”作为附加修饰词参与岩石的命名。

    (5) 最后,将特殊的结构、沉积构造(如生物扰动等)、古生物、有机质、成岩作用产物等作为特定的附加修饰词。

    表1表2分别列出了层状和块状细粒沉积岩成因、组分及结构构造分类命名。

    分类图位置岩类陆源组分/%盆内组分(云(灰)质)/%粉砂+粒屑/%粉砂/粒屑
    泥质/%粉砂泥晶/%粒屑
    亚类石英×100/粉砂/%长石/岩屑砂屑×100/粒屑/%生屑/藻粒
    I页岩≥50<50<50<50<50
    II泥晶云(灰)页岩<50<50≥50<50<50
    III粉砂页岩<50≥50<50<50≥50>3
    III1-7III1石英粉砂页岩<50≥90<50<50≥50>3
    III2长石石英粉砂页岩<5075~90≥1<50<50≥50>3
    III3岩屑石英粉砂页岩<5075~90<1<50<50≥50>3
    III4长石粉砂页岩<50<75≥3<50<50≥50>3
    III5岩屑长石粉砂页岩<50<751~3<50<50≥50>3
    III6长石岩屑粉砂页岩<50<751/3~1<50<50≥50>3
    III7岩屑粉砂页岩<50<75<1/3<50<50≥50>3
    IV粒屑云(灰)页岩<50<50<50≥50≥50<1/3
    IV1-3IV1砂屑云(灰)页岩<50<50<50≥50≥50<1/3
    IV2生屑云(灰)页岩<50<50<50<50>1≥50<1/3
    IV3藻粒云(灰)页岩<50<50<50<50<1≥50<1/3
    V云(灰)质粉砂页岩<50<75<50<5050~751~3
    VI粉砂质粒屑云(灰)页岩<50<50<50<7550~751/3 ~1
    VII云屑粉砂页岩<25<75<25<75≥751/3 ~3
    注:藻粒包括与菌、藻等有关的鲕粒、核形石、球粒、豆粒、菌藻团块。
    分类图位置岩 类陆源组分/%盆内组分(云(灰)质)/%粉砂+粒屑/%粉砂/粒屑
    泥质/%粉砂泥晶/%粒屑
    亚类(石英×100/粉砂)/%长石/岩屑(砂屑×100/粒屑)/%生屑/藻粒
    I泥质岩≥50<50<50<50<50
    II泥晶云(灰)岩<50<50≥50<50<50
    III粉砂岩<50≥50<50<50≥50>3
    III1-7III1石英粉砂岩<50≥90<50<50≥50>3
    III2长石石英粉砂岩<5075~90≥1<50<50≥50>3
    III3岩屑石英粉砂岩<5075~90<1<50<50≥50>3
    III4长石粉砂岩<50<75≥3<50<50≥50>3
    III5岩屑长石粉砂岩<50<751~3<50<50≥50>3
    III6长石岩屑粉砂岩<50<751/3~1<50<50≥50>3
    III7岩屑粉砂岩<50<75<1/3<50<50≥50>3
    IV粒屑云(灰)岩<50<50<50≥50≥50<1/3
    IV1-3IV1砂屑云(灰)岩<50<50<50≥50≥50<1/3
    IV2生屑云(灰)岩<50<50<50<50>1≥50<1/3
    IV3藻粒云(灰)岩<50<50<50<50<1≥50<1/3
    V云(灰)质粉砂岩<50<75<50<5050~751~3
    VI粉砂质粒屑云(灰)岩<50<50<50<7550~751/3~1
    VII云屑粉砂岩<25<75<25<75≥751/3~3
    注:藻粒包括与菌、藻等有关的鲕粒、核形石、球粒、豆粒、菌藻团块。
  • 咸化湖盆发现了许多中大型的陆相油气田[43,97,101-107]。咸化湖盆中通常存在无机盐类、富有机质细粒沉积岩(泥页岩、泥灰岩)互层共生的现象,水体分层是其形成的重要条件[108]。“细粒沉积学”就是通过对细粒沉积岩组成与结构特征的解剖,揭示富有机质页岩、致密储集层形成的主控因素与分布模式,进而为非常规油气勘探提供指导的学科[11,20,109]。湖水的盐度控制湖盆中的岩石类型、古生物类型、生烃母质类型、有机质丰度等,对成藏阶段的油气类型、油藏规模等具有决定性影响。下面以准噶尔盆地二叠纪咸化湖盆为例,揭示细粒沉积岩分类对生烃母质类型和丰度的层位归属及演化、地质“甜点”空间分布等,具有重要的石油地质学意义。

  • 咸化湖盆烃源岩对油气的贡献能力曾经一度被严重低估,尤其是高盐度水体条件下,经典的地质学研究认为盐类仅是干旱气候的产物,在这种条件下不利于温暖潮湿条件下有机质的保存,是“生物荒漠”[108,110]。近些年来,随着盐湖生物学、湖相沉积学和湖相有机地球化学等学科的发展,学者们逐渐认识到:1)水体分层结构造就了湖泊表层高产率与底层缺氧环境组合,有利于有机质的沉积和保存;2)随盐度增加生物种类减少但生物量并不减少,而且可以有较高生产力,形成优质烃源岩[82,108]。不同盐度条件的湖盆沉积的细粒沉积岩是特定古构造和古气候条件下的产物,导致不同岩石类型所赋存的有机质丰度、有机质类型、古生物、矿物组分等具有明显差异。

  • 随着咸化湖盆演化会形成相应的生物演化序列,从而造成生烃母质类型的变化。咸化湖盆环境中生物种类相对单调,但生物系统组成复杂,其中对生烃有贡献的主要是藻类、细菌和古菌、高等植物[111]

    准噶尔盆地玛湖凹陷中下二叠统碳酸盐型咸(碱)湖盆研究表明,湖盆由早二叠世早期的淡水湖泊演化成咸(碱)化湖过程中可划分为如下几个阶段:淡水湖泊阶段—低盐度成碱预备阶段—咸化湖泊初成碱阶段—碱湖强成碱阶段—咸化湖泊弱成碱阶段—低盐度咸(碱)化湖泊演化终止阶段—淡水湖泊阶段(表3);淡水条件下形成的细粒沉积岩主要赋存III型干酪根,半咸化条件下主要赋存II型干酪根,高盐(碱)度条件下则主要赋存I型干酪根。

    层位沉积环境与咸(碱)化阶段岩石类型有机质丰度(多数) %有机质类型
    P2w淡水湖泥岩—砂质泥岩TOC>1.0III型
    P1 fP1 f3P1f31-2半(微)咸水湖成碱终止阶段灰质泥岩TOC=1.0~1.5II~III型
    P1f33咸化湖弱成碱阶段云质泥岩—云岩TOC=1.0~2.0II型为主
    P1 f2P1f21-3咸化(碱)湖强成碱阶段泥质云岩—盐岩TOC=1.0~2.5I型为主
    P1 f1P1f11咸水湖初成碱阶段云质泥岩—云岩TOC=0.5~1.5II型为主
    P1f12半(微)咸水湖成碱预备阶段灰岩—灰质泥岩TOC=0.5~1.2II~III型
    P1 j淡水湖泥岩TOC>0.5III型为主
  • TOC含量是有机质丰度的主要判别标准。以准噶尔盆地吉木萨尔凹陷J174井二叠系芦草沟组细粒沉积岩为例,TOC含量明显随盐度的增加而增大(图7)。这与盐湖生物发育特征是吻合的,即随盐度增加生物种类减少,但是生物量并不减少。值得注意的是,粉砂岩除了作为储层,同时还有较高的有机质含量,具有较好的生烃能力[112-114]

    Figure 7.  Comprehensive histogram of the Lucaogou Formation from well J174 in the Jimusar Sag, Junggar Basin

  • 细粒沉积岩层系是一类源—储—盖共生与源—储—盖同体的非常规油气载体。这类层系中,“甜点区”分布是石油工业界关注的重点[29,115-118]。有些学者和石油公司科研人员甚至直接称之为“烃源岩储层(source rock reservoir)”[7,119]。细粒沉积岩储层的研究表明,不同盆地发育的细粒沉积岩储层类型有差异,而“甜点”对应的岩石类型也有所不同。根据本文提出的细粒沉积岩分类方案,可以明确储层主要的岩石类型,揭示咸化湖盆演变过程与储层岩石类型的相互关系,有助于预测地质“甜点”的空间分布。准噶尔盆地吉木萨尔凹陷勘探实践揭示,二叠系咸化湖相细粒沉积岩层系存在两套甜点体,下甜点体以粉砂岩、含粉砂质云泥岩和含粉砂质泥晶灰岩为主,而上甜点体主要为砂屑云岩、灰质云屑砂岩、云质灰岩为主,为地质“甜点区”勘探指明了方向(图7)。

  • 细粒沉积岩岩性、结构和非均质性的系统描述对于陆相细粒沉积学研究具有关键作用,有利于进行精细的细粒沉积地层划分,并在层序地层的框架下合理地预测优质烃源岩的时空分布。本次提出的分类方案还可应用于细粒沉积岩油藏的勘探和开发实际生产过程中,为测井、地震资料解释起到可靠的标定和质量控制的作用,为地质甜点的空间预测提供有效信息。咸化湖盆富含有机质的细粒沉积岩分布控制泥页岩油气的分布规模,物性相对好的细粒沉积岩控制地质甜点的潜在分布区,而两者有利的配置关系(源储接触型、源储同体型)则决定了地质甜点的分布范围,有机质的类型和成熟度控制油气品质。这对细粒沉积岩的油气资源评价与目标优选、提升油气勘探开发效益等具有重要的意义。

  • (1) 全球细粒沉积岩相关的油气资源非常丰富,但是关于细粒沉积岩的分类方案很多,一直未达成共识,主要原因在于其粒径小、成分复杂,以及成岩作用改造。另外一个原因是应用领域或用途不同造成的。

    (2) 本文针对陆相湖盆细粒沉积岩,提出了一套实用的、具有成因意义的结构—成分分类法,划分出7种主要岩石类型。并进一步根据盐组分的变化,厘定了陆相湖盆全生命演化周期形成的细粒沉积岩岩石类型。淡水条件下形成的泥岩主要赋存III型干酪根,半咸化条件下的灰质泥岩主要赋存II型干酪根,高盐度条件下泥质云岩—盐岩则主要赋存I型干酪根。

    (3) 陆相湖盆细粒沉积岩的岩石学分类,有助于理解细粒沉积岩层系中生烃母质类型和丰度的层位归属及演变、地质“甜点”空间分布预测等,对细粒沉积岩的油气资源评价、科学优选目标、提升勘探开发整体效益等方面具有重要的理论和实践意义。

Reference (119)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return