Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

ZHANG Yi, CHEN Long, LI Jian, WANG DongGe, WU QingMing, WEI Yi, SHI Qiang, KUANG HongWei, LIU YongQing, LIAO ZhiWei. Preliminary Study of Manganese Carbonate Microbialite Sedimentary Environment of the Doushantuo Formation in Northeast Chongqing[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1387-1405. doi: 10.14027/j.issn.1000-0550.2021.066
Citation: ZHANG Yi, CHEN Long, LI Jian, WANG DongGe, WU QingMing, WEI Yi, SHI Qiang, KUANG HongWei, LIU YongQing, LIAO ZhiWei. Preliminary Study of Manganese Carbonate Microbialite Sedimentary Environment of the Doushantuo Formation in Northeast Chongqing[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1387-1405. doi: 10.14027/j.issn.1000-0550.2021.066

Preliminary Study of Manganese Carbonate Microbialite Sedimentary Environment of the Doushantuo Formation in Northeast Chongqing

doi: 10.14027/j.issn.1000-0550.2021.066
Funds:

International Innovation Resources Cooperation Project from Beijing Science and Technology Committee Z201100008320007

National Natural Science Foundation of China 42072135

China Geological Survey Project 121201004000150017-91

The Mineral Geological Survey of Chengkou Manganese Ore Concentration Area in Chongqing DD20190166-18

  • Received Date: 2021-02-17
  • Rev Recd Date: 2021-05-06
  • Publish Date: 2021-12-10
  • Sedimentary manganese carbonates, especially the black shale type, are generally considered to have been deposited in a deepwater, restricted and reductive sedimentary environment. Deposits of manganese carbonate are well developed in the black shale near the top of the Ediacaran Doushantuo Formation in the Chengkou area of the northern Yangtze Craton. The black shale host rock and cerium anomaly of manganese carbonates is thought to be vital evidence of the sedimentary environment of manganese carbonates, but there is a lack of systematic sedimentological evidence, with the result that the sedimentary environment of the manganese carbonates in the Chengkou area remains controversial. In this study, the sedimentary textures and structures of the manganese carbonates in this area are described in detail, based on field and core observations and thin section microscopy. This work included a detailed sedimentological study of the Chengkou manganese deposit, and a model of the sedimentary environment was constructed. It was found that the Chengkou manganese carbonate deposit is mainly layered, and contains well-developed stromatolites, oncolites, thrombolites and dendrolites. The frequent bonding growth of the oncolites indicates that the Chengkou manganese deposits are typical microbialites with several kinds of microstructure: clotted, spherical, filamentous, tubular, fibrous and radial. The sedimentary records from drill cores show alternate deposits of rhodochrosite and collophanite. In the rhodochrosite, all types of microbialite are deposited cyclically. Normal grain bedding and intraclast layers indicative of stronger hydrodynamic force are rarely recorded. The collophanites are characterized by intraclast depositions in a strong hydrodynamic environment and often overlie the rhodochrosites, evidence of the cyclic sedimentary nature of the series of manganese-bearing rock to phosphorus-bearing rock and indicates gradually shallowing sedimentary water at the end of the Doushantuo Formation in the Chengkou area. When considered together with the sedimentary characteristics of the Doushantuo Formation in adjacent areas, Member I of the formation in the Chengkou area evidently developed a barrier-free coastal sedimentary system without a dolomite cap. Member II was a carbonate ramp sedimentary system with mixed siliciclastic sediments. The manganese carbonate microbialites mainly developed in the barrier and bonding reef sedimentary environment in the lower part of the inner carbonate ramp. It is notable that the development of barriers and bonding reefs at the end of the Doushantuo Formation was an important dynamic factor in the evolution of the sedimentary basin in the study area, promoting the evolving regional sedimentary system from carbonate ramp to carbonate platform.
  • [1] Xiang J, Chen J P, Bagas L, et al. Southern China's manganese resource assessment: An overview of resource status, mineral system, and prediction model[J]. Ore Geology Reviews, 2020, 116: 103261.
    [2] Yu W C, Algeo T J, Du Y S, et al. Genesis of Cryogenian Datangpo manganese deposit: Hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 321-337.
    [3] 刘虎,李庆宏,陈艳,等. 湖南桃江响涛源锰矿地球化学特征及其成因意义[J]. 地质与勘探,2019,55(3):712-722.

    Liu Hu, Li Qinghong, Chen Yan, et al. Geochemical characteristics and genetic significance of the Xiangtaoyuan manganese deposit in Taojiang county, Hunan province[J]. Geology and Exploration, 2019, 55(3): 712-722.
    [4] Gao J B, Yang R D, Xu H, et al. Genesis of Permian sedimentary manganese deposits in Zunyi, Guizhou province, SW China: Constraints from geology and elemental geochemistry[J]. Journal of Geochemical Exploration, 2018, 192: 142-154.
    [5] 杜秋定,伊海生,惠博,等. 滇东南中三叠统法郎组锰矿床成因的新认识[J]. 地质论评,2010,56(5):673-682.

    Du Qiuding, Yi Haisheng, Hui Bo, et al. A new recognition about genesis of manganese ore deposits in the Falang Formation of Middle Triassic, southeastern Yunnan[J]. Geological Review, 2010, 56(5): 673-682.
    [6] 刘文佳,李志群,梁秋原,等. 云南省鹤庆县小天井锰矿的地质特征及盆地控制[J]. 地球学报,2013,34(增刊):151-156.

    Liu Wenjia, Li Zhiqun, Liang Qiuyuan, et al. Geological characteristic and basin control of the Xiaotianjing manganese ore deposit in Heqing county of Yunnan province[J]. Acta Geoscientia Sinica, 2013, 34(Suppl.1): 151-156.
    [7] 贾伟,陈翠华,张自贤,等. 重庆高燕锰矿床成矿物质来源及沉积环境[J]. 科学技术与工程,2020,20(5):1724-1733.

    Jia Wei, Chen Cuihua, Zhang Zixian, et al. Ore-forming material source and sedimentary environment of Gaoyan manganese deposit in Chongqing[J]. Science Technology and Engineering, 2020, 20(5): 1724-1733.
    [8] 郑发模. 城口震旦系岩石学特征及沉积环境分析[J]. 成都地质学院学报,1990,17(4):81-89.

    Zheng Famo. The characteristics of the petrology and sedimentary environments of the Sinian in the Chengkou area, northern Sichuan province[J]. Journal of Chengdu College of Geology, 1990, 17(4): 81-89.
    [9] 赵东旭. 四川城口陡山沱组的Epiphyton锰质叠层石[J]. 科学通报,1992,37(20):1873-1875.

    Zhao Dongxu. Epiphyton manganese stromatolites from Doushantuo Formation in Chengkou, Sichuan province[J]. Chinese Science Bulletin, 1992, 37(20): 1873-1875.
    [10] 田孟,李建,顾文帅,等. 重庆市城口高燕矿区锰矿沉积相特征及成矿条件[J]. 矿产勘查,2020,11(8):1658-1663.

    Tian Meng, Li Jian, Gu Wenshuai, et al. Characteristics of sedimentary facies and metallogenic conditions of Gaoyan manganese deposit in Chengkou, Chongqing[J]. Mineral Exploration, 2020, 11(8): 1658-1663.
    [11] 范德廉,张煮,叶杰. 中国的黑色岩系及其有关矿床[M]. 北京:科学出版社,2004:1-441.

    Fan Delian, Zhang Zhu, Ye Jie. Chinese black rock series and relevant deposits[M]. Beijing: Science Press, 2004: 1-441.
    [12] 陈龙,张懿,李建,等. 重庆城口锰矿红籽矿区地质特征及控矿因素分析[J]. 地质与勘探,2020,56(5):915-927.

    Chen Long, Zhang Yi, Li Jian, et al. Geological characteristics and ore controlling factors of the Hongzi mining area in the Chengkou manganese deposit, Chongqing[J]. Geology and Exploration, 2020, 56(5): 915-927.
    [13] 王尧,戴永定,陈孟莪. 重庆城口锰矿床的地质特征及其成因的再认识[J]. 地质科学,1999,34(4):451-462.

    Wang Yao, Dai Yongding, Chen Meng’e. Re-examination of geological features of manganes carbonate deposits and their genesis in Chengkou county, Chongqing[J]. Scientia Geologica Sinica, 1999, 34(4): 451-462.
    [14] Wang Z C, Liu J J, Jiang H, et al. Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the Middle-Upper Yangtze region, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(1): 41-53.
    [15] 周晓峰,杨风丽,杨瑞青,等. 扬子克拉通埃迪卡拉系陡山沱组构造—岩相古地理恢复及油气意义[J]. 古地理学报,2020,22(4):647-662.

    Zhou Xiaofeng, Yang Fengli, Yang Ruiqing, et al. Tectonic-lithofacies palaeogeographic reconstruction of the Yangtze Craton of the Ediacaran Doushantuo Formation and its oil and gas significance[J]. Journal of Palaeogeography, 2020, 22(4): 647-662.
    [16] Xiao D, Cao J, Luo B, et al. Neoproterozoic postglacial paleoenvironment and hydrocarbon potential: A review and new insights from the Doushantuo Formation Sichuan Basin, China[J]. Earth-Science Reviews, 2021, 212: 103453.
    [17] 李智武,冉波,肖斌,等. 四川盆地北缘震旦纪—早寒武世隆—坳格局及其油气勘探意义[J]. 地学前缘,2019,26(1):59-85.

    Li Zhiwu, Ran Bo, Xiao Bin, et al. Sinian to Early Cambrian uplift-depression framework along the northern margin of the Sichuan Basin, central China and its implications for hydrocarbon exploration[J]. Earth Science Frontiers, 2019, 26(1): 59-85.
    [18] Wang H, Li Z W, Liu S G, et al. Ediacaran extension along the northern margin of the Yangtze Platform, South China: Constraints from the lithofacies and geochemistry of the Doushantuo Formation[J]. Marine and Petroleum Geology, 2020, 112: 104056.
    [19] Fan D L, Ye J, Yin L M, et al. Microbial processes in the Formation of the Sinian Gaoyan manganese carbonate ore, Sichuan province, China[J]. Ore Geology Reviews, 1999, 15(1/2/3): 79-93.
    [20] 陈佳,朱明忠,董树义,等. 重庆高燕锰矿床含锰碳酸盐岩稀土元素特征[J]. 地质找矿论丛,2017,32(3):367-374.

    Chen Jia, Zhu Mingzhong, Dong Shuyi, et al. REE characteristics of Mn-bearing carbonate rocks in Gaoyan manganese deposit, Chongqing[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(3): 367-374.
    [21] 张自贤,朱明忠,冉瑞清,等. 陕西镇巴—重庆城口锰矿沉积环境及成矿作用[J]. 地质科技情报,2018,37(5):139-147.

    Zhang Zixian, Zhu Mingzhong, Ran Ruiqing, et al. Sedimentary environment and mineralization for the manganese ore deposits from Zhenba, Shaanxi to Chengkou, Chongqing[J]. Geological Science and Technology Information, 2018, 37(5): 139-147.
    [22] 吴信雍,李余生,朱明忠,等. 重庆高燕锰矿床的主量元素特征及其成因意义[J]. 科学技术与工程,2015,15(17):109-112.

    Wu Xinyong , Li Yusheng , Zhu Mingzhong, et al. Characteristics of major elements in Gaoyan manganese deposits, Chongqing city and its genetic significance[J]. Science Technology and Engineering, 2015, 15(17): 109-112.
    [23] Li J H, Zhang Y Q, Dong S W, et al. Structural and geochronological constraints on the Mesozoic tectonic evolution of the North Dabashan zone, South Qinling, central China[J]. Journal of Asian Earth Sciences, 2013, 64: 99-114.
    [24] Dong Y P, Santosh M. Tectonic architecture and multiple orogeny of the Qinling orogenic belt, central China[J]. Gondwana Research, 2016, 29(1): 1-40.
    [25] Li S Z, Jahn B M, Zhao S J, et al. Triassic southeastward subduction of North China Block to South China Block: Insights from new geological, geophysical and geochemical data[J]. Earth-Science Reviews, 2017, 166: 270-285.
    [26] Li J X, Li Z W, Liu S G, et al. Kinematics of the Chengkou fault in the south Qinling orogen, central China[J]. Journal of Structural Geology, 2018, 114: 64-75.
    [27] Cui K, Wang Y X. RETRACTED: Structural styles and origin of the Dabashan foreland arcuate belt and basin-mountain system in central China[J]. Journal of Asian Earth Sciences, 2019, 176: 244-252.
    [28] Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 1987, 2(3): 241-254.
    [29] Awramik S M, Grey K. Stromatolites: Biogenicity, biosignatures, and bioconfusion[C]//Proceedings of SPIE 5906, astrobiology and planetary missions. San Diego, California, United States: SPIE, 2005: 59060P-1-59060P-9.
    [30] 吴亚生,姜红霞,虞功亮,等. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因[J]. 古地理学报,2018,20(5):737-775.

    Wu Yasheng, Jiang Hongxia, Yu Gongliang, et al. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J]. Journal of Palaeogeography, 2018, 20(5): 737-775.
    [31] Walter M R. Stromatolites. Developments in sedimentology[M]. Amsterdam: Elsevier, 1976: 1-790.
    [32] Semikhatov M A. Experience in stromatolite studies in the U.S.S.R.[J]. Developments in Sedimentology, 1976, 20: 337-357.
    [33] Grey K, Awramik S M. Handbook for the study and description of microbialites, bulletin 147[M/OL]. Australia: Geological Survey of Western Australia, 2020: 1-278[2021.2.17]. http://www.dmp.wa.gov.au/Geological-Survey/Handbook-for-the-study-and- 26950.aspx.
    [34] Shapiro R S. A comment on the systematic confusion of thrombolites[J]. PALAIOS, 2000, 15(2): 166-169.
    [35] Riding R. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(Suppl.1): 179-214.
    [36] Chen Z Q, Tu C Y, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic[J]. Earth-Science Reviews, 2019, 189: 21-50.
    [37] Dupraz C, Visscher P T, Baumgartner L K, et al. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 2004, 51(4): 745-765.
    [38] 汤冬杰,史晓颖,蒋干清,等. 中元古代微指状叠层石:超微组构和有机矿化过程[J]. 地质论评,2012,58(6):1001-1016.

    Tang Dongjie, Shi Xiaoying, Jiang Ganqing, et al. Mesoproterozoic microdigitate stromatolites: Ultra-fabrics and organomineralization[J]. Geological Review, 2012, 58(6): 1001-1016.
    [39] Tang D J, Shi X Y, Jiang G Q, et al. Microfabrics in Mesoproterozoic microdigitate stromatolites: Evidence of biogenicity and organomineralization at micron and nanometer scales[J]. PALAIOS, 2013, 28(3): 178-194.
    [40] Polgári M, Hein J R, Vigh T, et al. Microbial processes and the origin of the Úrkút manganese deposit, Hungary[J]. Ore Geology Reviews, 2012, 47: 87-109.
    [41] Maynard J B. Manganiferous sediments, rocks, and ores[M]//Holland H D, Turekian K K. Treatise on geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 327-349.
    [42] Johnson J E, Webb S M, Ma C, et al. Manganese mineralogy and diagenesis in the sedimentary rock record[J]. Geochimica et Cosmochimica Acta, 2016, 173: 210-231.
    [43] Kuleshov V N. Isotope geochemistry: The origin and formation of manganese rocks and ores[M]. Amsterdam: Elsevier, 2017: 1-427.
    [44] Kuleshov V N, Zhegallo E A, Shkol'nik E L. Evolution of manganese ore genesis in the earth's geological history and the role of the biosphere[J]. Doklady Earth Sciences, 2011, 441(2): 1611-1615.
    [45] Tang S Y, Liu T B. Origin of the Early Sinian Minle manganese deposit, Hunan province, China[J]. Ore Geology Reviews, 1999, 15(1/2/3): 71-78.
    [46] 郑钰纯. 民乐锰矿生物矿物学特征初步研究[J]. 矿物学报,1986,6(1):36-43.

    Zheng Yuchun. A preliminary study on biomineralogical characteristics of manganese ore from mingle, west Hunan[J]. Acta Mineralogica Sinica, 1986, 6(1): 36-43.
    [47] 徐兆良. 湘潭晚前寒武纪条带状含锰建造中的化石藻类[J]. 植物学报,1987,29(1):104-110.

    Xu Zhaoliang. Algal fossils from Late Precambrian Banded Manganese Formation (BMF), Xiangtan, Hunan province of China[J]. Acta Botanica Sinica, 1987, 29(1): 104-110.
    [48] 郑光夏,刘巽锋. 贵州震旦纪沉积菱锰矿床的藻类成矿作用及其成岩序列[J]. 贵州地质,1987,4(3):339-350.

    Zheng Guangxia, Liu Xunfeng. The algae mineralization of the sedimentary dialogite deposits of Sinian and its diagenetic succession, Guizhou province[J]. Geology of Guizhou, 1987, 4(3): 339-350.
    [49] Yin L M. Microfossils from Late Proterozoic manganese ore deposits in western Hunan province and eastern Guizhou province, South China[J]. Science in China (Series B), 1990, 33(6): 88-96.
    [50] Roy S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system[J]. Earth Science Reviews, 2006, 77(4): 273-305.
    [51] Wang Z C, Jiang H, Chen Z Y, et al. Tectonic paleogeography of Late Sinian and its significances for petroleum exploration in the Middle-Upper Yangtze region, South China[J]. Petroleum Exploration and Development, 2020, 47(5): 946-961.
    [52] Gu Z D, Yin J F, Jiang H, et al. Discovery of Xuanhan-Kaijiang paleouplift and its significance in the Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2016, 43(6): 976-987.
    [53] Yang Y M, Wen L, Luo B, et al. Sedimentary tectonic evolution and reservoir-forming conditions of the Dazhou-Kaijiang paleo-uplift, Sichuan Basin[J]. Natural Gas Industry B, 2016, 3(6): 515-525.
    [54] 段金宝, 梅庆华, 李毕松, 等. 四川盆地震旦纪—早寒武世构造—沉积演化过程[J]. 地球科学, 2019, 44(3): 738-755.

    Duan Jinbao, Mei Qinghua, Li Bisong, et al. Sinian-Early Cambrian tectonic-sedimentary evolution in Sichuan Basin[J]. Earth Science, 2019, 44(3): 738-755.
    [55] 朱明忠, 张自贤, 孔小东, 等. 城巴磷锰矿带典型矿床对比研究[R]. 重庆: 重庆市地质矿产勘查开发局205地质队, 2017: 1-127.
    [56] Zhu Mingzhong, Zhang Zixian, Kong Xiaodong, et al. Comparative study on typical deposits in Chengba phosphate manganese ore belt[R]. Chongqing: No.205

    Team Geological, Chongqing Bureau of Geology and Minerals Exploration, 2017: 1-127.]
    [57] Wang Z Y, Han R S, Ren T, et al. Genesis of Qujiashan manganese deposit, Shaanxi province: Constraints from geological, geochemical, and carbon and oxygen isotopic evidences[J]. Journal of Central South University, 2019, 26(12): 3516-3533.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(1)

Article Metrics

Article views(474) PDF downloads(110) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-02-17
  • Revised:  2021-05-06
  • Published:  2021-12-10

Preliminary Study of Manganese Carbonate Microbialite Sedimentary Environment of the Doushantuo Formation in Northeast Chongqing

doi: 10.14027/j.issn.1000-0550.2021.066
Funds:

International Innovation Resources Cooperation Project from Beijing Science and Technology Committee Z201100008320007

National Natural Science Foundation of China 42072135

China Geological Survey Project 121201004000150017-91

The Mineral Geological Survey of Chengkou Manganese Ore Concentration Area in Chongqing DD20190166-18

Abstract: Sedimentary manganese carbonates, especially the black shale type, are generally considered to have been deposited in a deepwater, restricted and reductive sedimentary environment. Deposits of manganese carbonate are well developed in the black shale near the top of the Ediacaran Doushantuo Formation in the Chengkou area of the northern Yangtze Craton. The black shale host rock and cerium anomaly of manganese carbonates is thought to be vital evidence of the sedimentary environment of manganese carbonates, but there is a lack of systematic sedimentological evidence, with the result that the sedimentary environment of the manganese carbonates in the Chengkou area remains controversial. In this study, the sedimentary textures and structures of the manganese carbonates in this area are described in detail, based on field and core observations and thin section microscopy. This work included a detailed sedimentological study of the Chengkou manganese deposit, and a model of the sedimentary environment was constructed. It was found that the Chengkou manganese carbonate deposit is mainly layered, and contains well-developed stromatolites, oncolites, thrombolites and dendrolites. The frequent bonding growth of the oncolites indicates that the Chengkou manganese deposits are typical microbialites with several kinds of microstructure: clotted, spherical, filamentous, tubular, fibrous and radial. The sedimentary records from drill cores show alternate deposits of rhodochrosite and collophanite. In the rhodochrosite, all types of microbialite are deposited cyclically. Normal grain bedding and intraclast layers indicative of stronger hydrodynamic force are rarely recorded. The collophanites are characterized by intraclast depositions in a strong hydrodynamic environment and often overlie the rhodochrosites, evidence of the cyclic sedimentary nature of the series of manganese-bearing rock to phosphorus-bearing rock and indicates gradually shallowing sedimentary water at the end of the Doushantuo Formation in the Chengkou area. When considered together with the sedimentary characteristics of the Doushantuo Formation in adjacent areas, Member I of the formation in the Chengkou area evidently developed a barrier-free coastal sedimentary system without a dolomite cap. Member II was a carbonate ramp sedimentary system with mixed siliciclastic sediments. The manganese carbonate microbialites mainly developed in the barrier and bonding reef sedimentary environment in the lower part of the inner carbonate ramp. It is notable that the development of barriers and bonding reefs at the end of the Doushantuo Formation was an important dynamic factor in the evolution of the sedimentary basin in the study area, promoting the evolving regional sedimentary system from carbonate ramp to carbonate platform.

ZHANG Yi, CHEN Long, LI Jian, WANG DongGe, WU QingMing, WEI Yi, SHI Qiang, KUANG HongWei, LIU YongQing, LIAO ZhiWei. Preliminary Study of Manganese Carbonate Microbialite Sedimentary Environment of the Doushantuo Formation in Northeast Chongqing[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1387-1405. doi: 10.14027/j.issn.1000-0550.2021.066
Citation: ZHANG Yi, CHEN Long, LI Jian, WANG DongGe, WU QingMing, WEI Yi, SHI Qiang, KUANG HongWei, LIU YongQing, LIAO ZhiWei. Preliminary Study of Manganese Carbonate Microbialite Sedimentary Environment of the Doushantuo Formation in Northeast Chongqing[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1387-1405. doi: 10.14027/j.issn.1000-0550.2021.066
  • 锰矿是我国关键性矿种之一,国内各锰矿整装勘查区近年来也获得了较大的储备资源量,但是其成因研究相对滞后,特别是沉积型菱锰矿床,其中便包括扬子北缘城口地区陡山沱组顶部的大型菱锰矿床。自2015年城口锰矿整装勘查开展以来,先后探获了高燕、修齐大型锰矿床,整装勘查区内探获锰矿各类新增资源量约6 000万吨。虽然前人对城口锰矿开展了一系列地层学、沉积学、地球化学及矿床学相关研究,但其沉积环境、锰质来源以及成矿机理等关键问题都还存在较大争议。华南典型的沉积型锰矿包括贵州—重庆—湖南—湖北成冰系大塘坡组锰矿、湖南奥陶系磨刀溪组锰矿、贵州二叠系茅口组锰矿、云南中三叠系法郎组锰矿、云南晚三叠系松桂组锰矿以及重庆城口埃迪卡拉系陡山沱组锰矿等[1]。最新研究成果显示,华南沉积型锰矿床除松桂组锰矿被认为形成于滨岸沼泽环境之外,一般认为菱锰矿沉积于深水还原环境[2-7]。在城口地区陡山沱组顶部,菱锰矿层稳定存在,厚度0.2~2.0 m不等,被认为沉积于潟湖、海湾[8]、深水斜坡[9-10]、台地边缘浅滩[11]或台缘斜坡[12],也有研究者认为鲕粒、球粒、核形石由台地搬运而来,受原地生长的微生物包覆黏结,沉积后由锰质热液交代成矿[13]。区域岩相古地理研究显示城口地区陡山沱组末期处于深水陆棚或斜坡沉积环境[14-18]。虽然,前人通过主微量、稀土等地化分析认为城口锰矿沉积于较深水、较局限的还原环境[7,19-22],但本次研究发现,城口地区陡山沱组菱锰矿内常见锰质叠层石与代表高能动荡环境的锰质核形石、鲕粒等共生,是典型的微生物岩,并且局部区域菱锰矿层之上还发育内碎屑结构的含磷岩系,表明研究区含锰岩系的形成环境并非深水还原环境。

    本次研究依靠城口锰矿整装勘查2020年钻探成果,以陡山沱组野外露头及钻井岩心为研究对象,开展沉积学研究,观测了3条野外剖面,详细研究了城口地区陡山沱组各层段岩石学、沉积学特征,观测了3口钻井岩心,详细描述了锰质微生物岩发育规模及沉积结构、构造特征。本文通过系统的沉积学研究,以期揭示城口锰矿沉积环境,为该时期锰成矿作用研究提供更多的证据。

  • 渝东北城口地区位于扬子板块北缘,受燕山—喜山期陆内造山作用[23-27],区域内新元古代地层沿城口—房县断裂走向断续出露。城口—房县断裂以南扬子板块内出露的新元古代地层有成冰系南沱组、埃迪卡拉系陡山沱组以及灯影组。南沱组原称“明月组”,区域层型剖面位于城口县高燕镇明月乡,本次调查了高燕镇覃家河剖面,南沱组中上部为紫红色—青灰色块状冰碛砾岩,下部为青灰色厚层—块状粗砂岩,南沱组厚度大于800 m。城口地区陡山沱组区域层型剖面原来位于城口县高燕镇明月乡兴隆坪,现已无法观察。在高燕镇李家沟剖面(图1a),陡山沱组与南沱组平行不整合接触,南沱组顶部块状冰碛砾岩颜色由青灰色渐变到紫红色,陡山沱组底部为厚约1 m的透镜状砂质细砾岩或含砾粗砂岩,之上为厚约9 m的紫红色中层状粉砂岩(图2)。与峡东地区陡山沱组4分特征不同,城口地区陡山沱组缺失盖帽白云岩,一直以来采用2分方案[12,19],在李家沟剖面,陡山沱组1段厚74 m,整体为紫红色—青灰色薄—中厚层状中—粗砂岩夹同色粉砂岩或泥岩条带,中部为肉红色条带状粗晶灰岩与紫红色粉砂岩互层(图2),1段中常见槽状交错层理、平行层理以及正粒序和冲刷面,偶见低角度交错层理,且砂岩单层厚度延伸稳定。在高燕矿调ZK117-1井,陡山沱组1段由青灰色薄层状砂岩逐渐过渡到陡2段深灰色碳质泥岩,陡2段厚约19 m,整体为灰黑色碳质页岩夹少量粉砂岩条带,局部有薄层粉砂岩,陡2段顶部为厚约0.82 m的含锰岩系,含锰岩系底部为碳质页岩夹条带状微晶菱锰矿,中上部为微晶菱锰矿夹鲕粒状菱锰矿,见一层厚3 cm的叠层石菱锰矿(图2)。含锰岩系之上为深灰色薄层状含锰微晶白云岩,为灯影组1段地层,陡山沱组与灯影组整合接触。

    Figure 1.  Geographical map of the study area in China

    Figure 2.  Comprehensive stratigraphic histogram of Ediacara Doushantuo Formation in Chengkou area (data from well ZK117⁃1 and Lijiagou section; see Fig. 1b for locations)

    城口地区灯影组1段以青灰色—灰色薄层状泥质白云岩为主,底部白云岩多含锰或含磷,真厚度10~35 m。灯影组2段以灰色—深灰色薄—中层状微晶灰岩为主,常为条纹条带状结构,真厚度50~120 m。灯影组3段主要为灰色薄—厚层状微晶白云岩、硅质白云岩,顶部稳定存在数十米黑色薄层状硅质岩,灯影组3段真厚度110~150 m。

  • 本次以城口锰矿整装勘查区杨家坝锰矿工区预查项目2020年实施的两个钻孔ZK8-31和ZK28-3为主要研究对象。钻孔ZK8-31和ZK28-3分别在孔深261.3 m(海拔标高+1 030.45 m)和孔深1 561.20 m(海拔标高-411.793 m)揭露了陡山沱组顶部含锰岩系。本次研究在野外观察编录了含锰岩系岩心,对含锰岩系岩心进行1/2劈心取样,用于全岩主量元素分析,在剩余一半劈心光滑表面采取薄片观察样。共采取化学样63件,薄片样39件(图3)。室内计算统计了含锰岩系分层真厚度,并形成含锰岩系柱状图,共磨制薄片76片,对柱状叠层石(样品号ZK8-31-b1)横截面和纵截面分别切片。为了防止锰质岩石氧化,对所有薄片作全盖玻处理。在重庆大学煤矿灾害动力学与控制国家重点实验室使用Zeiss Scope A1偏光显微镜对典型薄片进行了详细观察,同时拍摄了典型微生物岩微观结构照片。

    Figure 3.  Comparison of manganese⁃bearing rock series in Ediacara Doushantuo Formation, Yangjiaba manganese exploration area, Chengkou city (see Fig. 1b for locations)

    全岩主量元素分析在重庆市地质矿产测试中心完成,另外有10件外检样在重庆市地质矿产研究院完成。全岩样品用蒸馏水清洗后经过12 h烘烤,经过粗碎、中碎和细碎加工,磨制成粒度200目(直径<0.074 mm)的样品,再经过制样程序形成测试样品(参见DZ/T 0130.1—2006、DZ/T 0130.2—2006),而后转入测试阶段,检测项目为包括Mn、P、TFe、SiO2、MgO、CaO、Al2O3以及烧失量。主量元素分析由波长色散X射线荧光光谱法完成(参见GB/T 24519—2009),仪器型号AxiosmAxX射线荧光光谱仪,仪器编号H2017-002,检测温度20 ℃,湿度46%。MnO检出极限0.1%,P2O5检出极限0.01%,TFe、SiO2、MgO、CaO、Al2O3检出极限0.05%,烧失量由高温灼烧法完成,检出极限0.01%。其中Mn含量由MnO含量换算得出,P含量由P2O5含量换算得出,实验误差和质量评述按DZ 0130.3—2006计算。

  • 微生物岩早期被定义为由底栖微生物群落诱导形成矿物沉淀或黏结碎屑沉积物而形成的有机沉积体[28]。现在微生物岩定义已经被延伸拓展,认为是微生物成因或推测微生物成因的沉积岩[29],如吴亚生等[30]认为微生物岩还应该包括微生物骨架岩、微生物黏结岩、非钙化浮游或漂浮微生物形成的模铸岩、矿化浮游或漂浮微生物形成的颗粒岩和泥粒岩。常见的微生物岩包括叠层石(stromatolite)、凝块石(thrombolite)、树形石(dendrolite)、均一石(leiolite)等类型[30-36]。研究区陡山沱组菱锰矿和含锰白云岩中发育叠层石、树形石、凝块石以及核形石等微生物岩或微生物岩结构,它们共生并相互黏结,形成了障积丘礁沉积。

  • 城口县杨家坝锰矿预查工区钻孔ZK8-31和ZK28-3揭露了陡山沱组顶部完整的含锰—含磷岩系,总体呈现上磷下锰沉积特征,记录了3次含锰岩系—含磷岩系沉积旋回,含锰—含磷岩系整体赋存于黑色页岩(图3表1)。其中,菱锰矿为深灰色或钢灰色,胶锰矿为黑色,层状构造,菱锰矿单矿层厚度在29~82 cm不等,胶磷矿层呈条带状,含矿层厚度0.5~18 cm不等。菱锰矿见鲕粒、核形石、叠层石以及微晶结构。

    化学样编号 Mn P SiO2 TFe CaO MgO Al2O3 烧失量
    ZK28-3-H1 0.18 0.67 26.97 1.35 20.95 10.34 2.93 28.06
    ZK28-3-H2 0.05 1.13 24.91 1.78 20.78 10.28 3.24 26.12
    ZK28-3-H3 0.04 1.33 30.32 2.28 17.93 8.04 5.11 21.61
    ZK28-3-H4 1.09 31.82 3.20 14.67 8.01 7.87 20.05
    ZK28-3-H5 0.15 1.69 16.61 1.45 25.57 10.57 2.37 29.45
    ZK28-3-H6 0.04 0.92 7.43 0.88 27.65 15.87 0.68 38.56
    ZK28-3-H7 9.83 20.27 1.82 33.01 2.12 3.28 7.32
    ZK28-3-H8 0.16 32.24 2.06 16.04 10.04 4.83 24.47
    ZK28-3-H9 0.77 32.74 2.28 15.88 8.39 5.40 22.04
    ZK28-3-H10 0.72 35.07 2.26 15.08 7.79 5.58 21.36
    ZK28-3-H11 0.57 0.36 18.72 1.55 22.09 11.22 3.36 31.30
    ZK28-3-H12 0.10 30.59 2.41 15.67 9.86 5.99 24.52
    ZK28-3-H13 4.83 0.14 20.89 1.29 20.29 9.48 2.35 29.77
    ZK28-3-H14 9.18 0.25 16.08 1.12 21.31 8.26 1.48 30.56
    ZK28-3-H15 11.69 0.14 10.43 0.80 21.95 8.53 0.95 33.17
    ZK28-3-H16 17.12 1.13 24.86 0.98 12.63 3.74 1.38 20.06
    ZK28-3-H17 3.67 0.08 50.70 2.25 9.38 4.16 5.07 14.30
    ZK28-3-H18 2.52 1.11 29.33 1.94 18.52 7.76 3.99 22.35
    ZK28-3-H19 2.23 0.15 27.62 1.52 18.91 9.56 2.50 27.22
    ZK28-3-H20 1.39 0.26 16.07 0.86 24.98 12.56 1.17 34.91
    ZK28-3-H21 1.30 44.38 2.74 12.30 5.04 5.79 15.13
    ZK28-3-H22 1.02 0.17 24.54 1.97 19.52 10.53 3.93 28.4
    ZK28-3-H23 1.17 0.28 22.79 1.49 20.85 11.05 2.90 29.85
    ZK28-3-H24 1.17 0.64 31.63 1.831 16.91 8.51 3.95 23.62
    ZK28-3-H25 2.20 0.11 20.66 1.35 21.68 11.25 2.18 31.69
    ZK28-3-H26 2.85 0.14 42.32 1.91 12.45 5.72 3.02 19.92
    ZK28-3-H27 6.4 0.74 17.89 0.93 20.66 10.11 0.86 30.39
    ZK28-3-H28 3.73 0.12 31.68 0.66 18.42 9.86 0.08 27.7
    ZK28-3-H29 8.23 0.18 3.49 0.44 24.66 13.90 39.35
    ZK28-3-H30 5.26 0.09 15.14 0.46 23.02 13.11 0.06 35.33
    ZK28-3-H31 3.71 0.12 35.82 0.63 17.14 8.96 25.65
    ZK28-3-H32 10.78 0.14 5.91 0.51 21.08 13.51 0.004 37.51
    ZK28-3-H33 6.93 0.45 16.91 0.73 20.56 10.52 0.65 31.73
    ZK28-3-H34 6.36 0.57 13.48 0.99 20.85 12.26 0.89 33.01
    ZK28-3-H35 2.39 0.12 24.25 1.34 18.29 11.74 1.94 29.4
    ZK28-3-H36 0.09 73.49 2.26 2.04 1.06 4.20 6.24
    ZK8-31-H4 0.28 0.26 42.58 3.41 7.67 5.01 9.20 22.37
    ZK8-31-H5 1.22 3.13 29.32 2.43 19.62 6.53 4.47 21.06
    ZK8-31-H6 28.97 0.14 13.92 0.74 3.75 2.55 1.03 28.56
    ZK8-31-H7 1.22 3.80 24.44 2.85 22.99 7.27 6.16 19.18
    ZK8-31-H8 1.88 2.61 7.77 0.90 29.99 13.84 1.52 34.02
    ZK8-31-H9 1.12 1.64 18.14 2.21 16.74 7.83 5.12 24.25
    ZK8-31-H10 1.12 1.07 27.58 3.32 16.84 9.22 8.03 23.02
    ZK8-31-H11 23.86 0.80 22.33 0.98 8.04 3.20 1.59 24.27
    ZK8-31-H12 21.66 2.01 19.30 0.66 11.39 2.82 1.45 23.82
    ZK8-31-H13 23.16 0.21 21.96 0.66 8.24 3.62 1.83 26.31
    ZK8-31-H14 0.61 0.39 37.60 2.05 14.99 9.87 5.93 23.35
    ZK8-31-H15 0.19 0.11 38.77 2.09 13.54 9.75 5.60 24.10
    ZK8-31-H16 0.94 3.06 29.88 2.76 20.18 7.24 6.39 19.17
    ZK8-31-H17 0.94 1.26 35.18 3.52 13.71 7.10 8.84 19.09
    ZK8-31-H18 1.36 3.26 36.19 2.99 15.53 4.50 6.70 16.03
    ZK8-31-H19 1.73 5.67 12.06 1.08 32.41 9.44 1.93 21.08
    ZK8-31-H20 3.28 2.72 10.42 0.68 29.15 12.59 1.37 31.81
    ZK8-31-H21 31.08 0.13 9.11 0.80 7.60 3.95 1.00 30.09
    ZK8-31-H22 26.30 0.11 12.60 0.61 9.92 5.12 0.77 29.92
    ZK8-31-H23 24.56 0.07 13.60 1.16 10.21 4.98 0.76 28.88
    ZK8-31-H24 13.97 0.18 14.96 0.69 17.38 7.97 1.16 31.15
    ZK8-31-H25 5.44 0.79 21.24 1.84 9.72 9.70 5.69 27.55
    ZK8-31-H26 5.53 0.37 18.52 0.53 20.94 12.77 1.45 33.48
    ZK8-31-H27 4.69 0.17 18.30 0.79 21.20 12.75 2.33 33.33

    Table 1.  Major element data from chemical samples of manganese⁃bearing rock series from drilled wells (%)

    其中,鲕粒直径2.0~3.5 mm不等,属巨鲕,鲕粒浑圆、分选较好,核心及同心纹层在岩心表面清晰可见(图4a),鲕粒菱锰矿在钻孔ZK8-31含锰岩系中厚0.82 m。核形石是指内部具有生物同心纹层构造的团块状微生物介导沉积结构[30,36],也被认为是一种基本层连续或不连续包裹发育的叠层石[34]。在研究区,核形石常呈球状或不规则球状,直径0.1~4.0 mm不等,但小于0.5 mm的颗粒在岩心表面难以观察。核形石少见同心纹层,研究区核形石与鲕粒常共生或形态类似,因此肉眼常难以识别核形石特征(图4b)。常见核形石发育黏结结构(图4c),大小不一时黏结结构更易识别,常见核形石被黑色硅质物质胶结,核形石菱锰矿、含锰核形石白云岩在杨家坝预查区厚5~29 cm不等。

    Figure 4.  Macroscopic characteristics of manganese microbialites in Ediacara Doushantuo Formation, Chengkou

    叠层石是以蓝细菌为主的微生物通过生长和新陈代谢作用粘附和沉淀矿物质或捕获矿物颗粒形成的一种生物—沉积构造,其基本特征是叠层结构和原地生长[28,31-32]。在研究区,叠层石呈层状或柱状,层状叠层石基本层为厚0.2~2.0 mm不等的明暗纹层(图4d),常局部上拱呈波状,上拱程度在0.5~1 cm不等,在钻孔ZK28-3中十分常见。柱状叠层石见于钻孔ZK8-31含锰岩系顶部以及ZK28-3含锰岩系底部,由微上拱的明暗基本层组成,整体为圆柱状,其柱体直径一般小于1 cm,柱状纵切面形态常呈鼻甲状或指状,下小上大(图4e),柱状叠层石单柱高度0.5~1.5 cm不等。柱状叠层石基本层局部侧向连接,呈假柱状生长(图4e),柱状叠层石常组成层状叠层石礁,礁最多厚数十厘米。在研究区,常见层状叠层石—柱状叠层石或柱状叠层石—层状叠层石旋回沉积,叠层石生长微层序顶部常发育内碎屑层或冲刷面等强水动力沉积产物。

  • 研究区菱锰矿层中最发育核形石和鲕粒结构(图5),核形石较鲕粒更为常见,在钻孔ZK28-3含锰岩系中下部含锰白云岩中也常见核形石结构(图3)。鲕粒较核形石颗粒更加浑圆,同心纹层也更加规则(图5a,b),而核形石颗粒外形常呈不规则似球状,其同心纹层随外形一致而呈不规则球状,横截面有时见同心纹层呈波状(图5c,d),偶见纹层局部发育瘤状结构(图5e)。锰质鲕粒不但分选较好,且同一层的鲕粒,其明纹层和暗纹层单厚度及其交替频率十分稳定(图5a),颗粒总体特征一致,表明其同步形成特征。而同一层的核形石,其粒度大小不均匀(0.1~4.0 mm不等),同心明暗纹层所占比例也不稳定,以多个颗粒黏结生长为特征(图5d,f),见岩心表面粒度均匀的核形石在镜下也呈现黏结结构。锰质鲕粒与核形石核心常为暗色球状有机质团块,部分核形石在单偏光下见明显的放射纤维状结构(图5b,c),鲕粒和核形石正交偏光下均呈十字消光特征。偶见核形石同心纹层断续发育,其内部有大量零散分布的有机质团块(图5g)。核形石内部偶见粉砂级石英碎屑(图5f),可能与黏结捕获作用有关。核形石与鲕粒有时难以分辨,因为部分核形石颗粒内部纹层结构十分规则。目前,在研究区核形石中还未发现微生物直接参与构建纹层的证据。同一层位中的黏结状核形石,局部颗粒内部纹层全部消失,形成无内部结构的球粒(图5h),可能与早成岩阶段有机碳参与二次富锰作用有关,因其有机碳来源于核形石富有机质纹层。

    Figure 5.  Photomicrographs of manganese oncolites in Ediacara Doushantuo Formation, Chengkou

  • 研究区常见锰质叠层石,发育层状和柱状两种类型。层状叠层石以基本层在横向上连续生长为特征,柱状叠层石以基本层纵向堆叠呈柱状为特征,二者都由不等厚的明暗基本层堆积组成,其中暗色基本层常占比更高,明暗纹层常突变交替。层状叠层石基本层结构一般是具支撑结构的带状(图6a,b)、核形石黏结组成的带状(图6c)、纹层状(图6d)以及放射纤维状物质组成的带状(图6e),不同结构的基本层常交替发育(图6e)。常见核形石黏结生长在层状叠层石各类型基本层中,但在柱状叠层石基本层中相对少见(图6g)。柱状叠层石基本层结构常呈带状,常具支撑结构(图6f)。树形石是一种树枝状的微生物岩,具有非层状、不含凝块结构以及无叠层结构等基本特征[33]。具支撑结构的带状由高度80~750 μm树形石或微型叠层石组成(图6a,b,f),树形石具有向上生长的树枝状外形特征,内部一般无结构,内部常由于有机质含量不均造成明暗程度局部变化(图6a,b)。基本层中的微型叠层石外形常与树形石相似,但内部具有叠层结构(图6b),见树形石与微型叠层石组成放射状(图6h)。层状、柱状叠层石基本层形态遗传程度都较高。叠层石与核形石共生,黏结生长结构是研究区微生物岩的典型特征。

    Figure 6.  Photomicrographs of manganese stromatolites in Ediacara Doushantuo Formation, Chengkou

  • 凝块石是具有凝块状微观结构的微生物岩[34],在研究区较为少见,仅在ZK28-3含锰岩系中局部发育,凝块结构外形呈不规则团块状,研究区凝块结构内部具丝状、树枝状等有机结构(图7a,b),或凝块呈网格状(图7c,d)。研究区凝块石与层状叠层石共生,叠层石中也常见凝块结构。

    Figure 7.  Photomicrographs of manganese thrombolites in Ediacara Doushantuo Formation, Chengkou

    除凝块结构外,研究区菱锰矿或含锰白云岩中还保存了多种典型的微生物岩微结构,如球粒状结构(图8a,b)、疑似丝状有机质结构(图8c)、管状结构(图8d)、规则圆状有机质结构(图8e)、纤维状结构(图8f)以及放射状结构(图8g),还见大量显微核形石或碳酸锰球粒围绕树枝状凝块黏结生长(图8h),它们大多产自锰质叠层石。

    Figure 8.  Microstructures of manganese microbialites in Ediacara Doushantuo Formation, Chengkou

    研究区微生物岩微结构中目前还未发现微生物化石,不同类型微结构可能与不同微生物主导的胞外聚合物(EPS,extracellular polymeric substance)有关。泥微晶凝块组成球粒状微结构一般被认为是好氧、异养细菌或硫酸盐还原作用降解EPS的产物[37]。钻孔ZK28-3中,球粒状有机结构具有亮色核心(ZK28-3-b11,图8a)或具有类似细胞分裂的结构(ZK28-3-b12,图8b),表明它们可能是某种蓝绿细菌。丝状或管状微结构可能是藻丝遗体或微小洞穴[34],在钻孔ZK28-3含锰岩系中,丝状、管状结构发育于层状叠层石内部。管状结构还发育于核形石含锰白云岩,其丝状结构具有垂直叠层石基本层向上生长的趋势,但未见明显藻丝体结构(图8c)。管状构造常具有亮色管芯,部分垂直叠层石基本层笔直发育(图8d),部分无固定生长方向呈弯曲不规则状(图8e)。叠层石中放射纤维状微生物岩微结构可能是显微微生物诱导矿化的结果[38-39],钻孔ZK28-3层状叠层石中记录较好的放射状或纤维状微结构,它们组成了一种叠层石基本层类型,纤维状有机结构垂直基本层向上生长或发散生长(图8f,g)。

    长期以来,沉积型锰矿成因普遍被认为与微生物密切相关,世界范围内各地质历史时期的沉积型锰矿都具有碳同位素负偏特征,被认为是微生物有机碳参与成锰作用的重要证据,前人认为古代菱锰矿可能是成岩早期异养微生物零星活动的结果[40-42],各地质时期的成锰事件一般与生物灭绝事件吻合[43-44],因为生物灭绝会提供大量的有机碳。此外,世界范围内分布的各时代沉积型和火山—沉积型锰矿石中,微生物结构几乎无处不在[43],其中也包括扬子克拉通内湖南民乐—湘潭—花垣、贵州松桃等地区广泛分布的成冰系大塘坡型锰矿以及城口陡山沱组锰矿[45-49],但极少量的微生物化石记录无法明确微生物参与成矿的具体机制,也难以评估碳酸锰成矿过程中微生物作用的重要性[50]。在扬子克拉通区域内,除云南三叠纪珐琅组斗南锰矿中广泛发育核形石结构外[5],很少有微生物岩型菱锰矿实例。城口陡山沱组菱锰矿中记录的核形石、叠层石、树形石、凝块石等类型微生物岩以及各种类型微生物岩微结构,暗示生物直接参与了沉积成锰作用,为研究微生物成锰作用和机制提供了重要的实例。

  • 城口地区陡山沱组1段砂岩呈紫红色、青灰色,以长石石英砂岩和岩屑石英砂岩为主,长石以斜长石、正长石为主,长石颗粒黏土化较严重,常形成淋滤孔洞被钙质物质充填,岩屑见泥岩岩屑、粉砂岩岩屑、燧石岩屑、片麻岩岩屑、石英岩岩屑、安山岩岩屑以及玄武岩岩屑,其中泥岩岩屑常因塑性变形呈假杂基假象。砂岩填隙物一般是杂基,有时杂基含量较高而成为杂砂岩,少见钙质胶结,砂岩分选中等—较差,磨圆度常呈次圆状—次棱角状,可能是近源剥蚀、搬运、沉积的结果。砂岩中发育各种层理构造,如槽状交错层理、平行层理以及正粒序和冲刷面,常见冲刷面底部为含砾砂岩或细砾岩,偶见低角度交错层理,砂岩单层延伸厚度非常稳定,是无障壁海岸滨岸相沉积产物。在陕西镇巴(城口以西)和重庆巫溪(城口以东),陡山沱组下部地层特征与城口地区整体相似,镇巴地区陡山沱组紫红色砂岩还发育波痕构造,巫溪地区陡山沱组紫红色砂岩以含砾粗砂岩为主。除此之外,镇巴、城口、巫溪地区陡山沱组下部红色砂岩系中常见紫红色条带状粉砂岩与肉红色粗晶灰岩互层,是滨外过渡带混合沉积产物。

    城口地区陡山沱组2段整体以黑色泥页岩为主,夹少量粉砂岩条带,局部为粉砂岩层,沉积构造只发育水平层理。陡山沱组顶部黑色岩系中发育含锰白云岩、菱锰矿、内碎屑含锰—含磷白云岩、胶磷矿。含锰白云岩或菱锰矿常见叠层石、核形石以及鲕粒沉积(图4~6图9b),见核形石粒度变化形成粒序层理。核形石以黏结结构为特征,常见与叠层石黏结生长,和叠层石一起组成了障积丘礁沉积。含锰岩系之上一般存在含磷岩系,胶磷矿多呈条带状赋存于黑色粉砂质泥页岩(图9c),含磷白云岩和磷矿以内碎屑结构为特征(图9e),见交错层理(图9a),显示高能颗粒滩沉积特征。含磷岩系与含锰岩系过渡时,含磷岩系下部常存在明显的冲刷面以及砾屑层(图9d),还见磷矿中捕获了菱锰矿核形石(图9f),偶见胶磷矿和核形石白云岩交替沉积(图9g),表明沉积环境内水动力条件由弱变强是逐渐发生的。

    Figure 9.  Sedimentary structures in manganese⁃ and phosphorus⁃bearing rock series, Ediacara Doushantuo Formation, Chengkou

    在陕西镇巴和重庆巫溪,陡山沱组上部地层也以黑色泥页岩为主,陡山沱组顶部均发育内碎屑胶磷矿层,巫溪地区还见风暴岩沉积。结合区域陡山沱期沉积特征,认为研究区陡山沱组2段整体为碳酸盐岩缓坡沉积,发育潟湖、混积潮间坪、浅缓坡障积丘礁、礁后洼地、潮下浅海、颗粒滩、潮下混积浅海、混积中缓坡等沉积微相(图1011)。以高燕ZK117-1钻孔为例(图10),城口地区陡山沱组2段中下部为黑色泥页岩夹少量粉砂岩,属中缓坡沉积,陡山沱组顶部主要为核形石菱锰矿、叠层石菱锰矿以及微晶菱锰矿,核形石和叠层石是障积丘礁沉积,微晶菱锰矿和含锰白云岩是潮下浅海沉积,黑色页岩夹微晶菱锰矿条带是礁后洼地沉积,整体显示沉积水体逐渐变浅。以杨家坝ZK28-1钻孔和ZK8-31钻孔为例,陡山沱组顶部为黑色页岩过渡到含锰—含磷岩系,由中缓坡沉积环境过渡到浅缓坡沉积环境,含锰—含磷岩系整体记录了3次含锰岩系—含磷岩系的沉积旋回。粉砂质页岩夹胶磷矿、含锰(磷)白云岩及锰矿化白云岩是潮下浅海沉积,鲕粒菱锰矿、砂屑白云岩及砂屑胶磷矿是鲕粒滩或颗粒滩沉积,叠层石菱锰矿和核形石菱锰矿是障积丘礁沉积。含锰岩系过渡到含磷岩系的每个沉积旋回都显示了从浅缓坡下部往浅缓坡上部过渡的沉积特征。

    Figure 10.  Stratigraphic and sedimentary facies comprehensive column of member II, Ediacara Doushantuo Formation, in well ZK117⁃1, Gaoyan, Chengkou

    Figure 11.  Sedimentary model of member II, Ediacara Doushantuo Formation in Chengkou area

    城口高燕南东、修齐南西,高粱坪地区陡山沱组顶部菱锰矿层逐渐尖灭,取而代之的是含锰粉砂岩,说明陡山沱组末期仍有古陆持续供给陆源碎屑物质,高粱坪地区含锰粉砂岩之下黑色页岩中发育少量含锰白云岩,陡山沱组中下部特征与高燕地区一致。城口南西川东北开江地区,五探1井揭露的震旦系缺失陡山沱组,灯影组与南沱组不整合接触[51],前人认为该地区陡山沱期存在开江古陆[14,52-54],可能是研究区南西陡山沱组时期的陆源碎屑物源区,导致研究区在陡山沱组2段时期碳酸盐岩缓坡沉积具有混积特征(图11)。这种古地理格局类似于同时期陕西镇巴地区,镇巴以西陡山沱时期存在的米仓山—汉南古陆为镇巴地区持续提供了物质来源。镇巴地区陡山沱组顶部以灰色中—厚层状中—粗砂岩为特征,内部发育砾屑磷矿层[18],内部发育平行层理、槽状交错层理以及羽状层理等,是浅缓坡潮下浅滩、颗粒滩以及潮汐通道沉积特征。而靠近古陆区域陡山沱组是无障壁海岸滨岸相沉积,如南江杨坝剖面,陡山沱组早中期该地区持续剥蚀,并未接受沉积,在陡山沱组晚期才沉积了约50 m的滨岸相砂岩、含砾粗砂岩[14]

    综上,城口陡山沱组1段为缺失盖帽的无障壁海岸沉积,陡山沱组2段是具有混积特征的碳酸盐岩缓坡沉积(图11),陡山沱组末期沉积水体逐渐变浅的特征与区域内陡山沱组过渡到灯影组的特征一致。碳酸锰微生物岩主要沉积于浅缓坡下部障积丘礁沉积环境。

  • 研究区陡山沱组1段碎屑岩沉积是南沱冰期之后快速充填补齐的沉积阶段(图12),而后进入较为稳定的陡山沱组2段碳酸盐岩缓坡沉积阶段,但是受持续陆源碎屑物质输入影响,以粉砂质泥页岩沉积为主,在巫溪地区,泥页岩中夹多层泥晶白云岩。陡山沱组末期,研究区广泛发育障积型生物丘礁沉积,是碳酸盐岩缓坡向碳酸盐岩台地演化的前奏。灯影组则同扬子克拉通大部分区域一致,均属于碳酸盐岩台地沉积环境(图12)。

    Figure 12.  Sedimentary evolution diagram of Ediacaran Doushantuo Period in Chengkou area

    在碳酸盐岩缓坡向碳酸盐岩台地演化过程中,叠层石、核形石障积丘礁具有关键作用,叠层石礁的抗浪作用存在保证了核形石原地沉积,逐渐成规模的黏结沉积形成了障积丘礁,为更广阔的礁后区域沉积核形石或叠层石提供可能。因为在水动力足够强时,叠层石或核形石沉积速率都会减缓或停止沉积,研究区含锰岩系中常见的内碎屑层便是强水动力条件沉积产物。叠层石礁和障积丘礁持续发育加速了台地形成过程,因为生物建隆造礁作用不但减缓了碳酸盐岩缓坡坡度,还形成了障壁,使得沉积区域内水体逐渐变浅的同时也形成了类似于镶边台地台缘环境。在研究区,水体变浅也意味着沉积水动力变强,研究区内含磷岩系均记录于含锰岩系之上,且含磷岩系以内碎屑沉积为特征。另外,微生物主导的碳酸盐岩沉积,其沉积速率较普通化学沉积作用快得多,加之以微叠层石礁为代表的点礁向核形石黏结丘礁转变使得造礁作用达到顶峰,使得研究区在陡山沱组晚期从碳酸盐岩缓坡快速向碳酸盐岩台地沉积环境转变。综上,微生物岩的造礁作用是研究区域陡山沱末期碳酸盐岩缓坡向碳酸盐岩台地过渡的盆地演化动力学因素。

    在城口以西四川万源地区,埃迪卡拉系陡山沱组顶部也存在磷—锰岩系,但总体呈现下磷上锰的特征[55]。在城口地区,大渡溪区域是典型的磷矿沉积区,大渡溪以东和以西都是锰矿沉积区,大渡溪区域局部只有磷矿沉积,大渡溪大部分区域含磷岩系下部均稳定存在含锰岩系,类似于修齐杨家坝ZK28-3钻孔。在四川万源,大竹河杨家坝—钟亭区域是磷矿沉积区,该区域以西是锰矿沉积区,但锰矿之下存在几米至十米不等的磷矿沉积,含磷—含锰岩系赋存于黑色岩系[55],其含锰—含磷岩系特征与城口地区一致,造成其下磷上锰的原因可能与Rodinia超大陆持续裂解造成区域构造差异沉降有关系。需要注意的是万源往西至紫阳屈家山一带,含锰岩系赋存于红色砂泥岩,研究认为其成因完全受热液作用控制[56],其含锰岩系上下均不存在含磷岩系,可能是因其更加靠近米仓山—汉南隆起,同沉积断裂带来的差异沉降更容易接受碎屑岩充填补齐作用,导致磷无法沉积。

  • (1) 扬子北缘城口地区埃迪卡拉系陡山沱组顶部发育微生物岩碳酸锰矿床,以沉积叠层石、核形石、树形石以及凝块石为特征,微生物岩中常见黏结生长结构,发育凝块结构、球粒状结构、丝状结构、管状结构、纤维状结构以及放射状结构等典型的微生物岩微结构。

    (2) 扬子北缘城口地区城口陡山沱组1段为缺失盖帽的无障壁海岸沉积体系,陡山沱组2段是具有混积特征的碳酸盐岩缓坡沉积体系,微生物岩型菱锰矿主要发育于浅缓坡下部障积丘礁沉积环境。陡山沱组末期城口地区沉积水体逐渐变浅,沉积记录以含锰岩系向含磷岩系过渡为特征。微生物岩型菱锰矿为研究沉积型锰矿提供了新思路,为生物参与成锰作用提供了新证据。

    (3) 扬子北缘城口地区陡山沱组末期障积丘礁的发育是加速碳酸盐岩缓坡向灯影组碳酸盐岩台地演化的重要盆地演化动力学因素。

Reference (57)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return