Advanced Search
Volume 39 Issue 6
Dec.  2021
Turn off MathJax
Article Contents

WANG Yong, SHI ZeJin, MENG XingPing, LIU PeiJie, TIAN YaMing, QING HaiRuo. Burial Dolomitization and Mixed Water Dolomitization in Longwangmiao Formation, Southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1517-1531. doi: 10.14027/j.issn.1000-0550.2021.065
Citation: WANG Yong, SHI ZeJin, MENG XingPing, LIU PeiJie, TIAN YaMing, QING HaiRuo. Burial Dolomitization and Mixed Water Dolomitization in Longwangmiao Formation, Southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1517-1531. doi: 10.14027/j.issn.1000-0550.2021.065

Burial Dolomitization and Mixed Water Dolomitization in Longwangmiao Formation, Southeastern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.065
Funds:

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology) PLC2020021

National Natural Science Foundation of China 41872137

  • Received Date: 2021-02-28
  • Rev Recd Date: 2021-05-31
  • Publish Date: 2021-12-10
  • Based on field investigation and geochemical analysis, it is believed that the dolomites of the Longwangmiao Formation in the Tuhechang and Nanshanping sections, southeast Sichuan Basin, differ from other dolomites in the area, being mainly of reflux seepage origin. Tuhechang dolomite is of burial origin, and the dolomite in Nanshanping is of mixed-water origin. The Tuhechang dolomites occur in the lower part of the Longwangmiao Formation, and did not have the geological conditions suitable for forming reflux seepage dolomites. The temperature of inclusions of the Tuhechang dolomites shows a formation temperature higher than 105 °C. Its Mn element and Fe element content are relatively high (average 792.5×10–6 and 3 428.8×10–6 respectively), with good correlation. The average δ18O content is –8.18‰, which is significantly lower than for dolomites in other sections of the study area. These all reflect a burial environment in the Tuhechang section. The main part of the Nanshanping section lies in a slope facies zone, and did not have the geological conditions for the formation of reflux seepage dolomite. Nanshanping dolomite contains an obviously low value for Na element, and δ18O is also obviously negative, both indicating that it was formed in a low-salinity fluid environment at a relatively low temperature. In addition, Nanshanping dolomite shows obvious U element enrichment, indicating that its formation was related to atmospheric fresh water, and it is therefore a mixed-water dolomite. These two dolomite types have relatively good physical properties, which is highly significant for reservoir development in the southeastern Sichuan Basin.
  • [1] Adams J E, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin, 1960, 44(12): 1912-1920.
    [2] Warren J K. Sulfate dominated sea-marginal and platform evaporative settings: Sabkhas and Salinas, Mudflats and Salterns[J]. Developments in Sedimentology, 1991, 50: 69-187.
    [3] Badiozamani K. The dorag dolomitization model, application to the Middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research, 1973, 43(4): 965-984.
    [4] Warren J. Dolomite: Occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52(1/2/3): 1-81.
    [5] Bush P. Some aspects of the diagenetic history of the Sabkha in Abu Dhabi, Persian gulf[M]//Purser B H. The Persian gulf. Berlin, Heidelberg: Springer, 1973: 395-407.
    [6] Warren J K, St. C. Kendall C G. Comparison of sequences formed in marine Sabkha (subaerial) and Salina (subaqueous) settings--modern and ancient[J]. AAPG Bulletin, 1985, 69(6): 1013-1023.
    [7] Braithwaite C J R, Rizzi G. The geometry and petrogenesis of hydrothermal dolomites at Navan, Ireland[J]. Sedimentology, 1997, 44(3): 421-440.
    [8] Lavoie D, Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in northern Gaspé-Matapedia (Quebec): Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Petroleum Geology, 2004, 52(3): 256-269.
    [9] 黄思静. 碳酸盐岩的成岩作用[M]. 北京:地质出版社,2010:1-288.

    Huang Sijing. Carbonate diagenesis[M]. Beijing: Geological Publishing House, 2010: 1-288.
    [10] Li Z Q, Goldstein R H, Franseen E K. Ascending freshwater-mesohaline mixing: A new scenario for dolomitization[J]. Journal of Sedimentary Research, 2013, 83(3): 277-283.
    [11] 唐浩,谭秀成,刘宏,等. 川中磨溪气田嘉陵江组“土黄色”粉晶云岩成因及其储集层形成机制[J]. 石油勘探与开发,2014,41(4):504-512.

    Tang Hao, Tan Xiucheng, Liu Hong, et al. Genesis and dolomitization of “Khali” powder crystal dolomite in Triassic Jialingjiang Formation, Moxi gas field, central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(4): 504-512.
    [12] Olanipekun B J, Azmy K. Genesis and morphology of intracrystalline nanopores and mineral micro inclusions hosted in burial dolomite crystals: Application of Broad Ion Beam-Scanning Electron Microscope (BIB-SEM)[J]. Marine and Petroleum Geology, 2016, 74: 1-11.
    [13] Vasconcelos C, McKenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite Formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
    [14] Wright D T, Wacey D. Precipitation of dolomite using sulphate-reducing bacteria from the Coorong Region, South Australia: Significance and implications[J]. Sedimentology, 2005, 52(5): 987-1008.
    [15] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280.
    [16] Kenward P A, Goldstein R H, González L A, et al. Precipitation of low-temperature dolomite from an anaerobic microbial consortium: The role of methanogenic Archaea[J]. Geobiology, 2009, 7(5): 556-565.
    [17] Sánchez-Román M, McKenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
    [18] Land L S. Dolomitization of the Hope Gate Formation (north Jamaica) by seawater: Reassessment of mixing-zone dolomite[M]//Taylor H P, O’Neil R R, Kaplan I R. Stable isotope geochemistry. Washington: Geochemical Society Special Publication, 1991: 121-133.
    [19] Luczaj J A. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch— A case for hydrothermal diagenesis[J]. AAPG Bulletin, 2006, 90(11): 1719-1738.
    [20] 黄思静,佟宏鹏,刘丽红,等. 川东北飞仙关组白云岩的主要类型、地球化学特征和白云化机制[J]. 岩石学报,2009,25(10):2363-2372.

    Huang Sijing, Tong Hongpeng, Liu Lihong, et al. Petrography, geochemistry and dolomitization mechanisms of Feixianguan dolomites in Triassic, NE Sichuan, China[J]. Acta Petrologica Sinica, 2009, 25(10): 2363-2372.
    [21] 黄擎宇,刘伟,张艳秋,等. 白云石化作用及白云岩储层研究进展[J]. 地球科学进展,2015,30(5):539-551.

    Huang Qingyu, Liu Wei, Zhang Yanqiu, et al. Progress of research on dolomitization and dolomite reservoir[J]. Advances in Earth Science, 2015, 30(5): 539-551.
    [22] Li Z Q, Goldstein R H, Franseen E K. Geochemical record of fluid flow and dolomitization of carbonate platforms: Ascending freshwater-mesohaline mixing, Miocene of Spain[J]. Geological Society, London, Special Publications, 2015, 406(1): 115-140.
    [23] Cooper K, Xiao Y T, Whitaker F, et al. Ascending freshwater-mesohaline mixing dolomitization: Insights from geochemical and reactive transport models[C]//AAPG annual convention and exhibition. Houston, Texas: AAPG, 2014.
    [24] He R L, Jiang G Q, Lu W Y, et al. Iodine records from the Ediacaran Doushantuo cap carbonates of the Yangtze Block, South China[J]. Precambrian Research, 2020, 347: 105843.
    [25] Sumrall J, Mylroie J, Kambesis P. Microbial mixing zone dolomitization and karst development within Isla de Mona Dolomite, Isla de Mona, Puerto Rico[J]. Carbonates and Evaporites, 2015, 30(1): 45-58.
    [26] 杜金虎,邹才能,徐春春,等. 川中古隆起龙王庙组特大型气田战略发现与理论技术创新[J]. 石油勘探与开发,2014,41(3):268-277.

    Du Jinhu, Zou Caineng, Xu Chunchun, et al. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(3): 268-277.
    [27] 杨雪飞,王兴志,杨跃明,等. 川中地区下寒武统龙王庙组白云岩储层成岩作用[J]. 地质科技情报,2015,34(1):35-41.

    Yang Xuefei, Wang Xingzhi, Yang Yueming, et al. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin[J]. Geological Science and Technology Information, 2015, 34(1): 35-41.
    [28] 周进高,房超,季汉成,等. 四川盆地下寒武统龙王庙组颗粒滩发育规律[J]. 天然气工业,2014,34(8):27-36.

    Zhou Jingao, Fang Chao, Ji Hancheng, et al. A development rule of Lower Cambrian Longwangmiao grain beaches in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 27-36.
    [29] 杨雪飞,王兴志,唐浩,等. 四川盆地中部磨溪地区龙王庙组沉积微相研究[J]. 沉积学报,2015,33(5):972-982.

    Yang Xuefei, Wang Xingzhi, Tang Hao, et al. Research sedimentary microfacies of the Longwangmiao Formation in Moxi area, central Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 972-982.
    [30] 马腾,谭秀成,李凌,等. 四川盆地早寒武世龙王庙期沉积特征与古地理[J]. 沉积学报,2016,34(1):33-48.

    Ma Teng, Tan Xiucheng, Li Ling, et al. Sedimentary characteristics and lithofacies palaeogeography during Longwangmiao Period of Early Cambrian, Sichuan Bain[J]. Acta Sedimentologica Sinica, 2016, 34(1): 33-48.
    [31] 刘树根,宋金民,赵异华,等. 四川盆地龙王庙组优质储层形成与分布的主控因素[J]. 成都理工大学学报(自然科学版),2014,41(6):657-670.

    Liu Shugen, Song Jinmin, Zhao Yihua, et al. Controlling factors of Formation and distribution of Lower Cambrian Longwangmiao Formation high-quality reservoirs in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 657-670.
    [32] 孟宪武,朱兰,王海军,等. 川西南地区下寒武统龙王庙组储层特征[J]. 成都理工大学学报(自然科学版),2015,42(2):180-187.

    Meng Xianwu, Zhu Lan, Wang Haijun, et al. Characteristics of Lower Cambrian Longwangmiao Formation reservoir in southwest Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2015, 42(2): 180-187.
    [33] 刘伟,王国芝,刘树根,等. 川中磨溪构造龙王庙组流体包裹体特征及其地质意义[J]. 成都理工大学学报(自然科学版),2014,41(6):723-732.

    Liu Wei, Wang Guozhi, Liu Shugen, et al. Characteristics and geological significance of fluid inclusions in Longwangmiao Formation of Moxi structure in central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 723-732.
    [34] 徐春春,沈平,杨跃明,等. 乐山—龙女寺古隆起震旦系—下寒武统龙王庙组天然气成藏条件与富集规律[J]. 天然气工业,2014,34(3):1-7.

    Xu Chunchun, Shen Ping, Yang Yueming, et al. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnüsi paleohigh, Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3): 1-7.
    [35] 袁海锋,赵明霞,王国芝,等. 川中磨溪构造寒武系龙王庙组油气运聚期次[J]. 成都理工大学学报(自然科学版),2014,41(6):694-702.

    Yuan Haifeng, Zhao Mingxia, Wang Guozhi, et al. Phases of hydrocarbon migration and accumulation in Cambrian Longwangmiao Formation of Moxi structure, central Sichuan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(6): 694-702.
    [36] 任影,钟大康,高崇龙,等. 川东寒武系龙王庙组白云岩地球化学特征、成因及油气意义[J]. 石油学报,2016,37(9):1102-1115.

    Ren Ying, Zhong Dakang, Gao Chonglong, et al. Geochemical characteristics, genesis and hydrocarbon significance of dolomite in the Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(9): 1102-1115.
    [37] 雷和金,李国蓉,高鱼伟,等. 四川盆地南部寒武系白云石地球化学特征与形成机制[J]. 海相油气地质,2016,21(3):39-47.

    Lei Hejin, Li Guorong, Gao Yuwei, et al. Geochemical characteristics and generation mechanism of Cambrian dolomite in the south of Sichuan Basin[J]. Marine Origin Petroleum Geology, 2016, 21(3): 39-47.
    [38] 任影,钟大康,高崇龙,等. 川东及其周缘地区下寒武统龙王庙组沉积相[J]. 古地理学报,2015,17(3):335-346.

    Ren Ying, Zhong Dakang, Gao Chonglong, et al. Sedimentary facies of the Lower Cambrian Longwangmiao Formation in eastern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography, 2015, 17(3): 335-346.
    [39] 罗良,漆家福,张明正. 四川盆地周缘冲断带构造演化及变形差异性研究[J]. 地质论评,2015,61(3):525-534.

    Luo Liang, Qi Jiafu, Zhang Mingzheng. Difference study on evolution and deformation of the fold-thrust belts surrounding Sichuan Basin[J]. Geological Review, 2015, 61(3): 525-534.
    [40] 马永生,蔡勋育,赵培荣,等. 四川盆地大中型天然气田分布特征与勘探方向[J]. 石油学报,2010,31(3):347-354.

    Ma Yongsheng, Cai Xunyu, Zhao Peirong, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 31(3): 347-354.
    [41] 沈传波,梅廉夫,徐振平,等. 四川盆地复合盆山体系的结构构造和演化[J]. 大地构造与成矿学,2007,31(3):288-299.

    Shen Chuanbo, Mei Lianfu, Xu Zhenping, et al. Architecture and tectonic evolution of composite basin-mountain system in Sichuan Basin and its adjacent areas[J]. Geotectonica et Metallogenia, 2007, 31(3): 288-299.
    [42] 郑志红,李登华,白森舒,等. 四川盆地天然气资源潜力[J]. 中国石油勘探,2017,22(3):12-20.

    Zheng Zhihong, Li Denghua, Bai Senshu, et al. Resource potentials of natural gas in Sichuan Basin[J]. China Petroleum Exploration, 2017, 22(3): 12-20.
    [43] Liu W P, Liu J, Cai M L, et al. Pore evolution characteristic of shale in the Longmaxi Formation, Sichuan Basin[J]. Petroleum Research, 2017, 2(4): 291-300.
    [44] Zheng H F, Ma Y S, Chi G X, et al. Stratigraphic and structural control on hydrothermal dolomitization in the Middle Permian carbonates, Southwestern Sichuan Basin (China)[J]. Minerals, 2019, 9(1): 32.
    [45] Brand U, Veizer J. Chemical diagenesis of a multicomponent carbonate system: 1, Trace elements[J]. Journal of Sedimentary Research, 1980, 50(4): 1219-1236.
    [46] 黄思静,Hairuo Qing,裴昌蓉,等. 川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云石化流体[J]. 岩石学报,2006,22(8):2123-2132.

    Huang Sijing, Hairuo Qing, Pei Changrong, et al. Strontium concentration, isotope composition and dolomitization fluids in the Feixianguan Formation of Triassic, eastern Sichuan of China[J]. Acta Petrologica Sinica, 2006, 22(8): 2123-2132.
    [47] Wang Y, Shi Z J, Qing H R, et al. Petrological characteristics, geochemical characteristics, and dolomite model of the Lower Cambrian Longwangmiao Formation in the periphery of the Sichuan Basin, China[J]. Journal of Petroleum Science and Engineering, 2021, 202:1-17.
    [48] Clayton R N, Degens E T. Use of carbon isotope analyses of carbonates for differentiating fresh-water and marine sediments: Geological notes[J]. AAPG Bulletin, 1959, 43(4): 890-897.
    [49] Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28(10/11): 1787-1816.
    [50] 谢渊,罗建宁,张哨楠,等. 羌塘盆地那底岗日地区中侏罗世碳酸盐岩碳、氧、锶同位素与古海洋沉积环境[J]. 矿物岩石,2000,20(1):80-86.

    Xie Yuan, Luo Jianning, Zhang Shaonan, et al. Palaeo-oeanic sedimentary environment during the Middle Jurassic in Nadigangri area, Qiangtang Basin[J]. Journal of Mineralogy and Petrology, 2000, 20(1): 80-86.
    [51] 王勇,施泽进,彭俊,等. 川东南地区石牛栏组碳、氧、锶同位素特征及其地质意义[J]. 矿物岩石地球化学通报,2009,28(4):330-335.

    Wang Yong, Shi Zejin, Peng Jun, et al. The C, O, Sr isotope composition of Shiniulan Formation in southeast area of Sichuan and its geologic impolications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4): 330-335.
    [52] Ishikawa M, Ichikuni M. Uptake of sodium and potassium by calcite[J]. Chemical Geology, 1984, 42(1/2/3/4): 137-146.
    [53] Marriott C S, Henderson G M, Crompton R, et al. Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate[J]. Chemical Geology, 2004, 212(1/2): 5-15.
    [54] Geerken E, de Nooijer L J, van Dijk I, et al. Impact of salinity on element incorporation in two benthic foraminiferal species with contrasting magnesium contents[J]. Biogeosciences, 2018, 15(7): 2205-2218.
    [55] 樊茹,邓胜徽,张学磊. 寒武系碳同位素漂移事件的全球对比性分析[J]. 中国科学(D辑):地球科学,2011,41(12):1829-1839.

    Fan Ru, Deng Shenghui, Zhang Xuelei. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China(Seri.D):Earth Sciences, 2011, 41(12): 1829-1839.
    [56] Vasconcelos C, McKenzie J A, Warthmann R, et al. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005, 33(4): 317-320.
    [57] Horita J. Oxygen and carbon isotope fractionation in the system dolomite–water–CO2 to elevated temperatures[J]. Geochimica et Cosmochimica Acta, 2014, 129: 111-124.
    [58] 孙海涛,张玉银,柳慧林,等. 四川盆地东部下寒武统龙王庙组白云岩类型及其成因[J]. 石油与天然气地质,2018,39(2):318-329.

    Sun Haitao, Zhang Yuyin, Liu Huilin, et al. Typological analysis and genetic mechanism of dolomite in the Lower Cambrian Longwangmiao Formation, eastern Sichuan Basin[J]. Oil & Gas Geology, 2018, 39(2): 318-329.
    [59] 张玺华,罗文军,文龙,等. 四川盆地寒武纪龙王庙组沉积相演化及石油地质意义[J]. 断块油气田,2018,25(4):419-425.

    Zhang Xihua, Luo Wenjun, Wen Long, et al. Sedimentary facies evolution characteristics and petroleum geological significance of Cambrian Group in Sichuan Basin[J]. Fault-Block Oil and Gas Field, 2018, 25(4): 419-425.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(2)

Article Metrics

Article views(506) PDF downloads(82) Cited by()

Proportional views
Related
Publishing history
  • Received:  2021-02-28
  • Revised:  2021-05-31
  • Published:  2021-12-10

Burial Dolomitization and Mixed Water Dolomitization in Longwangmiao Formation, Southeastern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.065
Funds:

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Chengdu University of Technology) PLC2020021

National Natural Science Foundation of China 41872137

Abstract: Based on field investigation and geochemical analysis, it is believed that the dolomites of the Longwangmiao Formation in the Tuhechang and Nanshanping sections, southeast Sichuan Basin, differ from other dolomites in the area, being mainly of reflux seepage origin. Tuhechang dolomite is of burial origin, and the dolomite in Nanshanping is of mixed-water origin. The Tuhechang dolomites occur in the lower part of the Longwangmiao Formation, and did not have the geological conditions suitable for forming reflux seepage dolomites. The temperature of inclusions of the Tuhechang dolomites shows a formation temperature higher than 105 °C. Its Mn element and Fe element content are relatively high (average 792.5×10–6 and 3 428.8×10–6 respectively), with good correlation. The average δ18O content is –8.18‰, which is significantly lower than for dolomites in other sections of the study area. These all reflect a burial environment in the Tuhechang section. The main part of the Nanshanping section lies in a slope facies zone, and did not have the geological conditions for the formation of reflux seepage dolomite. Nanshanping dolomite contains an obviously low value for Na element, and δ18O is also obviously negative, both indicating that it was formed in a low-salinity fluid environment at a relatively low temperature. In addition, Nanshanping dolomite shows obvious U element enrichment, indicating that its formation was related to atmospheric fresh water, and it is therefore a mixed-water dolomite. These two dolomite types have relatively good physical properties, which is highly significant for reservoir development in the southeastern Sichuan Basin.

WANG Yong, SHI ZeJin, MENG XingPing, LIU PeiJie, TIAN YaMing, QING HaiRuo. Burial Dolomitization and Mixed Water Dolomitization in Longwangmiao Formation, Southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1517-1531. doi: 10.14027/j.issn.1000-0550.2021.065
Citation: WANG Yong, SHI ZeJin, MENG XingPing, LIU PeiJie, TIAN YaMing, QING HaiRuo. Burial Dolomitization and Mixed Water Dolomitization in Longwangmiao Formation, Southeastern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(6): 1517-1531. doi: 10.14027/j.issn.1000-0550.2021.065
  • 白云岩是一种常见的碳酸盐岩,但其成因却一直是学者们讨论的焦点。一方面由于白云岩成因本身的复杂性,另一方面是由于白云岩对于油气勘探有着特殊的意义。目前已经建立了很多很多模式,这些模式包括回流渗透模式[1-2]、混合水模式[3-4]、萨布哈模式[5-6]、热液白云岩模式[7]等,目前这些模式广泛地被用来解释世界各地的白云岩成因问题[8-12]

    近些年来,关于白云岩成因问题,有两个值得关注的进展:1)低温下人工合成白云石获得成功。白云石自发现以来,很长一段时间人们不能在常温常压条件下合成白云石,这构成了所谓的“白云岩问题”的主体内容。最早的真正意义上的低温白云石合成案例为Vasconcelos et al.[13]1995年在硫酸盐还原细菌的作用下,成功合成了白云石,此后,人们相继发现了很多微生物[13-17]可以克服白云石形成的动力学障碍,诱导合成白云石。低温条件下成功合成白云石,为“白云岩问题”的解决带来了新的希望。2)混合水白云岩化模式受到了质疑。混合水白云岩化模式自提出以来,得到了广泛地应用,但同时,也有学者不断提出质疑[18-19]。最直接质疑来自Luczaj[19]对Wisconsin arch碳酸盐岩的重新研究。Wisconsin arch碳酸盐岩是经典的混合水白云岩化模式提出的地方,然而Luczaj[19]对其重新研究后认为这些白云岩并不总是分布在高部位,并且有较高的包裹体均一温度,综合其他地球化学数据认为该地区的白云岩实际上是热液白云岩化的结果。

    尽管如此,学者们并不认为混合带没有形成白云石的能力[20-22],只是其形成规模较小,且通常只能分布在台地边缘及附近。因此,混合水白云岩化模式依然作为一种重要的模式来解释一些地区的白云岩成因。黄思静等[20]对川东北飞仙关组白云岩的地球化学特征分析后认为,飞仙关组微晶白云岩和具原始结构的粒屑白云岩主要分布在沉积旋回的中上部,且具有高Mn含量和低温度的特征,认为混合水白云岩化仍然是比较合理的解释;Li et al.[22]以及Cooper et al.[23]对西班牙东南部Almeria盆地中新世白云岩研究后认为,上升的大气淡水与中盐度海水的混合是其白云岩化的重要原因,并通过计算机模拟计算证实这种上升流的白云岩化潜力要明显高于传统的模式(大气淡水向下渗透,与海水混合),该模式丰富了混合水白云岩化的模型;He et al. [24]将碘元素的沉积记录引入到碳酸盐岩成因分析中来,认为中国南方扬子地块的盖白云岩的形成过程中,也存在大气淡水与海水混合的情况;此外,Sumrall et al.[25]对混合带模型进行了修改,在模型中加入了促进白云石化的微生物过程,用来解释波多黎各莫纳岛(Isla de Mona)的白云岩成因。他认为混合带盐跃层的条件将有利于利用密度界面上收集的有机物和从含盐地下水中提取的硫酸盐作为能源来维持活性的微生物群落存在和发展,而硫酸盐还原菌的存在将更好地克服白云岩形成过程中的动力学障碍,使得白云岩化作用更加容易发生。将微生物作用引入到混合水白云岩化模型中,为混合水白云岩化机理的解释提供了一个全新的视角,可能对混合水白云岩化机理的解释带来深远的影响。

    四川盆地龙王庙组2012年在磨溪8井获高产气流,取得重大突破[26-27]。龙王庙组的勘探突破带动了学者们的研究热情,2012年后出现了大量的研究成果,这些成果主要集中在沉积相[28-30]、储层控制因素[27,31-32]及油气云聚规律[33-36]等方面。任影等[36]分析了川东地区的14件白云岩的地球化学数据,认为龙王庙组白云岩的成因主要为回流渗透白云岩。杨雪飞等[27]对川中龙王庙组的储层成岩作用进行了分析,认为白云岩化作用主要与高盐度水体的回流渗透有关。目前对龙王庙组白云岩的成因基本上有了比较统一的认识:龙王庙组白云岩主要为回流渗透成因的白云岩[27,36-38]。然而,我们在对四川盆地东南的土河场剖面和南山坪剖面进行研究时,认为这两者的剖面结构及地球化学特征与其他剖面有明显的差别,这两处的白云岩并不具备回流渗透白云岩形成的地质条件。通过野外调查及室内分析,我们认为土河场下部的白云岩为埋藏白云岩,而南山坪上部的白云岩则为混合水成因的白云岩。

  • 四川盆地是中国最重要的含油气盆地之一[39],盆地纵向上发育了中生界陆相成藏系统、上古生界海相成藏系统及下古生界海相成藏系统三大成藏系统,有效勘探面积18×104 km2[40]。目前盆地内已经建成普光、广安、元坝及合川等多个大型气田,是中国最主要的天然气生产基地[41-42]。四川盆地构造上位于杨子地台的西北部,为杨子地台的次级构造单元[43],盆地周缘被多个造山带所围绕。研究目标层位龙王庙组为下古生界成藏系统中的一个重要地层单元,是该成藏系统中的主要储集层之一。

    四川盆地龙王庙期发育连陆碳酸盐岩台地—斜坡—盆地沉积体系[30]、碳酸盐岩台地体系是龙王庙组沉积主体,整体呈北东—南西向展布。碳酸盐台地沉积,可划分为局限—蒸发台地、半局限—局限台地、台缘带和混积潮坪4个相及台内滩、台缘滩及局限潟湖等多个亚相,并以局限—蒸发台地相和半局限—局限台地最为发育[30,38]。四川盆地东南缘大部分地区位于半局限台地和蒸发台地相带中。本文所涉及到的两个主要剖面为土河剖面和南山坪剖面(图1)。土河剖面位于四川盆地的南缘,主体位于半局限—局限台地沉积相带中。南山坪剖面位于四川盆地的东缘,主体位于斜坡相带(靠近台地边缘一侧)中。

    Figure 1.  Map of sedimentary facies in Longwangmiao Formation in all areas studied (modified from reference[30])

  • 本文样品主要采自四川盆地东南部的5条剖面(图1),共计90余件。在野外对龙王庙组进行了详细地观察及描述,对所采的样品在野外进行初步命名。到实验室后,所有样品都进行了薄片制作,在镜下进行了详细的岩矿鉴定,确保样品岩性的准确性。在薄片鉴定后,选取有代表性的样品60件,用蒸馏水冲洗三次,晾干后在玛瑙研钵上将其磨至200目以下,进行碳氧同位素测试,选取39件进行常量元素和微量元素分析,选取17件样品进行包裹体薄片制样,并开展了包裹体均一温度及盐度测试分析工作。

    常量元素(Na、Al、Fe)测试完成于成都理工大学矿产资源化学四川省高校重点实验室,样品经称重、硝解及定容后上机测试,所用仪器为ICP-OES,分析流程用标样GSS-1和GSS-3监测,测试精度优于10%。微量元素(Mn、Sr、U)测试分析完成于成都理工大学地球化学实验室,所用仪器为美国PerkinElmer公司Elan DRC-e ICP-MS,分析过程用标样GSS-1、GSS-3、GSR-4和GSD-9监测,元素含量相对误差优于10%,测试结果统计于表1。碳氧同位素完成于成都理工大学地球化学实验室,所用仪器为MAT253气体稳定同位素质谱仪。样品经烘箱烘干后,在70 ℃的真空系统中与纯磷酸反应2 h,收集气体进行碳、氧同位素测试分析。所得数值的千分差以VPDB标准计算,分析精度优于0.3‰,测试结果列于表2。包裹体测试完成于里贾纳大学地质系流体实验室。样品经制样,两面剖光后(厚度约100 μm),上机测试,具体测试方法与Zheng et al.[44]相同。

    样品组及岩性(样品数/个) Na/×10-6 Al/×10-6 Fe/×10-6 Mn/×10-6 Sr/×10-6 U/×10-6
    川东南微晶灰岩(9) 78.40 16.50 7.80 37.30 99.72 0.01
    216.60 2 567.00 1 276.00 1 403.00 1 597.03 0.81
    135.20 832.70 2 796.42 200.76 537.10 0.27
    川东南白云岩岩(7) 115.20 1 261.00 1 387.00 70.70 58.51 0.23
    239.20 1 975.00 3 167.00 146.10 94.73 0.83
    164.60 1 503.86 2 305.71 113.41 73.32 0.35
    土河场白云岩(9) 110.50 403.10 1 552.00 320.40 42.05 0.15
    205.00 2 650.00 5 765.00 1 206.00 101.45 0.51
    170.87 1 293.10 3 428.78 792.50 62.73 0.28
    南山坪白云岩(6) 111.40 63.10 146.40 110.80 24.39 1.49
    166.30 251.60 403.10 141.40 71.82 6.57
    138.18 137.75 259.03 121.60 49.59 3.38

    Table 1.  Element analysis in the study area, Longwangmiao Formation

    样品组及岩性(样品数/个) δ 13C/‰ δ 18O/‰
    川东南白云岩岩(14) 最小值 -0.76 -7.68
    最大值 1.71 -6.08
    平均值 0.5 -6.96
    土河场白云岩(11) 最小值 0.5 -9.83
    最大值 2.38 -6.42
    平均值 1.29 -8.81
    南山坪微晶灰岩(26) 最小值 0.19 9.43
    最大值 2.17 -6.24
    平均值 0.95 -7.65
    南山坪白云岩(9) 最小值 -0.29 -7.00
    最大值 1.3 -3.81
    平均值 0.19 -5.91

    Table 2.  Carbon and oxygen isotope analyses of carbonate rocks in the study area, Longwangmiao Formation

  • 四川盆地东南缘龙王庙组中下部以一套中—厚层状灰色灰岩为主,上部则以白云岩为主(图2a、图3a,b)。灰岩中鲕粒、内碎屑、球粒、豆粒等各种颗粒结构常见(图3c,d),部分地层发生不均匀白云岩化(图3e),局部可见叠层石发育(图3f)。灰岩中裂缝较发育,裂缝近垂直于地层,多被方解石充填(图3g)。上部为颗粒白云岩夹较均一的块状白云岩,颜色以灰色、浅灰色为主。在龙王庙组的顶部往往发育一套厚度5 m左右的黄灰色、浅灰色的微晶白云岩,局部含泥质较重。在微晶白云岩中可见少量膏溶孔及膏溶角砾岩(图3h)。

    Figure 2.  Lithological sketch of Longwangmiao Formation in southeastern Sichuan Basin

    Figure 3.  Outcrop photographs of Longwangmiao Formation in southeastern Sichuan

    本文所研究的两个剖面总体符合上述特点,但存在特别之处:1)土河场剖面的白云岩,不像其他剖面只分布在上部,其下部也发育了一套厚约50 m的白云岩(本文所讲的土河场白云岩指的是土河场剖面下部的白云岩,全文同),白云岩呈厚层块状,晶粒以细晶为主(图4a,b);2)南山坪整体以较均一的薄—中层微晶灰岩为主(图4c、图5d),颗粒结构不发育,且其上部的白云岩厚度较小,总厚度不超过40 m(图2c、图4e),且没有发育微晶白云岩,而是一层厚约20 m的致密泥质灰岩(图4f)。

    Figure 4.  Outcrop photographs of Tuhechang and Nanshanping sections

    Figure 5.  Microscopic lithological characteristics of Longwangmiao Formation

    显微镜下,川东南地区龙王庙组白云岩主要为粉晶白云岩,局部少量陆源碎屑(图5a)及残余颗粒结构(图5b);土河场剖面白云岩以细—中晶白云岩为主,晶体多为平直晶面半自型—自型结构,原始结构完全消失(图5c,d)。在阴极射线下,晶体边界清楚,可见轻微的环带结构(图5e)。南山坪剖面的白云岩则以粉—细晶它型白云石为主(图5f,g,i),白云岩中溶蚀作用相对发育,晶间溶孔及溶蚀孔隙较常见(图5g,i),阴极射线下发暗红或暗褐色光,晶体间的边界不清楚或呈细小的团块状(图5h,j)。

  • 前已述及,土河场剖面和南山坪剖面的白云岩,其分布位置及地层结构有其独特的地方。结合室内测试分析资料,我们认为土河场白云岩和南山坪的白云岩成因并不同于四川盆地及周边其他大多数白云岩。土河场白云岩为埋藏白云岩化的产物,而南山坪白云岩则是混合水白云岩化的产物。

  • 土河场的白云岩具有普遍高的Fe元素含量,并且Fe元素的含量和Mn元素的含量有较好的相关性(图6a)。由于碳酸盐岩的成岩过程是一个Fe元素和Mn元素的获取过程,但Fe和Mn元素只能在还原环境中进入碳酸盐矿物晶格中[45-48]。因此后期的成岩作用越强烈,Fe和Mn元素的含量会越高。由于龙王庙组普遍含有较高的陆源物质,而陆源物质相对海水是富集Fe元素的。因此该区微晶灰岩(通常认为其受到后期成岩作用的改造比较弱)中Fe元素与Al元素具有较高的相关性(图6b),但Fe与Mn元素的相关性却很低(图6c)。这表明成岩改造较弱的碳酸盐岩中的Fe元素主要来自陆源物质,而非后期的成岩过程中进入碳酸盐岩晶格中的。因为如果是在后期的成岩过程中进入到碳酸盐岩中的,Fe和Mn元素会同时进入,它们之间应该有较好的相关性。研究区龙王庙组中的晶粒白云岩,普遍被认为是同生期回流渗透白云岩化的产物[27,36-38],我们对这些白云岩做了详细的野外调查和室内分析[47],赞同这样的观点。这些晶粒白云岩处于近地表或浅埋藏环境,因此Fe和Mn元素是不能进入碳酸盐矿物晶格的,但Fe元素可以在沉积的时候和陆源物质一起沉积到碳酸盐岩中。从散点图中看出,研究区白云岩的Fe元素和Al元素有一定的相关性(图6d),但Fe元素和Mn元素的相关性则很弱(图6e)。而土河场的白云岩,其Fe元素和Mn元素有明显的相关性,但Fe元素和Al元素则有较弱的相关性,这意味土河场白云岩中的Fe和Mn主要是在后期成岩过程中获得的,而非来自陆源碎屑。

    Figure 6.  Scatter gram of element geochemistry of carbonate rocks in southeastern Sichuan Basin and Tuhechang Longwangmiao Formation

  • 从碳氧同位素来看,土河场白云岩的氧同位素明显低于其他剖面白云岩的氧同位素(图7),平均值约为-8.18‰。氧同位素对温度和盐度是敏感的[48-51],高温度和低盐度都可以造成碳酸盐岩氧同位素向负偏移。但从Na元素来看,土河场白云岩的Na元素并不比川东南地区的白云岩低,反而是略高于川东南地区的白云岩(表1)。由于Na元素的高低可以反映流体的盐度的高低[52-54],因此土河场白云岩化流体的盐度并不比研究区的低,白云岩的低氧同位素值,应该是反映了其形成于相对较高的温度环境。这也意味着土河场白云岩是在较大埋深的情况下形成的,而其碳同位素偏正则可能是全球性的碳同位素漂移引起的[55]

    Figure 7.  Scattergram of Longwangmiao Formation dolomite in southeastern Sichuan Basin and dolomite of Tuhechang and Nanshanping sections

  • 更直接的证据来自包裹体的相关测试。包裹体在龙王庙组其他剖面很少,我们在其他剖面的白云岩中没有找到可以用来测试的包裹体,而在土河场剖面中则发现了相对较多的包裹体(图8)。这些包裹体大多较小,但仍然可以找到一些可用于测试的包裹体。土河场中的包裹体大多呈团簇状出现,形状不规则(图8)。测试结果显示,土河场白云石中的包裹体均一温度比较高,分布范围较广(105.4 ℃~266.5 ℃)。主要集中在两个区域(图9),一个为140 ℃~160 ℃,另一个为180 ℃~200 ℃,最高温度超过260 ℃。显示土河场白云岩可能主要形成于温度为140 ℃~160 ℃和180 ℃~200 ℃的环境中。其冰点温度为-1.7 ℃~-16.9 ℃,对应的盐度为2.9~20.15(wt.%),主要集中在2.9~4.34之间。表明土河场白云岩形成的流体可能主要为古海水(现代海水的盐度约为3.5%)。较宽的均一温度和盐度表明土河场白云岩形成时或形成后处于相对复杂的外部环境。

    Figure 8.  Photograph of Tuhechang dolomite inclusions

    Figure 9.  Histogram of homogenization temperature distribution in Tuhechang dolomite inclusions

    龙王庙组其他剖面的白云岩则主要分布在上部,主要是因为其他地区的白云岩主要为回流渗透成因,这些回流的流体主要来自龙王庙组沉积晚期的潟湖中,因此白云岩化作用是自上而下发生的,致使白云岩主要分布在上部。而土河场的白云岩则主要分布在龙王庙组的下部,其上还有大量没有被白云岩化的灰岩存在,因此,从白云岩化的过程和机制上来看,显然土河场的白云岩成因不同于其他剖面的白云岩,并非回流渗透白云岩化的产物。综上所述,土河场剖面的白云岩形成温度较高,有较高的Fe元素和Mn元素含量,且主要分布在龙王庙组的下部,反映了其为埋藏白云岩的特点。

  • 南山坪白云岩具有较低的盐度。由于龙王庙组碳酸盐岩普遍含有陆源物质,而部分陆源物质中含有Na元素(如斜长石),因此在分析碳酸盐岩的Na元素含量是应尽量避免陆源物质的影响。从各剖面的Na元素和Al元素的散点图可以看出,两种元素具有较高的正相关性(图10a),这表明陆源物质确实明显影响了龙王庙组的地球化学特征。对各个剖面的Na元素和Al元素含量进行拟合后(图10b~d),可得一线性拟合方程,这一方程的截距则代表了没有陆源物质(Al元素含量为零)时,碳酸盐岩中的Na元素含量。从拟合方程可以得到盆地东南部的微晶灰岩和白云岩(除土河场及南山坪外)、土河场白云岩及南山坪白云岩的Na元素含量分别为121.3,133.4,152.8和109.3。由于龙王庙白云岩主要为蒸发浓缩回流渗透白云岩,因此,白云岩的Na元素含量普遍高于灰岩。但南山坪处的白云岩的Na元素含量则低于灰岩的含量,这意味着南山坪白云岩形成环境的盐度低于当时海水的盐度。

    Figure 10.  Na and Al curves of best fit for carbonate rocks in the study area, Tuhechang and Nanshanping sections

  • 来自氧同位素的证据。由于南山坪剖面的沉积环境于其他剖面完全不同,主要处于斜坡相中,其沉积物的氧同位素在一定程度上受沉积环境的影响。因此将南山坪白云岩和其他剖面的白云岩进行对比是不合适的。我们分析了南山坪剖面的微晶灰岩碳氧同位素,通过成岩蚀变判断,南山坪的微晶灰岩基本没有受成岩蚀变的改变,因此,微晶灰岩可以代表当时沉积时的地球化学特征。测试结果显示(表2),微晶灰岩的碳同位素为0.19~2.17(平均值为0.95),δ 18O为-9.43~-6.24(平均值为-7.65),而南山坪白云岩的碳同位素为-0.29~1.30(平均值为0.19),δ 18O为 -7.00~-3.81(平均值为-5.91)。

    对氧同位素来说,由于白云岩和灰岩存在分馏差异,在相同的溶液中,形成的白云石要比方解石更富集18O[56-57]。Vasconcelos et al.[56]2005年通过在低温条件下合成白云石的方法,建立起了白云石和水溶液的氧同位素分馏方程,该方程显示,白云石比方解石富集2.6‰的18O。我们取2.5‰代表这一分馏差异,对白云岩的氧同位素进行矫正。矫正后的白云岩氧同位素为-8.41‰,明显低于微晶灰岩的氧同位素值(图11)。氧同位素主要受温度和盐度的影响,但由于白云岩的先驱矿物和微晶灰岩沉积于同一地点相同的沉积环境,因此,其沉积时的温度是相似的,这意味着白云岩的低氧同位素应该主要是由于盐度较低造成的,也印证了南山坪白云岩形成于混合水环境中。

    Figure 11.  Carbon and oxygen isotope scatter plots for Nanshanping (corrected by isotope fraction)

  • 南山坪白云岩中,存在一明显的U元素的富集过程。元素分析结果显示,南山坪白云岩中的U元素含量较高,比其他其他剖面的白云岩高出一个数量级(表1图12)。由于U元素在氧化环境中容易被活化,随氧化性流体迁移,当环境变为还原环境时,其就会被还原为4价U沉淀下来。因此,在南山坪剖面白云岩中应该存在这样一个氧化还原的过程。这一过程可以很好地用大气降水向下缓慢流动的过程解释。四川盆地在龙王庙沉积期,区内发生小幅度的差异性升降运动,形成不对称半地堑与地垒相间的东南低、西北高的古地貌格局[58-59]。龙王庙末期,海平面下降,这些地垒露出海面,形成孤岛或岛弧,这些孤岛或岛弧接受大气降水的补给,在水势差和两边致密层隔挡层的共同作用下,大气水能向下渗透较大的距离。大气水向下渗透的过程中,氧化沿途的U元素,随着向下运移距离的增加,逐渐变为还原环境,此时U元素开始被还原,以沉淀物的形式逐步富集,这是造成南山坪白云岩U元素含量较高的主要原因,这一过程正好可以与混合水白云岩化的过程对应起来。此外,南山坪白云岩中溶蚀孔隙较发育(图5g,i),也显示了其经历了较明显的淡水淋滤作用。

    Figure 12.  Uranium content of carbonate rocks of Longwangmiao Formation in southeastern Sichuan Basin

  • 南山坪剖面结构不同于其他剖面,没有形成回流渗透白云岩的必要条件。野外调查显示,无论时川西北还时川东南地区,绝大多数剖面顶部都为一层厚度为5 m左右的微晶白云岩(图2a,b),这层微晶白云岩记录了龙王庙末期广泛发育的潟湖相沉积事件,潟湖中高盐度海水向下回流渗透是龙王庙组大多数白云岩形成的主要机制。而南山坪顶部则为一套致密的微晶灰岩(图2a),也就是说处于台地边缘—斜坡相沉积区的南山坪地区,其不具备形成潟湖相的条件,也就不具备形成回流渗透的条件。因此,南山坪剖面的白云岩难以用回流渗透机制来解释。

    这里必须再次强调的是,虽然目前混合水白云岩化受到强烈的质疑,但质疑的焦点并不在混合水条件下能否形成白云岩,而在其形成规模。学者们并没有否认混合水条件下可以形成白云岩[20-23],因此在特定的环境下,混合水白云岩化可能仍然是白云岩形成的主要机制。从掌握的资料资料状况来看,混合水白云岩化模式是解释南山坪地区的白云岩成因的最佳选择。

    川东南地区龙王庙组碳酸盐岩普遍致密,而南山坪剖面和土河场剖面的白云岩具有相对较好的物性,在镜下也可以见到明显的孔隙存在,尤其是土河场剖面中,晶间孔和晶间溶孔普遍发育,且大多数孔隙中可见到残存的沥青。因此,埋藏白云岩化和混合水白云岩化对于川东南地区龙王庙组储层相对不发育的区域具有重要的意义。

  • 四川盆地龙王庙组白云岩主要为回流渗透成因,但东南部土河场剖面和南山坪剖面具有不同于其他剖面的地层结构和地球化学特征,其形成机制有别于其他地区的白云岩。土河场剖面的白云岩主要分布在龙王庙组下部,不具备形成回流渗透白云岩的地质条件,其白云岩有较高的Fe元素和Mn元素含量,代表了其形成于较大埋深的还原环境中,明显偏负的氧同位素组成反映了其形成于较高温度环境中,包裹体均一温度也显示其形成于110 ℃以上的高温环境,这些证据均指示土河场白云岩形成于埋藏环境。南山坪剖面的白云岩主要分布在龙王庙组的上部,其剖面结构不同于其他剖面的微晶白云岩+晶粒白云岩+灰岩的结构,而是微晶灰岩+晶粒白云岩+微晶灰岩的结构,没有蒸发浓缩环境下的产物——微晶白云岩,不能用回流渗透作用在解释其成因。南山坪白云岩具有较低的Na元素含量,意味着其盐度低于正常海水的盐度,另外南山坪白云岩具有较高的U元素含量,显示其有氧化性流体的混入,印证了南山坪白云岩形成过程中有大气降水的混入。尽管混合水白云岩化模式受到了质疑,但我们认为南山坪白云岩用混合水模式解释仍然是较合理的解释。

Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return