Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

YANG Shuai, CHEN AnQing, ZHANG XiHua, LI Qian, XU ShengLin, CHEN Cong, SUN Shi, LI FuXiang, LUO Qian, WEN Long, CHEN HongDe. Paleogeographic Transition of the Permian Chihsia-Maokou Period in the Sichuan Basin and Indications for Oil-gas Exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477. doi: 10.14027/j.issn.1000-0550.2021.072
Citation: YANG Shuai, CHEN AnQing, ZHANG XiHua, LI Qian, XU ShengLin, CHEN Cong, SUN Shi, LI FuXiang, LUO Qian, WEN Long, CHEN HongDe. Paleogeographic Transition of the Permian Chihsia-Maokou Period in the Sichuan Basin and Indications for Oil-gas Exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477. doi: 10.14027/j.issn.1000-0550.2021.072

Paleogeographic Transition of the Permian Chihsia-Maokou Period in the Sichuan Basin and Indications for Oil-gas Exploration

doi: 10.14027/j.issn.1000-0550.2021.072
Funds:

The Everest Scientific Research Program of Chengdu University of Technology 2021ZF11402

National Natural Science Foundation of China 41872109

  • Received Date: 2021-03-19
  • Rev Recd Date: 2021-05-19
  • Publish Date: 2021-12-10
  • The reconstruction of litho-paleogeography has an important role in understanding the evolution of sedimentary environments and the spatial distribution of sedimentary formations, and for hydrocarbon exploration. The unique location and evolution of structures caused complicated tectonic⁃sedimentary differentiation of the Permian in the Sichuan Basin. Previous studies have reported differences in their understanding of the original geographical pattern of the Permian in the Sichuan Basin. This has limited the prediction of favorable exploration facies belts in the Chihsia and Maokou Formations to a certain extent. In this study, the stratigraphy and sequence boundaries were interpreted from combined seismic and well log data and field data surrounding the Sichuan Basin. On this basis, the Chihsia Formation was divided into two third-order sequences, SQ1 and SQ2, and the Maokou Formation into three third-order sequences, SQ3, SQ4 and SQ5. Five paleogeographic maps were created based on the sedimentary facies evidence and characteristics of these 3rd-order sequences. These reveal that the tectonic features transitioned from the northeast of the Chihsia stage to the northwest of the Maokou stage. Tectonic-sedimentary differentiation features transition from the uplift and depression of the quasi-stable background in the Chihsia stage to platform/trough differentiation of the unstable background in the Maokou stage. The favorable exploration facies belt in the Chihsia Formation in the quasi-stable period was mainly due to the relatively flat landform, with slight uplift under water. The dolomite shoal facies is evident in a “belt and ring” structure. The unstable Maokou Formation was influenced by the regional extensional structural background and syndepositional normal fault activity. Favorable exploration facies belts occur in “trough and peninsula” structures. The platform margin between the Chihsia and Maokou periods marks the origin of shallow-water geomorphology. The favorable exploration areas are mainly in the backshore cloud shoal facies belt inside the margin. This differs from reef-sedimentary zones, where favorable exploration facies belts occur at the edge of the platform of a high-energy reef beach along the shore.
  • [1] 陈安清,侯明才,陈洪德,等. 中国海相碳酸盐岩勘探领域拓展历程及沉积学的基本驱动作用[J]. 沉积学报,2017,35(5):1054-1062.

    Chen Anqing, Hou Mingcai, Chen Hongde, et al. Marine carbonate exploration history and the basic driving action from sedimentology in China[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1054-1062.
    [2] 陈安清,杨帅,陈洪德,等. 陆表海台地沉积充填模式及内克拉通碳酸盐岩勘探新启示[J]. 岩石学报,2017,33(4):1243-1256.

    Chen Anqing, Yang Shuai, Chen Hongde, et al. The sedimentary filing model of epeiric platform and new inspiration of innercratonic carbonate for oil & gas exploration[J]. Acta Petrologica Sinica, 2017, 33(4): 1243-1256.
    [3] 陈安清,侯明才,林良彪,等. 上扬子地区寒武纪岩相古地理:对中国小陆块海相盆地演化特点及其控藏效应的启示[J]. 沉积与特提斯地质,2020,40(3):38-47.

    Chen Anqing, Hou Mingcai, Lin Liangbiao, et al. Cambrian lithofacies paleogeographic characteristics of the Upper Yangtze Block: Implications for the marine basin evolution and hydrocarbon accumulation of small-scale tectonic blocks in China[J]. Sedimentary Geology and Tethyan Geology, 2020, 40(3): 38-47.
    [4] 陈洪德,庞林,倪新锋,等. 中上扬子地区海相油气勘探前景[J]. 石油实验地质,2007,29(1):13-18.

    Chen Hongde, Pang Lin, Ni Xinfeng, et al. New brief remarks on hydrocarbon prospecting of marine strata in the Middle and Upper Yangtze region[J]. Petroleum Geology & Experiment, 2007, 29(1): 13-18.
    [5] 许国明,谢刚平,隆轲,等. 四川盆地西南部中二叠统沉积特征与勘探目标[J]. 天然气工业,2015,35(7):27-33.

    Xu Guoming, Xie Gangping, Long Ke, et al. Sedimentary features and exploration targets of Middle Permian reservoirs in the southwestern Sichuan Basin[J]. Natural Gas Industry, 2015, 35(7): 27-33.
    [6] 杨跃民,杨雨,文龙,等. 四川盆地中二叠统天然气勘探新进展与前景展望[J]. 天然气工业,2020,40(7):10-22.

    Yang Yueming,Yang Yu, Wen Long, et al. New exploration progress and prospect of Middle Permian natural gas in the Sichuan Basin[J]. Natural Gas Industry, 2020, 40(7): 10-22.
    [7] 郝毅,姚倩颖,田瀚,等. 四川盆地二叠系茅口组沉积特征及储层主控因素[J]. 海相油气地质,2020,25(3):202-209.

    Hao Yi, Yao Qianying, Tian Han, et al. Sedimentary characteristics and reservoir-controlling factors of the Permian Maokou Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(3): 202-209.
    [8] 杨雨,谢继容,赵路子,等. 四川盆地茅口组滩相孔隙型白云岩储层天然气勘探的突破及启示:以川中北部地区JT1井天然气立体勘探为例[J]. 天然气工业,2021,41(2):1-9.

    Yang Yu, Xie Jirong, Zhao Luzi, et al. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment: A case study of the tridimensional exploration of well JT1 in the central-northern Sichuan Basin[J]. Natural Gas Industry, 2021, 41(2): 1-9.
    [9] 王成善,陈洪德,寿建峰,等. 中国南方二叠纪层序地层划分与对比[J]. 沉积学报,1999,17(4):499-509.

    Wang Chengshan, Chen Hongde, Shou Jianfeng, et al. Characteristics and correlation of Permian depositional sequences in South China[J]. Acta Sedimentologica Sinica, 1999, 17(4): 499-509.
    [10] 陈洪德,田景春,刘文均,等. 中国南方海相震旦系—中三叠统层序划分与对比[J]. 成都理工学院学报,2002,29(4):355-379.

    Chen Hongde, Tian Jingchun, Liu Wenjun, et al. Division and correlation of the sequences of marine Sinian system to Middle Triassic series in the south of China[J]. Journal of Chengdu University of Technology, 2002, 29(4): 355-379.
    [11] 陈洪德,黄福喜,徐胜林,等. 中上扬子地区碳酸盐岩储层发育分布规律及主控因素[J]. 矿物岩石,2009,29(4):7-15.

    Chen Hongde, Huang Fuxi, Xu Shenglin, et al. Distribution rule and main controlling factors of the carbonate rock reservoirs in the Middle and Upper Yangtze region[J]. Journal of Mineralogy and Petrology, 2009, 29(4): 7-15.
    [12] 吴联钱,胡明毅,胡忠贵,等. 四川盆地中二叠统层序地层学研究[J]. 石油地质与工程,2010,24(6):10-13.

    Wu Lianqian, Hu Mingyi, Hu Zhonggui, et al. Study on the Middle Permian sequence stratigraphy of Sichuan Basin[J]. Petroleum Geology and Engineering, 2010, 24(6): 10-13.
    [13] 胡明毅,魏国齐,胡忠贵,等. 四川盆地中二叠统栖霞组层序—岩相古地理[J]. 古地理学报,2010,12(5):515-526.

    Hu Mingyi, Wei Guoqi, Hu Zhonggui, et al. Sequence-lithofacies palaeogeography of the Middle Permian Qixia Formation in Sichuan Basin[J]. Journal of Palaeogeography, 2010, 12(5): 515-526.
    [14] 胡明毅,胡忠贵,魏国齐,等. 四川盆地茅口组层序岩相古地理特征及储集层预测[J]. 石油勘探与开发,2012,39(1):45-55.

    Hu Mingyi, Hu Zhonggui, Wei Guoqi, et al. Sequence lithofacies paleogeography and reservoir prediction of the Maokou Formation in Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(1): 45-55.
    [15] 赵宗举,周慧,陈轩,等. 四川盆地及邻区二叠纪层序岩相古地理及有利勘探区带[J]. 石油学报,2012,33(增刊2):35-51.

    Zhao Zongju, Zhou Hui, Chen Xuan, et al. Sequence lithofacies paleogeography and favorable exploration zones of the Permian in Sichuan Basin and adjacent areas, China[J]. Acta Petrolei Sinica, 2012, 33(Suppl.2): 35-51.
    [16] 白晓亮,郗诚,和源,等. 四川盆地中二叠统栖霞组层序地层特征及沉积演化模式[J]. 东北石油大学学报,2020,44(6):33-42.

    Bai Xiaoliang, Xi Cheng, He Yuan, et al. Sequence stratigraphic characteristics and sedimentary evolution model of the Middle Permian Qixia Formation in the Sichuan Basin[J]. Journal of Northeast Petroleum University, 2020, 44(6): 33-42.
    [17] 胡笙,谭秀成,罗冰,等. 四川盆地西北部二叠系栖霞阶层序地层特征及地质意义[J]. 古地理学报,2020,22(6):1109-1126.

    Hu Sheng, Tan Xiucheng, Luo Bing, et al. Sequence stratigraphic characteristics and geological significance of the Permian Qixia stage in northwestern Sichuan Basin[J]. Journal of Palaeogeography, 2020, 22(6): 1109-1126.
    [18] 陈洪德,覃建雄,王成善,等. 中国南方二叠纪层序岩相古地理特征及演化[J]. 沉积学报,1999,17(4):510-521.

    Chen Hongde, Qin Jianxiong, Wang Chengshan, et al. Sequence-based lithofacies and paleogeographic characteristics and evolution of Permian in South China[J]. Acta Sedimentologica Sinica, 1999, 17(4): 510-521.
    [19] 陈宗清. 四川盆地中二叠统茅口组天然气勘探[J]. 中国石油勘探,2007,12(5):1-11.

    Chen Zongqing. Exploration for natural gas in Middle Permian Maokou Formation of Sichuan Basin[J]. China Petroleum Exploration, 2007, 12(5): 1-11.
    [20] 陈宗清. 论四川盆地中二叠统栖霞组天然气勘探[J]. 天然气地球科学,2009,20(3):325-334.

    Chen Zongqing. Discussion on gas exploration of Middle Permian Qixia Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2009, 20(3): 325-334.
    [21] 田景春,郭维,黄平辉,等. 四川盆地西南部茅口期岩相古地理[J]. 西南石油大学学报(自然科学版),2012,34(2):1-8.

    Tian Jingchun, Guo Wei, Huang Pinghui, et al. Lithofacies palaeogeography of Maokou Period in southwestern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(2): 1-8.
    [22] 杨光,汪华,沈浩,等. 四川盆地中二叠统储层特征与勘探方向[J]. 天然气工业,2015,35(7):10-16.

    Yang Guang, Wang Hua, Shen Hao, et al. Characteristics and exploration prospects of Middle Permian reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2015, 35(7):10-16.
    [23] 李大军,陈洪德,侯明才,等. 四川盆地中二叠世栖霞期—茅口期岩相古地理特征及其地球动力学机制探讨[J]. 地质科学,2019,54(4):1114-1134.

    Li Dajun, Chen Hongde, Hou Mingcai, et al. Lithofacies and paleogeographic characteristics of Middle Permian Qixia and Maokou Periods in Sichuan Basin and the geodynamic mecheanism[J]. Chinese Journal of Geology, 2019, 54(4): 1114-1134.
    [24] 邢凤存,陆永潮,郭彤楼,等. 碳酸盐岩台地边缘沉积结构差异及其油气勘探意义:以川东北早三叠世飞仙关期台地边缘带为例[J]. 岩石学报,2017,33(4):1305-1316.

    Xing Fengcun, Lu Yongchao, Guo Tonglou, et al. Sedimentary texture diversity of different carbonate platform margins and it its significance for petroleum exploration: A case study of carbonate platform margins in Feixianguan Period of the Early Triassic, NE Sichuan Basin, China[J]. Acta Petrologica Sinica, 2017, 33(4): 1305-1316.
    [25] 刘树根,李智武,孙玮,等. 四川含油气叠合盆地基本特征[J]. 地质科学,2011,46(1):233-257.

    Liu Shugen, Li Zhiwu, Sun Wei, et al. Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(1): 233-257.
    [26] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606.

    He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606.
    [27] 张启明,江新胜,秦建华,等. 黔北—渝南地区中二叠世早期梁山组的岩相古地理特征和铝土矿成矿效应[J]. 地质通报,2012,31(4):558-568.

    Zhang Qiming, Jiang Xinsheng, Qin Jianhua, et al. Lithofacies palaeogeography of the early Middle Permian Liangshan Formation in northern Guizhou-southern Chongqing area and its bauxite ore-forming effect[J]. Geological Bulletin of China, 2012, 31(4): 558-568.
    [28] 黄涵宇,何登发,李英强,等. 四川盆地及邻区二叠纪梁山—栖霞组沉积盆地原型及其演化[J]. 岩石学报,2017,33(4):1317-1337.

    Huang Hanyu, He Dengfa, Li Yingqiang, et al. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian[J]. Acta Petrologica Sinica, 2017, 33(4): 1317-1337.
    [29] 胡安平,潘立银,郝毅,等. 四川盆地二叠系栖霞组、茅口组白云岩储层特征、成因和分布[J]. 海相油气地质,2018,23(2):39-52.

    Hu Anping, Pan Liyin, Hao Yi, et al. Origin, characteristics and distribution of dolostone reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China[J]. Marine Origin Petroleum Geology, 2018, 23(2): 39-52.
    [30] 罗进雄,何幼斌,何明薇,等. 华南中二叠统眼球状石灰岩特征及成因的思考[J]. 古地理学报,2019,21(4):613-626.

    Luo Jinxiong, He Youbin, He Mingwei, et al. Thoughts on characteristics and origin of the Middle Permian eyeball-shaped limestone in South China[J]. Journal of Palaeogeography, 2019, 21(4): 613-626.
    [31] Chen Z Q, Jin Y, Shi G. Permian transgression-regression sequences and sea-level changes of South China[J]. Proceedings of the Royal Society of Victoria, 1998, 110(1/2): 345-367.
    [32] Chen Z Q, George A D, Yang W R. 2009. Effects of Middle-Late Permian sea-level changes and mass extinction on the Formation of the Tieqiao skeletal mound in the Laibin area, South China[J]. Australian Journal of Earth Sciences, 2009, 56(6): 745-763.
    [33] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
    [34] 黎荣,胡明毅,杨威,等. 四川盆地中二叠统沉积相模式及有利储集体分布[J]. 石油与天然气地质,2019,40(2):369-379.

    Li Rong, Hu Mingyi, Yang Wei, et al. Sedimentary facies model and favorable reservoir distribution of the Middle Permian in Sichuan Basin[J]. Oil & Gas Geology, 2019, 40(2): 369-379.
    [35] 张廷山,陈晓慧,刘治成,等. 峨眉地幔柱构造对四川盆地栖霞期沉积格局的影响[J]. 地质学报,2011,85(8):1251-1264.

    Zhang Tingshan, Chen Xiaohui, Liu Zhicheng, et al. Effect of Emeishan mantle plume over the sedimentary pattern of Mid-Permian Xixia Period in Sichuan Basin[J]. Acta Geologica Sinica, 2011, 85(8): 1251-1264.
    [36] 杨巍,张廷山,刘治成,等. 地幔柱构造的沉积及环境响应:以峨眉地幔柱为例[J]. 岩石学报,2014,30(3):835-850.

    Yang Wei, Zhang Tingshan, Liu Zhicheng, et al. Sedimentary and environmental responses to mantle plume: A case study of Emeishan mantle plume[J]. Acta Petrologica Sinica, 2014, 30(3): 835-850.
    [37] 江青春,胡素云,汪泽成,等. 四川盆地茅口组风化壳岩溶古地貌及勘探选区[J]. 石油学报,2012,33(6):949-960.

    Jiang Qingchun, Hu Suyun, Wang Zecheng, et al. Paleokarst landform of the weathering crust of Middle Permian Maokou Formation in Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2012, 33(6): 949-960.
    [38] 梅庆华,何登发,文竹,等. 四川盆地乐山—龙女寺古隆起地质结构及构造演化[J]. 石油学报,2014,35(1):11-25.

    Mei Qinghua, He Dengfa, Wen Zhu, et al. Geologic structure and tectonic evolution of Leshan-Longnvsi paleo-uplift in Sichuan Basin, China[J]. Acta Petrolei Sinica, 2014, 35(1): 11-25.
    [39] 苏旺,陈志勇,汪泽成,等. 川西地区中二叠统栖霞组沉积特征[J]. 东北石油大学学报,2016,40(3):41-50.

    Su Wang, Chen Zhiyong, Wang Zecheng, et al. Sedimentary characteristics of the Middle Permian Qixia Formation in the western Sichuan area[J]. Journal of Northeast Petroleum University, 2016, 40(3): 41-50.
    [40] 王欣欣. 川西北中二叠统栖霞组、茅口组碳酸盐岩储层沉积学[D]. 成都:成都理工大学,2017.

    Wang Xinxin. Sedimentological research on the carbonate reservoir of Chihsia and Maokou Formation in northwest Sichuan[D]. Chengdu: Chengdu University of Technology, 2017.
    [41] 王成善,李祥辉,陈洪德,等. 中国南方二叠纪海平面变化及升降事件[J]. 沉积学报,1999,17(4):536-541.

    Wang Chengshan, Li Xianghui, Chen Hongde, et al. Permian sea-level changes and rising-falling events in South China[J]. Acta Sedimentologica Sinica, 1999, 17(4): 536-541.
    [42] 黄先平,杨天泉,张红梅. 四川盆地下二叠统沉积相及其勘探潜力区研究[J]. 天然气工业,2004,24(1):10-12.

    Huang Xianping, Yang Tianquan, Zhang Hongmei, et al. Research on the sedimentary facies and exploration potential areas of Lower Permian in Sichuan Basin[J]. Natural Gas Industry, 2004, 24(1): 10-12.
    [43] 张玺华,陈聪,张亚,等. 川西北地区茅口组海槽相地质特征及其油气地质意义[J]. 天然气勘探与开发,2018,41(3):42-50.

    Zhang Xihua, Chen Cong, Zhang Ya, et al. Geological characteristics of trough facies, Maokou Formation, northwestern Sichuan Basin: Implications for geology[J]. Natural Gas Exploration and Development, 2018, 41(3): 42-50.
    [44] 张玺华,陈聪,黄婕,等. 四川盆地中二叠世广元—巴中拉张槽的发现及其油气地质意义[J]. 中国石油勘探,2019,24(4):466-475.

    Zhang Xihua, Chen Cong, Huang Jie, et al. The discovery of Middle Permian Guangyuan-Bazhong extensional trough in the Sichuan Basin and its petroleum geological significance[J]. China Petroleum Exploration, 2019, 24(4): 466-475.
    [45] 张亚,陈双玲,张晓丽,等. 四川盆地茅口组岩溶古地貌刻画及油气勘探意义[J]. 岩性油气藏,2020,32(3):44-55.

    Zhang Ya, Chen Shuangling, Zhang Xiaoli, et al. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin[J]. Lithologic Reservoirs, 2020, 32(3): 44-55.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1096) PDF downloads(196) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-03-19
  • Revised:  2021-05-19
  • Published:  2021-12-10

Paleogeographic Transition of the Permian Chihsia-Maokou Period in the Sichuan Basin and Indications for Oil-gas Exploration

doi: 10.14027/j.issn.1000-0550.2021.072
Funds:

The Everest Scientific Research Program of Chengdu University of Technology 2021ZF11402

National Natural Science Foundation of China 41872109

Abstract: The reconstruction of litho-paleogeography has an important role in understanding the evolution of sedimentary environments and the spatial distribution of sedimentary formations, and for hydrocarbon exploration. The unique location and evolution of structures caused complicated tectonic⁃sedimentary differentiation of the Permian in the Sichuan Basin. Previous studies have reported differences in their understanding of the original geographical pattern of the Permian in the Sichuan Basin. This has limited the prediction of favorable exploration facies belts in the Chihsia and Maokou Formations to a certain extent. In this study, the stratigraphy and sequence boundaries were interpreted from combined seismic and well log data and field data surrounding the Sichuan Basin. On this basis, the Chihsia Formation was divided into two third-order sequences, SQ1 and SQ2, and the Maokou Formation into three third-order sequences, SQ3, SQ4 and SQ5. Five paleogeographic maps were created based on the sedimentary facies evidence and characteristics of these 3rd-order sequences. These reveal that the tectonic features transitioned from the northeast of the Chihsia stage to the northwest of the Maokou stage. Tectonic-sedimentary differentiation features transition from the uplift and depression of the quasi-stable background in the Chihsia stage to platform/trough differentiation of the unstable background in the Maokou stage. The favorable exploration facies belt in the Chihsia Formation in the quasi-stable period was mainly due to the relatively flat landform, with slight uplift under water. The dolomite shoal facies is evident in a “belt and ring” structure. The unstable Maokou Formation was influenced by the regional extensional structural background and syndepositional normal fault activity. Favorable exploration facies belts occur in “trough and peninsula” structures. The platform margin between the Chihsia and Maokou periods marks the origin of shallow-water geomorphology. The favorable exploration areas are mainly in the backshore cloud shoal facies belt inside the margin. This differs from reef-sedimentary zones, where favorable exploration facies belts occur at the edge of the platform of a high-energy reef beach along the shore.

YANG Shuai, CHEN AnQing, ZHANG XiHua, LI Qian, XU ShengLin, CHEN Cong, SUN Shi, LI FuXiang, LUO Qian, WEN Long, CHEN HongDe. Paleogeographic Transition of the Permian Chihsia-Maokou Period in the Sichuan Basin and Indications for Oil-gas Exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477. doi: 10.14027/j.issn.1000-0550.2021.072
Citation: YANG Shuai, CHEN AnQing, ZHANG XiHua, LI Qian, XU ShengLin, CHEN Cong, SUN Shi, LI FuXiang, LUO Qian, WEN Long, CHEN HongDe. Paleogeographic Transition of the Permian Chihsia-Maokou Period in the Sichuan Basin and Indications for Oil-gas Exploration[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1466-1477. doi: 10.14027/j.issn.1000-0550.2021.072
  • 回顾中国碳酸盐岩的油气勘探历程,可主要划分为以下三个阶段:1)上世纪中后期以靖边气田为典型代表的寻找构造高部位的岩溶型碳酸盐岩油气藏;2)在步入21世纪后,以普光气田为典型代表的寻找台地边缘礁滩油气藏;3)2010年以来,逐渐拓展至寻找克拉通内幕白云岩油气藏新领域[1]。四川盆地是我国重要的油气能源基地,自20世纪60年代以来经历了复杂的勘探历程,当前的勘探正大举向克拉通内部拓展[2-3]。四川盆地二叠系栖霞—茅口组作为四川盆地的油气勘探重点层位,展现出巨大的勘探潜力和经济价值[4-8]。然而,由于不同学者选取资料的侧重点及对古构造背景的认识有所不同,不仅使得二叠系层序地层的划分方案尚存在较大差异[9-17],也造成了多种截然不同的岩相古地理编图方案和对当时构造—沉积格局的认识仍存在较大的分歧[18-23]。准确的层序地层划分与对比不仅是认识盆地地层充填过程与古地理格局重建的前提,也是认识碳酸盐岩台地发育演化模式和有利勘探相带预测的重要基础[24]。近年来,随着四川盆地钻探、取心资料以及野外工作的深入,为重新认识二叠系层序地层和古地理格局提供了良好的研究基础。鉴于此,作者基于野外露头、钻井岩心、测井资料及薄片等资料,在层序界面识别和层序划分的基础上,试图建立层序地层格架,明确地层充填过程,进而探讨盆地的构造—古地理演化及沉积相带展布,为寻找有利的油气勘探相带提供依据。

  • 四川盆地在构造上位于上扬子地区,是典型的多旋回性克拉通盆地[25-26]图1)。经历了漫长的地质演化历史,一般划分为6个构造—沉积旋回:扬子旋回(震旦纪)、加里东旋回(寒武纪—志留纪)、海西旋回(泥盆纪晚期—二叠纪晚期)、印支旋回(三叠纪—侏罗纪)、燕山旋回(侏罗纪—白垩纪晚期)、喜马拉雅旋回(白垩纪晚期—第三纪)。三叠纪的栖霞—茅口组沉积期处于海西旋回阶段。

    Figure 1.  Geotectonic outline and location of Sichuan Basin

    云南运动导致上扬子台地大范围抬升剥蚀,使得四川盆地及其邻区普遍缺失下二叠统地层。梁山组是海侵初期由陆到海转换的产物,为一套厚度不大的风化壳之上的陆源碎屑含煤组合,部分地区发育残积的铝土质页岩,在四川盆地及其邻区广泛发育[27]。栖霞组沉积期,上扬子地区发生了大规模的海侵,主要发育一套稳定的浅海碳酸盐岩沉积[28]。栖霞组底部以发育泥晶灰岩为主,局部地区可见纹层状、斑状白云质灰岩;中上部主要发育泥晶灰岩、颗粒灰岩、晶粒白云岩[29]。茅口组主要由泥晶灰岩、颗粒灰岩组成,其底部发育“眼球眼皮”灰岩[30]。中二叠世末,由于峨眉山大火成岩省事件、东吴运动和全球海平面下降事件,导致上扬子台地茅口组与上覆乐平统地层之间普遍呈平行不整合接触[31-33]

  • 识别层序界面是划分层序的基础,本研究在36个野外露头和400余口测井资料的基础上,结合地震格架剖面,开展了梁山—栖霞—茅口组系统的层序界面识别。层序界面识别标志主要有古风化壳、岩溶作用面、火山事件面、不整合面和岩性—岩相转换面。

  • 在云南运动造成的区域风化壳的基础上,随着海侵的到来,海水从盆地西北、东南两个方向侵入,形成了以含煤碎屑岩沉积为主的梁山组地层,覆盖在石炭系或更老地层之上,是海侵初期由陆到海转换的产物[27-28]。四川盆地梁山组与下伏地层的不整合界面,是典型的Ⅰ型层序界面[17,34]。该界面是一个地层穿时面,覆盖的地层包括石炭系、泥盆系、奥陶系、寒武系多套地层。随着海平面上升,上扬子地区全部被海水淹没,沉积环境转变为栖霞组的广阔的碳酸盐岩台地沉积。梁山组碎屑沉积偶夹灰岩向上逐渐过渡为栖霞组台地碳酸盐岩沉积(图2a),是连续海侵过程的产物,因此梁山组与栖霞组的界面并非三级层序界面[9,15,17,28]

    Figure 2.  Sequence boundary characteristics of Chihsia⁃Maokou Formations in Sichuan Basin

  • 在不整合面不发育或难以识别的地层中,划分和对比层序地层的关键是准确识别岩性—岩相转换面。综合对比多类型测井曲线发现,利用以自然伽马(GR)曲线为主,电阻率(RT)曲线与冲洗带电阻率(RXO)曲线结合的测井响应序列,能够较为准确的对四川盆地栖霞—茅口组内部进行层序地层划分和对比。GR曲线可以灵敏反映泥质含量和岩石粒序粗细的变化趋势。栖霞组从底部以发育泥质含量较高的泥晶灰岩和颗粒灰岩转换为上部的白云岩、颗粒灰岩,形成了栖霞组内部的一个岩性—岩相转换面。该转换面在大部分钻井以白云岩的出现为标志。栖霞组和茅口组之间,是第二个岩性—岩相转换面,该界面表现为栖霞组浅灰色颗粒灰岩向茅口组一段的区域性发育的泥质含量较高的“眼球眼皮”灰岩(图2b)。茅口组一段和茅口组二段C亚段,是一套泥质含量较高的灰岩,构成一个层序。其与上覆的茅口组二段的B、A亚段和茅口组三段在岩性—岩相上亦存在明显从转换关系,泥质含量明显降低,颗粒含量相对较高,是茅口组内部的第一个岩性—岩相转换面。茅口组四段则以出现大量硅质结核和硅质条带为特征,颗粒含量降低、泥质含量增多,与下伏的三段亦是一个岩性—岩相转换面。这些岩性—岩相转换面是非常明显的,在野外露头和绝大部分钻井上都很容易识别,属于Ⅱ型层序界面。

  • 受东吴运动、峨眉地幔柱上升和海平面快速下降的影响,在火山尚未喷发之前,茅口组便暴露地表而遭受风化剥蚀,与上二叠统地层之间沉积了一套风化残积物,即“王坡页岩”(图2c),是可作区域对比的等时界面。随后,由于峨眉山玄武岩喷发,在川西南地区厚度巨大的玄武岩不整合覆盖于茅口组之上(图2d)。茅口组顶部的风化壳或与火山岩喷发不整合接触面可作为层序界面的识别标志,该界面属于Ⅰ型层序界面。

  • 依据上述层序界面的识别标志,四川盆地中二叠统的单井测井曲线中的自然伽马曲线(GR)和电阻率曲线(RT/RXO)和野外露头开展了详细的层序地层分析,确立了层序地层划分方案,梁山—栖霞组识别出SQ1和SQ2两个三级层序,茅口组识别出三个三级层序:SQ3、SQ4和SQ5(图3)。

    Figure 3.  Sequence division scheme of well ZG1

    前文已经对各层序的岩性—岩相进行了阐述,在此对研究用到的主要资料点测井曲线进行详述:SQ1层序的GR呈现持续递减趋势,RT/RXO曲线呈钟型;SQ2层序的GR曲线转变为平滑齿状低值,RT/RXO曲线呈指状高值;SQ3层序的GR值明显由SQ2层序的低值转变为指状高值;SQ4层序的GR曲线转变为箱型低值;SQ5层序的GR值相对较高,曲线呈漏斗型。研究区中二叠统400余口资料井中超过90%的井都有类似特征,自然伽马曲线和电阻率曲线具有全区可对比性,据此建立了层序地层格架(图4)。SQ1—SQ3层序地层厚度相对均一,为稳定克拉通沉积背景,SQ4—SQ5层序地层厚度差异较大,反应茅口组沉积的中—晚期发生构造—沉积分异作用。然而部分测井曲线对比不太一致的井,大多与茅口组中晚期构造—沉积分异有关,即部分钻遇在深水相井的测井曲线的岩性—岩相转换与浅水台地区的存在不一致,但是从沉积旋回上看,仍然能够识别出5个旋回,即能够通过旋回性与浅水相的钻井进行对比。

    Figure 4.  Sequence correlation map of Chihsia⁃Maokou Formations in the Sichuan Basin

  • 本文根据15条野外剖面实测、21条野外剖面观测和32口钻井的岩心观察,对沉积相标志进行分析,建立了沉积相划分方案。在岩心—测井沉积相分析基础上,对400余口测井资料开展了测井相分析。在层序格架内依据优势相和特殊相法则确定了各资料点每个层序的沉积相类型及特征,结合层序厚度约束,编制了各层序的层序岩相古地理图(图5)。

    Figure 5.  Lithofacies paleogeographic maps of Chihsia⁃Maokou periods in the Sichuan Basin

  • 受云南运动及风化剥蚀的影响,四川盆地在中二叠统沉积之前基本准平原化,在盆地周缘形成微隆起,内部形成坳陷,为克拉通坳陷盆地[35-36]。随着海侵的到来和持续扩大,海水主要从盆地东北部、南部两个方向侵入,形成了以含煤碎屑岩沉积为主的梁山组地层,披覆在石炭系或更老地层之上,梁山组是海侵初期由陆到海转换的产物[27-28]。随着海侵作用的加速,海平面迅速上升,上扬子地区全部被海水淹没,四川盆地在栖霞组沉积期形成了广阔的碳酸盐岩台地沉积。受四川盆地在二叠系沉积前古地貌呈西南高、北东低的影响[14,37-39],有一定程度的自南部—东部向西—西南方向的超覆。由于隆起的围限作用和整体的浅水地貌,盆地内部主体属于局限台地—半开阔台地沉积环境,岩性以灰色泥晶灰岩、含生屑颗粒灰岩为主(图5a)。川西地区为浅的水下隆起,形成了台缘浅滩环境;受康滇古陆的影响,盆地西南缘的栖霞组底部的灰岩中混杂有陆源石英。盆地北缘和西缘快速向斜坡和深水盆地转换。从峨眉—邛崃—雅安—都江堰—江油—剑阁一线的条带状台缘浅滩展布来看,该时期盆地的构造形迹主体呈北东向。该时期古地理格局整体上较为稳定,是碳酸盐台地逐渐建设成型阶段。

  • SQ2沉积期基本继承了SQ1沉积期的构造古地理格局,仍然表现为浅水陆表海的背景。该时期海平面总体呈缓慢下降趋势[40],沉积相带的分异特征更为明显。台地上气候适宜、营养充分、阳光充裕,有利于碳酸盐岩生长,是栖霞组沉积期乃至中二叠世的主要成滩期。西部的峨眉—邛崃—雅安—都江堰—江油—剑阁一线仍然发育条带状台的台缘浅滩,在浅滩内侧为局限环境背景下的席状云质滩体;在克拉通内部发育水体能量相对较高的云质浅滩带,宏观形态上呈“C”型分布。通过分析栖霞组沉积前的古地貌特点,该浅滩带明显受控于奥陶系、志留系地层的尖灭线,即与不整合面上的岩性差异造成的地貌坡折有关(图5b)。

  • 茅口组沉积早期,华南发生了整个二叠纪甚至晚古生代以来的区域最大海泛事件[41]。海侵方向主要来自东南,即由鄂西和黔北向西北方向侵入,其次由秦岭洋经川北侵入,再次则由西向东通过龙门山古岛链侵入[42]。四川盆地整体上由SQ2沉积期的浅水局限台地—半开阔台地转化为开阔台地—淹没台地,但依然保持了与栖霞组类似的北东向相带展布格局。该时期的一个显著特点是大面积地发育瘤状灰岩,由其形态特征而俗称“眼皮眼球”灰岩。“眼皮眼球”灰岩在川西北地区的颜色较浅,往川东南方向颜色变深。川东南地区颜色较深的“眼皮眼球”灰岩有机质含量较高,作为一种自生自储的特殊类型具有一定的勘探潜力(图5c)。

  • 茅口组SQ4沉积期,岩相古地理图揭示的沉积相带展布发生了明显的改变,由此前的北东向展布转换为北西向展布(图5d),指示出盆地构造体制及其形成的构造形迹的转变。伴随全球海退的发生,海平面的缓慢下降,四川盆地大部分地区再次成为水体相对较浅、能量较高的开阔台地—半开阔台地。台地上发育众多大小不一的浅滩。该时期另外一个显著特点是,相对水深的含硅质结核灰岩开始出现在北部的剑阁—巴中—宣汉一带,呈槽型分布。该深水槽西南翼的台地发育北西向条带状的台缘浅滩。同时,在研究区南部屏山—古蔺—赤水—泸州—江津一带沿基底断裂带展布方向发育一呈半岛状分布的台内浅滩带。

  • 全球海平面从罗德期(茅口组中部)开始缓慢下降,直至卡匹敦晚期(茅口组顶部)快速下降,全球海平面下降到了地质历史时期的最低点[33]。同时受峨眉地幔柱上升的影响,茅口组沉积末期华南的古地理格局发生巨变,古陆规模和浅水面积扩大,右江盆地四周隆起形成新的孤岛和古陆,康滇古陆向东扩张,同时,江南古陆和云开古陆也隆升出水面,深水盆地向西南方向收缩[41]。四川盆地的茅口组虽然仍广泛发育开阔台地和浅滩,但生物碎屑和颗粒含量明显降低,而泥质含量却升高,特别是以发育大量硅质条带和硅质结核为特征。在西北乡—巴中一带深水相带更为发育,指示了明显的构造—沉积分异,这可能是峨眉山大火成岩省前期隆升造成的远端张性裂陷槽(图5e)。

  • 中二叠世早期,中国南方整体处于海侵背景,栖霞期海水逐渐向加里东形成的古隆起地貌超覆。川西地区继承了前期龙门山边缘裂陷的古构造格局,受裂陷盆地边缘同沉积断层的控制,形成克拉通边缘低幅水下隆起,向裂陷盆地一侧快速变为陆棚—斜坡相沉积。在克拉通边缘浅水地貌的基础上发育台缘浅滩相,同时在克拉通内部发育受加里东期古地貌“后效作用”影响的半环形斜坡上的台内浅滩相。总体上,沉积相带呈北东向展布,为水体相对较浅的陆表海背景,构造—沉积分异作用相对较弱,表现为稳定背景的隆—坳分异。至层序SQ4期,沉积相带展布发生了90°的转变,由原来的北东向转变为北西向为主,表现最为明显的体现在研究区北部的“西北乡—巴中—宣汉”一带的北西向深水相带。岩相古地理编图揭示出的沉积相带展布的变化,指示了栖霞组沉积期向茅口组沉积期演化过程中构造—沉积格局的转换。栖霞组沉积前为构造相对稳定背景下的陆表海“隆—坳”分异,而茅口组沉积期则为构造背景相对活跃的“台—槽”分异。导致这种转换最为关键的因素很可能是峨眉地幔柱的隆升活动造成的,促使了上扬子地台内部的隐伏基底断裂发生张性复活,从而造成同沉积断裂作用或沉陷作用,并形成深水区(图6),这在地震剖面所揭示的地层结构上也有相应的响应[23]。因此,在全球海平面下降的背景下,在扬子地区内部“剑阁—巴中—宣汉”一带发育了一套深色的泥晶灰岩、泥质灰岩、泥岩、硅质岩建造,地层上可以扬子北缘的孤峰组对比,与茅口组顶部地层为同时异相沉积[23,43-45]

    Figure 6.  Tectonic sedimentary⁃differentiation evolutionary model of the Chihsia⁃Maokou periods in the Sichuan Basin

    四川盆地及邻区由栖霞期准稳定背景的隆—坳分异向茅口期非稳定背景的台—槽分异转换,造成了两个不同时期的主要勘探有利相带上的差异。这种构造背景的相互转换是我国小型克拉通的一个典型现象[8],造成了不同层位构造—沉积分异模式的差异和勘探思路的变换。栖霞组的勘探目标主要是局限环境的席状分布的层状白云岩,有利相带主要为川西龙门山“L”型白云质台缘浅滩和克拉通内部的“C”型台内环状白云质台内浅滩,简称为“一带一环”(图5b深蓝色虚线圈定区)。在栖霞组“L”型白云质台缘浅滩带和“C”型台内环状白云质台内滩范围内已有多口钻井均获得勘探新突破,包括盆地西北缘的ST1井栖霞组获气87.6万方、ST3井和ST8井均获得工业气流,西南缘的PT1井栖霞组获66.86万方气,川中高磨地区的GS18井、MX42井和MX31X1井等亦获得高产工业气流。

    茅口组的勘探目标则主要以层序SQ4的浅滩为主,茅口组的有利勘探相带主要有北部“剑阁—巴中—宣汉”台内深水槽西南翼的台地边缘浅滩和盆地南部“屏山—古蔺—赤水—泸州—江津”一带半岛状分布的浅滩,其控制因素简称为“一槽一半岛”(图5d深蓝色虚线圈定区)。这一认识推动了茅口组勘探由早期以顶部岩溶储层向中部滩相储层的转变,并实现了多个滩相储层的勘探突破,包括北部的YB7井、WT1井、CS1井、GC2井等以及位于南部“半岛”滩范围内的YJ2井。

    另一方面,基于与四川盆地上二叠统长兴组的沉积建造的对比分析,揭示出栖霞—茅口组有利勘探相带具有明显的不同,长兴组的储层以镶边台地的边缘礁滩组合为特征,储层发育在面向深水一侧的高能相带,有利储层发育的相带具有明显的加厚现象。而栖霞—茅口组的台地边缘性质是先成浅水地貌成因的边缘,有利勘探区主要分布在边缘内侧的岸后云质浅滩相带,一般呈厚度较为均匀的席状分布,这完全不同于长兴组由礁滩沉积铸造的镶边台地边缘高能礁滩体。

  • (1) 基于野外地质露头、钻测井资料和骨干地震剖面,将四川盆地中二叠统栖霞阶划分为SQ1和SQ2两个三级层序,茅口阶划分为SQ3—SQ5三个三级层序,每个三级层序内部可分为海侵体系域(TST)和高位体系域(HST),五个层序在横向上具有很好的可对比性。

    (2) 岩相古地理编图揭示中二叠世的构造—沉积格局由栖霞组沉积期准稳定背景的隆—坳分异型向茅口组沉积期非稳定背景的台—槽分异转换,沉积相带在准稳定期以盆内低幅隆起地貌控制为主,非稳定期则受控于区域张裂构造背景及同沉积正断裂的活动。

    (3) 栖霞组的有利勘探相带以SQ2下部的白云岩浅滩为主,呈现出“一带一环”的发育分布特征,茅口组有利勘探相带以中部层序SQ4的浅滩为主,受“一槽一半岛”的控制。

Reference (45)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return