Advanced Search
Volume 41 Issue 1
Feb.  2023
Turn off MathJax
Article Contents

ZUO JingXun, ZHU XueJian, CHEN YongLin, ZHAI WenJian. Carbon Isotope Evolution and Ecological Environments in the Late Miaolingian Epoch of the Cambrian, Northern China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 289-302. doi: 10.14027/j.issn.1000-0550.2021.062
Citation: ZUO JingXun, ZHU XueJian, CHEN YongLin, ZHAI WenJian. Carbon Isotope Evolution and Ecological Environments in the Late Miaolingian Epoch of the Cambrian, Northern China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 289-302. doi: 10.14027/j.issn.1000-0550.2021.062

Carbon Isotope Evolution and Ecological Environments in the Late Miaolingian Epoch of the Cambrian, Northern China

doi: 10.14027/j.issn.1000-0550.2021.062
Funds:

National Natural Science Foundation of China 41672028

Natural Science Foundation of Henan Province 202300410024

  • Received Date: 2020-12-21
  • Accepted Date: 2021-07-07
  • Rev Recd Date: 2021-05-19
  • Available Online: 2021-07-07
  • Publish Date: 2023-02-10
  • Studies of carbon isotope records from upper Miaolingian⁃lower Furongian series in Cambrian in northern Henan and western Shandong, northern China, indicate a falling trend δ13C in upper Miaolingian series followed by a remarkable positive shift in lower Furongian series. This positive shift, which spans the trilobite Chuangia zone in northern China,is comparable to the global Steptoean Positive Carbon Isotope Excursion (SPICE) in the early Furongian. The δ13C trend is covariant with the rise and fall of populations of trilobites, conodonts and phytoplanktons. Mass extinction of trilobites occurred in the upper part of the Guzhangian stage,Where δ13C decreased to low values. However, new trilobite populations flourished at the top of the Guzhangian stage,Where δ13C gradually rose to high levels, exhibiting a strongly positive excursion in the Paibian stage. Carbon isotope evolutions are constrained by changes in sea level and sedimentary environment: for example,gradually increasing values of δ13C are always found in carbonates deposited during a seawater transgression, peaking in the lower part of high-water system tracts;however, carbonates from the upper part of a high-water system tract or formed during the sea-level falling stage usually have a low δ13C record. Therefore, sea-level changes were crucial ininducing changes in ecological environments, biological communities and carbon isotope evolution in the late Miaolingian and early Furongian series in the Cambrian.
  • [1] Dilliard K A, Pope M C, Coniglio M, et al. Stable isotope geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for ocean chemistry and secular curve generation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 174-194.
    [2] 左景勋,彭善池,朱学剑. 扬子地台寒武系碳酸盐岩的碳同位素组成及地质意义[J]. 地球化学,2008,37(2):118-128.

    Zuo Jingxun, Peng Shanchi, Zhu Xuejian. Carbon isotope composition of Cambrian carbonate rocks in Yangtze Platform, South China and its geological implications[J]. Geochimica, 2008, 37(2): 118-128.
    [3] Howley R A, Jiang G Q. The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin, western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1/2): 138-150.
    [4] Zuo J X, Peng S C, Qi Y P, et al. Carbon-isotope excursions recorded in the Cambrian System, South China: Implications for mass extinctions and sea-level fluctuations[J]. Journal of Earth Science, 2018, 29(3): 479-491.
    [5] Guo Q J, Strauss H, Liu C Q, et al. A negative carbon isotope excursion defines the boundary from Cambrian series 2 to Cambrian series 3 on the Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(3/4): 143-151.
    [6] Wotte T, Álvaro J J, Shields G A, et al. C-, O- and Sr-isotope stratigraphy across the Lower-Middle Cambrian transition of the Cantabrian Zone (Spain) and the Montagne Noire (France), West Gondwana[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(1/2): 47-70.
    [7] Zhu M Y, Babcock L E, Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld, 2006, 15(3/4): 217-222.
    [8] Saltzman M R, Cowan C A, Runkel A C, et al. The Late Cambrian SPICE (δ 13C) event and the Sauk II-Sauk III regression: New evidence from Laurentian Basins in Utah, Iowa, and Newfoundland[J]. Journal of Sedimentary Research, 2004, 74(3): 366-377.
    [9] Saltzman M R, Ripperdan R L, Brasier M D, et al. A global carbon isotope excursion (SPICE) during the Late Cambrian: Relation to trilobite extinctions, organic-matter burial and sea level[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(3/4): 211-223.
    [10] Saltzman M R, Runnegar B, Lohmann K C. Carbon isotope stratigraphy of Upper Cambrian (Steptoean Stage) sequences of the eastern Great Basin: Record of a global oceanographic event[J]. Geological Society of America Bulletin, 1998, 110(3): 285-297.
    [11] Mackey J E, Stewart B W. Evidence of SPICE-related anoxia on the Laurentian passive margin: Paired δ 13C and trace element chemostratigraphy of the Upper Conasauga Group, Central Appalachian Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528: 160-174.
    [12] Li D D, Zhang X L, HuD P, et al. Evidence of a large δ 13Ccarb and δ 13Corg depth gradient for deepwater anoxia during the Late Cambrian SPICE event [J]. Geological, 2018, 46(7): 631-634.
    [13] 杜圣贤,张瑞华,张贵丽,等. 山东张夏—崮山地区华北寒武系标准剖面上寒武统研究新进展[J]. 山东国土资源,2007,23(10):1-6,14.

    Du Shengxian, Zhang Ruihua, Zhang Guili, et al. New developement of study on lower part of Cambrian in Cambrian standard profile in Zhangxia-Gushan area in Shandong province[J]. Shandong Land and Resources, 2007, 23(10): 1-6, 14.
    [14] Yuan J L, Li Y, Mu X N, et al. Trilobite fauna of the Changhia Formation (Cambrian series 3) from Shandong and adjacent area, North China[M]. Beijing: Science Press, 2012: 1-758.
    [15] Fan R, Deng S H, Zhang X L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations[J]. Science China Earth Sciences, 2011, 54(11): 1686-1695.
    [16] Ng T W, Yuan J L, Lin J P. The North China Steptoean positive carbon isotope excursion and its global correlation with the base of the Paibian Stage (early Furongian series), Cambrian[J]. Lethaia, 2014, 47(2): 153-164.
    [17] Ng T W, Yuan J L, Lin J P. The North China Steptoean positive carbon isotope event: New insights towards understanding a global phenomenon[J]. Geobios, 2014, 47(6): 371-387.
    [18] Wang Z P, Chen J T, Liang T T, et al. Spatial variation in carbonate carbon isotopes during the Cambrian SPICE event across the eastern North China Platform[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 546: 109669.
    [19] Stephens N P, Sumner D Y. Late Devonian carbon isotope stratigraphy and sealevelfluctuations, Canning Basin, western Australia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 191(2): 203-219.
    [20] 苗兰云,朱茂炎. 华北板块南部寒武系底部辛集组遗迹化石及其时代意义[J]. 古生物学报,2014,53(3):274-289.

    Miao Lanyun, Zhu Maoyan. Trace fossils from the basal Cambrian Xinji Formation in southern North China Plate and its chronological significance [J]. Acta Palaeontologica Sinica, 2014, 53(3): 274-289.
    [21] 梅冥相,郭荣涛,胡媛. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报,2011,27(8):2473-2486.

    Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatoliticbioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing [J]. Acta Petrologica Sinica, 2011, 27(8): 2473-2486.
    [22] 陈小炜,牟传龙,葛祥英,等. 华北地区寒武系第三统鲕粒滩的展布特征及其控制因素[J]. 石油天然气学报,2012,34(11):8-14.

    Chen Xiaowei, Mou Chuanlong, Ge Xiangying, et al. Distributing characteristics and controlling factors for oolitic shoal of the Third series of Cambrian in North China[J]. Journal of Oil and Gas Technology, 2012, 34(11): 8-14.
    [23] 冯增昭,彭勇民,金振奎,等. 中国晚寒武世岩相古地理[J]. 古地理学报,2002,4(3):1-10.

    Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Late Cambrian in China[J]. Journal of Palaeogeography, 2002, 4(3): 1-10.
    [24] 肖飞,赵宗举,姜在兴,等. 京西地区寒武系凤山组地球化学特征及古环境意义[J]. 沉积学报,2020,38(3):661-675.

    Xiao Fei, Zhao Zongju, Jiang Zaixing, et al. Geochemical characteristics and their paleoenvironmental significance for the Cambrian Fengshan Formation in the western Beijing area[J]. Acta Sedimentologica Sinica, 2020, 38(3): 661-675.
    [25] 郭芪恒,金振奎,安益辰,等. 北京下苇甸地区张夏组沉积环境及沉积模式[J]. 沉积学报,2019,37(1):40-50.

    Guo Qiheng, Jin Zhenkui, An Yichen, et al. Study on sedimentary environment and patterns of the Cambrian Zhangxia Formation at Xiaweidian, Beijing[J]. Acta Sedimentologica Sinica, 2019, 37(1): 40-50.
    [26] 陈金勇,韩作振,范洪海,等. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究[J]. 沉积学报,2014,32(3):494-502.

    Chen Jinyong, Han Zuozhen, Fan Honghai, et al. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation(Third series of Cambrian), Shandong province[J]. Acta Sedimentologica Sinica, 2014, 32(3): 494-502.
    [27] 雒昆利. 华北地区寒武系张夏阶与崮山阶界线:兼论中、上寒武统界线[C]//地层古生物论文集(第27辑). 北京:地质出版社,1999:95-102.

    Luo Kunli. The boundary of the Zhangxia and Gushan stages with reference to the boundary of the Middle and Upper Cambrian of North China[C]//Professional papers of stratigraphy and palaeontology (series 27). Beijing: Geological Publishing House, 1999: 95-102.
    [28] 朱兆玲,项礼文,章森桂,等. 华北上寒武统崮山阶研究新进展[J]. 地层学杂志,2005,29(增刊1):462-466.

    Zhu Zhaoling, Xiang Liwen, Zhang Sengui, et al. New advance in the study of the Upper Cambrian Kushanian Stage of North China[J]. Journal of Stratigraphy, 2005, 29(Suppl.1): 462-466.
    [29] 张梅生,彭向东. 山东及辽宁晚寒武世长山期新三叶虫[J]. 长春科技大学学报,1998,28(3):241-246.

    Zhang Meisheng, Peng Xiangdong. New trilobites from the Upper Cambrian Changshan Formation of Shandong and Liaoning[J]. Journal of Changchun University of Science and Technology, 1998, 28(3): 241-246.
    [30] 袁金良,李越,穆西南,等. 山东张夏期(中寒武世晚期)三叶虫生物地层[J],地层学杂志,2000,24(2):136-143.

    Yuan Jinliang, Li Yue, Mu Xinan et al. Biostratigraphy of trilobites from Changhia Stage (late Middle Cambrian) in Shandong[J]. Journal of Stratigraphy, 2000, 24(2): 136-143.
    [31] Bagnoli G, Qi Y P, Zuo J X, et al. Integrated biostratigraphy and carbon isotopes from the Cambrian Tangwangzhai section, North China[J]. Palaeoworld, 2014, 23(2): 112-124.
    [32] 裴放. 河南省华北型寒武纪生物地层单位划分与对比[J]. 河南地质,2000,18(2):97-106.

    Pei Fang. Division and correlation of the North China type Cambrian biostratigraphic units of Henan province[J]. Henan Geology, 2000, 18(2): 97-106.
    [33] Huang J, Chen Y L, Chu X L, et al. The geochemistry of the Late Cambrian carbonate in North China: The Steptoean Positive Carbon Isotope Excursion (SPICE) record suppressed in a coastal condition?[J]. Geological Magazine, 2019, 156(10): 1805-1819.
    [34] Maloof A C, Schrag D P, Crowley J L, et al. An expanded record of Early Cambrian carbon cycling from the Anti-Atlas Margin, Morocco[J].Canadian Journal of Earth Sciences, 2005, 42(12): 2195-2216.
    [35] Glumac B, Mutti L E. Late Cambrian (Steptoean) sedimentation and responses to sea-level change along the northeastern Laurentian margin: Insights from carbon isotope stratigraphy[J]. Geological Society of America Bulletin, 2007, 119(5/6): 623-636.
    [36] 樊爱萍,杨仁超,韩作振,等. 鲁西地区张夏组碳酸盐岩成岩系统[J]. 沉积学报,2015,33(1):67-78.

    Fan Aiping, Yang Renchao, Han Zuozhen, et al. Carbonate diagenetic system of Zhangxia Formation in west Shandong province[J]. Acta Sedimentologica Sinica, 2015, 33(1): 67-78.
    [37] 左景勋,朱学剑,方怀宾,等. 华北寒武系芙蓉统底界附近的碳同位素组成演化特征[J]. 地球科学,2020,45(3):728-738.

    Zuo Jingxun, Zhu Xuejian, Fang Huaibin, et al. Carbon isotope trend across the base of Furongian series of Cambrian, northern Henan, North China[J]. Earth Science, 2020, 45(3): 728-738.
    [38] 李丽,汪品先. 大洋“生物泵”:海洋浮游植物生物标志物[J]. 海洋地质与第四纪地质,2004,24(4):73-79.

    Li Li, Wang Pinxian. Marine “bio-pumps”: Biomarkers of marine phytoplankton[J]. Marine Geology & Quaternary Geology, 2004, 24(4): 73-79.
    [39] 王修林,张蕾,韩秀荣,等. 营养盐对海洋浮游植物生长的影响:数学模型研究[J]. 海洋科学进展,2002,20(3):96-101.

    Wang Xiulin, Zhang Lei, Han Xiurong, et al. Effect of nutrient on marine phytoplankton growth: Study on mathematic model[J]. Advances in marine Science,2002, 20(3): 96-101.
    [40] 金杰,刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展,2013,28(2):253-261.

    Jin Jie, Liu Sumei. Advances in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2): 253-261.
    [41] 费尊乐,朱明远. 海洋初级生产力的测定[J]. 黄渤海海洋,1984,2(1):86-90.

    Fei Zunle, Zhu Mingyuan. Determination of marine primary productivity[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1984, 2(1): 86-90.
    [42] 穆西南,严惠君,李越,等. 华北地台东部中寒武世微生物礁的时空分布[J]. 微体古生物学报,2003,20(3):279-285.

    Mu Xinan, Yan Huijun, Li Yue, et al. Temporal and spatial distribution of microbiolitic reefs of Middle Cambrian, eastern North China Craton[J]. Acta Micropalaeontologica Sinica, 2003, 20(3): 279-285.
    [43] 齐永安,张喜洋,代明月,等. 豫西寒武系微生物岩中的葛万菌化石及其微观结构[J]. 古生物学报,2017,56(2):154-167.

    Qi Yong’an, Zhang Xiyang, Dai Mingyue, et al. Girvanella fossils and their microstructure from Cambrian microbialites of western Henan[J]. Acta Palaeontologica Sinica, 2017, 56(2): 154-167.
    [44] 常玉光,齐永安,郑伟,等. 河南登封寒武系叠层石组合类型及其控制因素[J]. 微体古生物学报,2012,29(4):341-351.

    Chang Yuguang, Qi Yong’an, Zheng Wei, et al. Assemblages and controlling factors of the Cambrian stromatolites in Dengfeng, Henan province[J]. Acta Micropalaeontologica Sinica, 2012, 29(4): 341-351.
    [45] 肖恩照,王皓,覃英伦,等,寒武纪芙蓉统均一石沉积组构及环境特征 :以河北涞源长山组为例[J]. 沉积学报,2020,38(1):76-90.

    Xiao Enzhao, Wang Hao, Qin Yinglun, et al. Sedimentary fabrics and environmental characteristics of leiolite in Cambrian: A case study from the Changshan Formation in Laiyuan city, Hebei province[J]. Acta Sedimentologica Sinica, 2020, 38(1): 76-90.
    [46] 梅冥相, Latif K,刘丽,等,光合作用生物膜建造的凝块 :来自于辽东半岛芙蓉统长山组凝块石生物丘中的一些证据[J]. 古地理学报,2019,21(2):254-277.

    Mei Mingxiang, Latif K, Liu Li, et al. Clots built by photosynthetic biofilms: Evidences from thrombolite bieherms of the Changshan Formation of Cambrian Furongian in Liaodong Peninsula[J]. Journal of Palaeogeography (Chinese Edition), 2019, 21(2): 254-277.
    [47] 梅冥相,张瑞,李屹尧,等. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌[J]. 岩石学报,2017,33(4):1073-1093.

    Mei Mingxiang, Zhang Rui, Li Yiyao, et al. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian series in the northeastern margin of the North-China Platform[J]. Acta Petrologica Sinica, 2017, 33(4): 1073-1093.
    [48] 梅冥相. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列:以北京西郊下苇甸剖面为例[J]. 中国地质,2011,38(2):317-337.

    Mei Mingxiang. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing[J]. Geology in China, 2011, 38(2): 317-337.
    [49] 梅仕龙. 河北完县中、晚寒武世牙形石和三叶虫生物地层[J]. 地层学杂志,1993,17(1):11-24.

    Mei Shilong. The biostratigraphy of the Middle and Late Cambrian conodonts and trilobites from Wanxian, Hebei[J]. Journal of Stratigraphy, 1993, 17(1): 11-24.
    [50] 梅仕龙. 河北完县中、晚寒武世无铰纲腕足类[J]. 古生物学报,1993,32(4):400-429.

    Mei Shilong. Middle and Upper Cambrian inarticulate brachiopods from Wanxian, Hebei, North China[J]. Acta Palaeontologica Sinica, 1993, 32(4): 400-429.
    [51] 梅冥相,马永生,梅仕龙,等. 华北寒武系层序地层格架及碳酸盐台地演化[J]. 现代地质,1997,11(3):275-282.

    Mei Mingxiang, Ma Yongsheng, Mei Shilong, et al. Framework of Cambrian sedimentary sequence and evolution of carbonate platform in North China[J]. Geosciences: Journal of Gradual School, China University of Geosciences, 1997, 11(3): 275-282.
    [52] 史晓颖,陈建强,梅仕龙. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘,1997,4(3/4):161-173.

    Shi Xiaoying, Chen Jianqiang, Mei Shilong. Cambrian sequence chronostratigraphic framework of the North China Platform[J]. Earth Science Frontiers, 1997, 4(3/4): 161-173.
    [53] 梅冥相,马永生. 华北地台晚寒武世层序地层及其与北美地台海平面变化的对比[J]. 沉积与特提斯地质,2003,23(4):14-26.

    Mei Mingxiang, Ma Yongsheng. Sequence stratigraphy of the Late Cambrian strata on the North China Platform and the correlation of the sea-level changes with the North America Platform[J]. Sedimentary Geology and Tethyan Geology, 2003, 23(4): 14-26.
    [54] 赵新伟,曾伟. 河北承德路通沟剖面寒武系层序地层划分[J]. 中国地质,2016,43(3):921-935.

    Zhao Xinwei, Zeng Wei. Sequence-stratigraphic division of Cambrian in Lutonggou section, Chengde city, Hebei province[J]. Geology in China, 2016, 43(3): 921-935.
    [55] 肖飞,汪建国,吴和源,等. 华北地区中北部寒武系层序地层格架[J]. 石油学报,2017,38(10):1144-1157,1167.

    Xiao Fei, Wang Jianguo, Wu Heyuan, et al. Cambrian sequence stratigraphic framework in the middle-northern North China[J]. Acta Petrolei Sinica, 2017, 38(10): 1144-1157, 1167.
    [56] 吴和源,赵宗举,汪建国,等. 华北克拉通北缘寒武系层序地层划分[J]. 吉林大学学报(地球科学版),2018,48(6):1609-1624.

    Wu Heyuan, Zhao Zongju, Wang Jianguo, et al. Cambrian sequence stratigraphic framework in northern margin of North China Craton[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(6): 1609-1624.
    [57] Mei M X, Ma Y S, Deng J, et al. From cycles to sequences: Sequence stratigraphy and relative sea level change for the Late Cambrian of the North China Platform[J]. Acta Geologica Sinica-English Edition, 2005, 79(3): 372-383.
    [58] Chen J T, Chough S K, Lee J H, et al. Sequence-stratigraphic comparison of the Upper Cambrian series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: High variability of bounding surfaces in an epeiric platform[J]. Geosciences Journal, 2012, 16(4): 357-379.
    [59] Chen J T, Chough S K, Han Z Z, et al. An extensive erosion surface of a strongly deformed limestone bed in the Gushan and Chaomidian formations (late Middle Cambrian to Furongian), Shandong province, China: Sequence-stratigraphic implications[J]. Sedimentary Geology, 2011, 233(1/2/3/4): 129-149.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article Metrics

Article views(268) PDF downloads(183) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-21
  • Revised:  2021-05-19
  • Accepted:  2021-07-07
  • Published:  2023-02-10

Carbon Isotope Evolution and Ecological Environments in the Late Miaolingian Epoch of the Cambrian, Northern China

doi: 10.14027/j.issn.1000-0550.2021.062
Funds:

National Natural Science Foundation of China 41672028

Natural Science Foundation of Henan Province 202300410024

Abstract: Studies of carbon isotope records from upper Miaolingian⁃lower Furongian series in Cambrian in northern Henan and western Shandong, northern China, indicate a falling trend δ13C in upper Miaolingian series followed by a remarkable positive shift in lower Furongian series. This positive shift, which spans the trilobite Chuangia zone in northern China,is comparable to the global Steptoean Positive Carbon Isotope Excursion (SPICE) in the early Furongian. The δ13C trend is covariant with the rise and fall of populations of trilobites, conodonts and phytoplanktons. Mass extinction of trilobites occurred in the upper part of the Guzhangian stage,Where δ13C decreased to low values. However, new trilobite populations flourished at the top of the Guzhangian stage,Where δ13C gradually rose to high levels, exhibiting a strongly positive excursion in the Paibian stage. Carbon isotope evolutions are constrained by changes in sea level and sedimentary environment: for example,gradually increasing values of δ13C are always found in carbonates deposited during a seawater transgression, peaking in the lower part of high-water system tracts;however, carbonates from the upper part of a high-water system tract or formed during the sea-level falling stage usually have a low δ13C record. Therefore, sea-level changes were crucial ininducing changes in ecological environments, biological communities and carbon isotope evolution in the late Miaolingian and early Furongian series in the Cambrian.

ZUO JingXun, ZHU XueJian, CHEN YongLin, ZHAI WenJian. Carbon Isotope Evolution and Ecological Environments in the Late Miaolingian Epoch of the Cambrian, Northern China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 289-302. doi: 10.14027/j.issn.1000-0550.2021.062
Citation: ZUO JingXun, ZHU XueJian, CHEN YongLin, ZHAI WenJian. Carbon Isotope Evolution and Ecological Environments in the Late Miaolingian Epoch of the Cambrian, Northern China[J]. Acta Sedimentologica Sinica, 2023, 41(1): 289-302. doi: 10.14027/j.issn.1000-0550.2021.062
  • 地质历史时期海相碳酸盐岩的δ13C演化趋势在地层划分与对比、古生态环境演化及海平面变化研究中具有重要的意义,也是古生代以新全球标准层型剖面和点位(“金钉子”)建立的重要标志之一[1-4]。研究表明,寒武系海相碳酸盐岩的碳同位素组成演化表现出显著的规律性,前寒武纪/寒武纪之交、寒武纪第二世/苗岭世之交碳同位素组成演化均表现为显著负漂移,寒武纪芙蓉世初期碳同位素组成演化表现为全球性的正漂移演化趋势[5-10]。碳同位素、微量元素及岩石特征指示寒武纪芙蓉世碳同位素组成正漂移(SPICE)时期海洋存在缺氧事件[11-12]。我国华北地区寒武系经过一个多世纪的研究,建立了相对完善的区域性寒武系地层系统,并在鲁西长清等地建立了区域地层标准层型剖面[13-14]。初步研究发现,华北地区上寒武统下部也发育δ13C正漂移,正漂移幅度以及记录这次正漂移的地层厚度虽说与北美、西伯利亚、澳大利亚及我国华南等地有较大的差异,但δ13C正漂移出现的时间可以对比[15-17]。华北地区寒武纪SPICE正漂移跨地层厚度小指示可能存在地层缺失,这与海平面下降导致的地层剥蚀有关[18]。海相碳酸盐岩的碳同位素组成与有机碳的生产与埋藏存在一定的关系,海侵时期大量有机碳的生成与快速埋藏会造成海水中12C的减少和13C的相对增加,导致海相碳酸盐岩的δ13C相对增加[19]。相反,海退时期、大陆架暴露、大量有机碳的氧化导致海洋中12C的增加和13C的相对降低,从而造成海相碳酸盐岩的δ13C负漂移。本文以豫北沙滩剖面和鲁西唐王寨剖面为例,深入探讨华北地区寒武纪苗岭世晚期—芙蓉世早期δ13C演化与海平面变化、古生态环境演化之间的耦合关系。

  • 华北地区寒武纪第二世及其以前基底处于隆起状态,主体遭受风化剥蚀作用,外围接收陆源碎屑沉积[20];寒武纪第二世晚期,随着海平面上升,古隆起边坡地带逐渐为海水淹没,受潮汐作用的影响,形成以陆源碎屑为主夹碳酸盐岩的潮坪相沉积组合。寒武纪苗岭世时期,大规模的海侵使华北地台除西部鄂尔多斯外几乎全部沦为陆表海环境,潮坪、鲕粒滩、开阔碳酸盐岩台地、微生物岩(礁)、浅海陆棚等沉积环境分异形成[21-22]。寒武纪芙蓉世早期,区域性隆升作用导致华北地台南部碳酸盐岩台地[23]海水变浅(图1),沉积了以白云岩为主的岩性,不同于其北部和东部地区的沉积组合[24-25];寒武纪晚期,华北地台南缘由于扬子板块向华北板块的深俯冲隆升加剧,发生了区域白云岩化作用或造成局部沉积缺失。

    Figure 1.  Paleogeographical map of northern China in the Cambrian Furongian Epoch (revised after reference [23])

    鲁西地区唐王寨剖面为华北寒武系崮山组和崮山阶的标准剖面。剖面上寒武系张夏组三段、崮山组、炒米店组出露较好。寒武系张夏组明显地划分为三个岩性段,一段为中厚层状鲕粒灰岩夹藻灰岩,二段为黄绿色页岩夹薄层状灰岩,三段为中厚层状藻灰岩、鲕粒灰岩。张夏组三段由两个大的沉积韵律构成,韵律下部为鲕粒灰岩,上部为藻灰岩[26]。崮山组下部以灰色页岩为主,夹灰色透镜状泥晶灰岩、生物屑灰岩、竹叶状砾屑灰岩;上部以灰色薄层状泥晶灰岩为主夹深灰色页岩、竹叶状砾屑灰岩、生物屑灰岩;炒米店组下部为中、厚层状竹叶状砾屑灰岩与薄层状泥晶灰岩组成的韵律层;中部为竹叶状砾屑灰岩与泥灰岩、竹叶状砾屑灰岩与叠层石灰岩组成韵律层;上部为泥晶灰岩夹板片状砾屑灰岩。这种沉积组合反映在寒武纪苗岭世和芙蓉世早期鲁西地区古地理位置比较接近外海,海水深度较大,并频繁遭受风暴潮汐作用的影响。

    豫北地区寒武纪苗岭世、芙蓉世时期靠近华北地台腹地,海水深度较小。与鲁西地区寒武系相比,岩性差异稍大,表现在张夏组中部为中薄层状生物扰动灰岩,上部为鲕粒灰岩夹叠层石灰岩;崮山组厚度极小,底部为页岩,中部为砾屑灰岩,上部为叠层石灰岩;炒米店组下部为灰色薄层状灰岩,中部为生物扰动灰岩,上部为白云岩。与鲁西唐王寨剖面相比,豫北地区崮山组、炒米店组微生物灰岩、风暴砾屑灰岩的夹层较薄、较少,页岩较少,白云岩较多,反映其沉积环境、水动力能量有着较大的差别。

    华北寒武系产丰富的三叶虫化石,鲁西张夏阶包括Eosoptychparia⁃Manchuriella带、Crepicephalina带、Amphoton带、Taitzuia⁃Poshania带、Redlichaspis带,Liaopeishania带和Damesella paronai[27];崮山阶包括Blackwelderia paronai带和Neodrepanura premesnili[28];长山阶包括Prochuangia-Paracoosia带、Chuangia带、Changshania带、Eochuangia带、Maladioidella带、Kaolishania[29]。寒武系张夏阶底界与国际寒武系苗岭统鼓山阶底界基本一致,Damesella带相当于苗岭统古丈阶Lejopyge laevigata带上部层位[30]表1)。

    华北寒武系全球寒武系

    上寒武统凤山组MictosaukiaSaukiaQuadraticephalusPtychaspisTsinania炒米店组凤山阶芙蓉统第十阶
    长山组TaishaniaKaolishaniaChangshaniaChuangiaProchungia-Paracoosia长山阶江山阶
    排碧阶
    崮山组LiostracinaNeodrepanura premesniliBlackwelderia paronaiYabeia崮山组崮山阶苗岭统古丈阶
    中寒武统张夏组上部Damesella paronaiLiaopeishaniaRedlichaspisTaitzuia⁃PoshaniaAmphotonCrepicephalinaEosoptychparia⁃Manchuriella张夏组上部
    张夏阶
    鼓山阶

    最新研究指出,鲁西地区崮山阶含牙形石Westergaardodina orygma带、Westergaardodina matsush itai带和Muellerodus? erectus带,而Muellerodus? erectus带对应于全球寒武系芙蓉统排碧阶[31]。由于古地理位置的微小差异,豫北地区三叶虫化石带与鲁西地区稍有不同,张夏阶包括三叶虫Crepicephalina⁃Megagraulos带,Taizuia⁃Poshania带,崮山阶包括Blackwelderia带,Neodrepanura带,长山阶包括Chuangia带,Changshania带,Kaolishania带,凤山阶包括三叶虫Ptychaspis⁃Tsinania带,Quadraticephalus带和Mictosaukia[32]。上述寒武系三叶虫化石带为豫北、鲁西地区寒武纪苗岭世至芙蓉世过渡时期碳同位素组成演化及生态环境变化对比研究提供了地层格架。

  • 鲁西唐王寨剖面寒武系张夏组三段、崮山组、炒米店组露头连续,层序清楚,岩石无变质变形迹象,原始沉积构造保存完好,指示碳酸盐岩后期成岩作用十分微弱。对于此剖面的碳同位素组成演化趋势,前人曾做过研究[33]。为了深入研究碳同位素组成的演化趋势与海平面变化、古生态环境演化之间的关系,野外按2 m间距采取新鲜的碳酸盐岩小标本,并进行连续编号。对于以页岩为主的崮山组,采取其中的泥晶灰岩透镜体、或泥晶灰岩薄层。对于砾屑夹层较多的炒米店组,在薄层泥晶灰岩中采样;室内在均质新鲜岩块断口上用直径为1 mm的微细研磨钻头钻取碳酸盐岩粉末,粉末粒度为200目。在制取二氧化碳气体样品时,取碳酸盐岩粉末85~110 μg,烘干去除水分。在温度72 ℃、真空条件下,让碳酸盐岩粉末与105%的过磷酸反应,并在真空条件下收集CO2气体并纯化,在MAT-253上测试并自动换算成δ13C、δ18O。为了监测样品的测试精度,在CO2样品制备与测试过程中,加入2件国家标准样品TB-1(δ13C=1.61‰,δ18O=-11.59‰)、TB-2(δ13C=-6.06‰,δ18O=-24.12‰)和1件实验室内部标准样品ISTB-1(δ13C= -10.63‰,δ18O=-18.63‰),标准样品用量50~70 mg,采用VPDB标准,测试精度为0.02%。测试结果见表2

    样品编号δ13Cδ18O距底位置岩性样品编号δ13Cδ18O距底位置岩性
    TW-1210.51-7.93240薄层灰岩TW-0870.35-7.82170薄层灰岩
    TW-1200.55-8.31238薄层灰岩TW-086-0.29-7.92167薄层灰岩
    TW-1190.51-8.2236薄层灰岩TW-0850.06-8.12166薄层灰岩
    TW-1180.75-8.09234薄层灰岩TW-0840.18-7.41164薄层灰岩
    TW-117-0.2-8.33232薄层灰岩TW-083-0.99-8.08162薄层灰岩
    TW-1161.67-7.75230薄层灰岩TW-0820.15-7.84161薄层灰岩
    TW-115-1.26-8.4227薄层灰岩TW-0810.52-7.78158薄层灰岩
    TW-1140.01-8.84225薄层灰岩TW-0800.83-7.98154薄层灰岩
    TW-1131.02-7.86223薄层灰岩TW-0790.74-7.59152薄层灰岩
    TW-1121.56-8.02221薄层灰岩TW-0780.91-7.95148薄层灰岩
    TW-1110.91-8.2219薄层灰岩TW-0761.09-7.7146薄层灰岩
    TW-1100.85-8.08217薄层灰岩TW-0771.27-7.86146薄层灰岩
    TW-1090.06-8.39215薄层灰岩TW-0750.62-7.66144薄层灰岩
    TW-1080.39-8.26212薄层灰岩TW-0741.68-7.86142薄层灰岩
    TW-1070.44-8.47210薄层灰岩TW-0730.5-7.63140薄层灰岩
    TW-106-0.01-8.26208薄层灰岩TW-0720.76-7.7138薄层灰岩
    TW-105-0.55-8.44206鲕粒灰岩TW-0710.46-7.59136薄层灰岩
    TW-1040.1-8.17204中层状灰岩TW-0700.24-7.76134薄层灰岩
    TW-1030.44-8.09202藻凝块灰岩TW-0690.24-7.55132薄层灰岩
    TW-1020.38-8.15200藻凝块灰岩TW-0680.08-7.67131薄层灰岩
    TW-1010.5-8.19198藻凝块灰岩TW-067-0.19-7.69128薄层灰岩
    TW-1000.47-8.13196叠层石灰岩TW-0660.19-7.81126薄层灰岩
    TW-0990.51-8.21194叠层石灰岩TW-0650.18-7.83124薄层灰岩
    TW-0980.02-7.94192薄层灰岩TW-0640-7.88122薄层灰岩
    TW-0970.44-8.37191薄层灰岩TW-0630.14-7.89120薄层灰岩
    TW-0960.3-7.78189薄层灰岩TW-062-0.07-7.85118薄层灰岩
    TW-0950.32-8.08187薄层灰岩TW-061-0.09-8.04116薄层灰岩
    TW-0940.53-7.86183薄层灰岩TW-060-0.06-7.81114薄层灰岩
    TW-0930.75-8.07182薄层灰岩TW-059-0.04-7.81112薄层灰岩
    TW-0920.8-7.57179薄层灰岩TW-058-0.07-7.75110薄层灰岩
    TW-0910.24-7.75178薄层灰岩TW-057-0.11-7.78108薄层灰岩
    TW-090-0.02-7.82176藻凝块灰岩TW-056-0.21-7.65106薄层灰岩
    TW-0890.04-7.92174藻凝块灰岩TW-055-0.4-7.81104薄层灰岩
    TW-0880.01-8.04172薄层灰岩TW-054-0.51-7.55102薄层灰岩

    碳酸盐岩的后期成岩作用对原始海相碳酸盐岩碳、氧同位素组成会产生一定程度的影响,尤其是有大气淡水参与的成岩作用,碳酸盐岩的氧同位素组成的分馏现象会更显著。相比而言,碳酸盐岩的碳同位素组成比较稳定[34-35]。根据碳酸盐岩的δ13C、δ18O值的相关性以及碳酸盐岩的δ18O值高低,可判断海相碳酸盐岩的碳、氧同位素组成是否遭受强烈的后期成岩作用影响。鲁西地区张夏组碳酸盐岩的成岩系统有海水、大气淡水、封存压实卤水和温压水系统[36],其中淡水成岩作用的结果是常出现孔洞、裂隙充填物,因此,在碳酸盐岩样品采集和样品加工过程中避免采取含方解石脉及孔洞充填物的岩块。分析结果显示,唐王寨剖面的δ13C分布于1.8‰~-1.5‰之间、δ18O分布于-7.0‰~-8.5‰之间,δ13C和δ18O的相关系数为0.18,数据点分布比较离散,二者相关性较小(图2),指示碳酸盐岩的成岩作用微弱。

    Figure 2.  Relationship between δ13C and δ18O from upper Miaolingian⁃lower Furongian series in Cambrian, Tangwangzhai section, western Shandong

    (续表2

  • 鲁西唐王寨剖面寒武系的δ13C演化表现出明显的规律性(图3)。张夏组三段δ13C呈下降趋势,即由Amphoton⁃Taitzuia组合带至Damesella paronai带顶部,δ13C由1.62‰缓慢下降到0附近。进入崮山组Blackwelderia带,δ13C分布于低值-0.51‰~0.16‰之间,在Blackwelderia带上部,δ13C下降到最低值-0.51‰;在Neodrepanura premeslini带内,δ13C基本上稳定在0‰附近;在Diceratocephalus armatus带,δ13C呈波动性上升趋势,至三叶虫Chuangia带底部,δ13C达到0.5‰左右,Chuangia带中部δ13C上升至最大值1.68‰,表现出正漂移演化趋势,随后δ13C快速下降,至三叶虫Changshania带底部,δ13C下降到0.83‰,至Changshania⁃Irvingella带下部δ13C快速下降到-0.99‰,尔后开始跳跃性回升至0.80‰,至Kaolishania带底部δ13C回落至0.50‰,Kaolishania带内部δ13C稳定在0.50‰左右。

    Figure 3.  Carbon and oxygen isotopic trends from upper Miaolingian⁃lower Furongian series in Cambrian, Tangwangzhai section, western Shandong (biostratigraphy revised after references [15,27⁃29])

    样品编号δ13Cδ18O距底位置岩性样品编号δ13Cδ18O距底位置岩性
    TW-053-0.43-8.05100薄层灰岩TW-0260.42-7.3850鲕粒灰岩
    TW-052-0.32-7.8498薄层灰岩TW-0250.36-8.0948鲕粒灰岩
    TW-051-0.34-7.6696薄层灰岩TW-0240.31-7.5846鲕粒灰岩
    TW-050-0.14-7.6994薄层灰岩TW-0230.42-7.644鲕粒灰岩
    TW-0490.03-7.5892薄层灰岩TW-0220.49-8.442鲕粒灰岩
    TW-048-0.39-890薄层灰岩TW-0210.42-7.6740鲕粒灰岩
    TW-047-0.32-8.0588薄层灰岩TW-0200.44-7.8638鲕粒灰岩
    TW-046-0.14-8.0287薄层灰岩TW-0190.48-7.6136鲕粒灰岩
    TW-045-0.08-8.3686薄层灰岩TW-0180.5-7.4934藻凝块灰岩
    TW-044-0.38-7.8685薄层灰岩TW-0170.22-7.7232藻凝块灰岩
    TW-043-0.15-7.6484薄层灰岩TW-0160.63-7.2230藻凝块灰岩
    TW-0420-7.6982鲕粒灰岩TW-0150.55-7.3528藻凝块灰岩
    TW-0410.08-7.8180藻凝块灰岩TW-0140.28-7.6426藻凝块灰岩
    TW-0400.12-7.5278藻凝块灰岩TW-0130.69-7.324藻凝块灰岩
    TW-0390.11-7.976藻凝块灰岩TW-0120.55-7.622藻凝块灰岩
    TW-0380.27-7.5674藻凝块灰岩TW-0110.56-9.1620藻凝块灰岩
    TW-0370.11-9.5572藻凝块灰岩TW-0100.78-7.2218藻凝块灰岩
    TW-0360.1-7.9470藻凝块灰岩TW-0090.59-8.0516藻凝块灰岩
    TW-0350.13-7.6868藻凝块灰岩TW-0080.66-7.7114藻凝块灰岩
    TW-0340.23-7.566藻凝块灰岩TW-0070.66-7.5712藻凝块灰岩
    TW-0330.02-8.3864藻凝块灰岩TW-0060.67-7.4410鲕粒灰岩
    TW-0320.19-7.5662藻凝块灰岩TW-0051.22-7.758鲕粒灰岩
    TW-0310.29-7.6160藻凝块灰岩TW-0041.14-7.526鲕粒灰岩
    TW-0300.2-7.9658藻凝块灰岩TW-0031.62-7.464鲕粒灰岩
    TW-0290.16-7.3156藻凝块灰岩TW-0021.52-7.612鲕粒灰岩
    TW-0280.15-7.5654鲕粒灰岩TW-0011.27-7.850鲕粒灰岩
    TW-0270.13-8.252鲕粒灰岩

    Ptychaspis⁃Tsinania带下部,δ13C首先由0.50‰下降到-0.55‰,然后又快速回升至1.56‰,随后δ13C快速下降至-1.26‰又折返回升至1.67‰,最后稳定在0.50‰左右。豫北寒武系张夏组、崮山组、炒米店组的δ13C演化表现为显著的规律性[37]。由张夏组—崮山组—炒米店组下部,δ13C表现为3个高值区和2个低值区,δ13C高值区分布于张夏组下部、上部和炒米店组上部,δ13C达到的最大值分别为2.0‰、1.0‰、3.0‰;以炒米店组上部的δ13C最大,显现出正漂移演化趋势,对应于三叶虫Chuangia带。δ13C低值区分别分布于张夏组中部和崮山组,δ13C的最低值分别为-1.0‰和-0.5‰。

    鲁西唐王寨剖面寒武系δ13C的高值区分别分布在张夏组上部的Amphoton⁃Taitzuia组合带、炒米店组下部Chuangia带、炒米店组中部的Ptychaspis⁃Tsinania带,δ13C最大值分别达到1.62‰、1.68‰和1.56‰;以炒米店组下部Chuangia带的δ13C值最大(1.68‰),表现出正漂移演化趋势,可与豫北沙滩剖面炒米店组上部的正漂移对比(图4)。豫北沙滩剖面δ13C最大正漂移出现在炒米店组上部,而鲁西唐王寨剖面δ13C正漂移出现在炒米店组下部,碳同位素组成演化的等时性特点指出鲁西炒米店组下部地层和豫北炒米店组上部地层为同期沉积。鲁西唐王寨剖面δ13C的低值区分布于三叶虫Blackwelderia带,δ13C最小值为-0.38‰。豫北沙滩剖面δ13C的低值区也分布于Blackwelderia带内,δ13C最小值为-0.30‰。华北传统寒武系长山阶以三叶虫Chuangia的出现为底界,接近于国际寒武系芙蓉统排碧阶底界。因此,华北寒武系长山阶下部的δ13C正漂移可与华南地区寒武系排碧阶的δ13C正漂移对比,也可与澳大利亚、美国西部、哈萨克斯坦、澳大利亚等地寒武系排碧阶的δ13C正漂移[8]对比,说明这次δ13C正漂移演化具有全球性特点。

    Figure 4.  Correlation of carbon isotope trends from upper Miaolingian⁃lower Furongian series in Cambrian, Henan and Shandong

  • 在海洋碳循环过程中,浮游植物和大型藻类通过光合作用将海水中的CO2合成有机质 [38]。海洋中浮游植物的生物量与海水深度、透光性、水温及营养盐的丰度有关[39-40],宽阔的海域、良好的透光性(水深小于200 m)、温暖适宜的海水、丰富的营养盐供给有利于浮游植物大量繁殖及生长。浮游植物作为主要海洋初级生产力,它生产有机质的量占海洋有机物生产总量的99%以上[41]。浮游植物通过光合作用将大量的12C转换成有机物质,造成海水相对富含13C,此时沉积的海相碳酸盐岩具有较高的δ13C值。因此,浮游植物在海洋碳循环中起着重要作用。

    寒武纪微生物岩主要由附枝藻、肾形钙藻、葛万藻形成的枝状岩、凝块岩、丘状或柱状叠层石礁灰岩[42-43]组成。菌藻类钙化形成的微生物礁在华北寒武系第二统、苗岭统、芙蓉统中均可见到[44-47]。华北寒武系第二统的微生物岩呈点状、斑块状、或薄透镜状分布,规模及数量均有限,其基底常为透镜状砾屑灰岩或鲕粒灰岩;苗岭统张夏组中的微生物岩表现为纹层状藻灰岩、凝块石灰岩、丘状藻灰岩,基底为鲕粒灰岩,藻灰岩厚度较大、层数多、丘体成群出现等特点,黏附了大量生物碎屑;唐王寨剖面芙蓉统炒米店组中的微生物岩主要表现为块状凝块状、丘状、柱状的叠层石灰岩,具有较强的抗风浪能力;崮山组中微生物岩不发育,这与豫北沙滩剖面、北京西郊下苇甸剖面[48]不同,反映古丈期晚期鲁西地区海水相对较深,沉积物中泥质成分较多,不利于藻类生长,而豫北及北京西郊等地海水相对较浅、透光性较好,适宜藻类生长。唐王寨剖面炒米店组下部微生物礁灰岩主要由柱状藻叠层石构成,呈似层状、层状分布,其基底常为竹叶状砾屑灰岩。唐王寨剖面由张夏组上部至炒米店组下部,微生物岩演化表现为纹层状、凝块状→丘状或凝块状→巨型柱状叠层石灰岩。微生物岩的分布、形态特征、内部结构、发育状况取决于所处的海洋环境,随着海水深度及水动力条件的改变,底栖微生物群落亦发生变化。因此,微生物岩的出现与繁盛程度可以反映海洋环境的变化。

    三叶虫、牙形石、腕足动物等都属于海洋后生动物,它们的生存和发展依赖于海洋浮游植物,在寒武系张夏组顶部的Damesella⁃Yabeia带内,除Solenopariaagno外,发生了三叶虫9科、球接子2属绝灭事件;而且三叶虫Damesella演化出多对尾刺,与张夏组中下部的三叶虫面貌差别较大,与崮山组的BlackwelderiaNeodrepanura相似,说明在张夏组沉积末期,食物供给出现问题,演化出食肉海洋动物,促使三叶虫朝着具有自身防御功能方向进化,而不具自身防御功能的三叶虫可能因为食物的短缺或被其他食肉动物捕食而绝灭。张夏组和崮山组的分界面为一个生物绝灭事件层,同时,二者之间为一个三级层序界面(淹没不整合界面),这次绝灭可能因为海平面的快速上升,大量冷水的入侵造成。从岩性上来看,崮山组以灰绿色页岩为主,夹薄层状泥晶灰岩,反映崮山组沉积时期大量温度较低的淡水向海洋输入,抑制了海洋浮游植物繁殖与生长,海洋动物的食物链可能出现危机,大多数三叶虫科因食物匮乏而死亡,部分进化为食肉动物,与此同时,也有部分三叶虫进化出具有防御功能的器官。另外,苗岭统古丈阶的牙形石、腕足、三叶虫动物群与芙蓉统排碧阶的不同,它们都在古丈阶与排碧阶之交发生了显著的群落演替[49-50],在Blackwelderia带内达到鼎盛的德氏虫科(Damesenidae)在Chuangia带底部绝灭,取而代之的是篙里山虫科(Kaolishaniidae)和长山虫科(Changshaniidae)。在古丈阶与排碧阶之交,牙形石动物群Laiwugnathus属绝灭,Westergaardodina属锐减,Proomeotodus属、Distacodtus属和Prosagittodontus属等大量出现,因此,古丈阶和排碧阶之交是寒武纪海洋生物演化史上的一个重要时期。

    豫鲁地区海相碳酸盐岩的δ13C演化趋势与生物群落演化具有较好的耦合性(图5)。张夏组三段下部,藻凝块岩发育,δ13C表现出较高的值,从Amphoton⁃Taitzuia组合带开始δ13C表现出下降趋势,到张夏组Damesella⁃Yabeia带顶部,δ13C降到0‰到附近,至Blackwelderia带中部,δ13C下降到最低值(-0.38‰)。崮山组沉积初期,随着海平面快速上升、海水加深,浮游植物的生长与发育受到限制,导致了崮山组底部多科三叶虫大绝灭及三叶虫德氏虫科的出现,此时沉积的海相碳酸盐岩具有较低的δ13C值。到Chuangia带底部,三叶虫德氏虫科绝灭,而篙里山虫科(Kaolihsaniidae)和长山虫科(Changshaniidae)大量出现;牙形石Laiwugnathus属绝灭,Westergaardodina属锐减,Proomeotodus属、Distacodtus属和Prosagittodontus属等大量出现,δ13C表现为正漂移演化趋势,δ13C上升到最大值(1.81‰),这次正漂移开始于崮山阶Neodrepanura带上部,至Chuangiaδ13C上升到峰值。δ13C的正漂移演化趋势与古丈阶/排碧阶之交德氏虫绝灭后新三叶虫属、牙形石动物群的大量出现耦合。

    Figure 5.  Sequence stratigraphy and chemostratigraphy of upper Miaolingian⁃lower Furongian series in Cambrian, Tangwangzhai section, western Shandong

  • 华北地区寒武系层序研究取得重要进展[51-59],华北地区寒武纪由初期的海侵到末期的海退形成一个完整的II级层序,由于海水周期性的侵入、退出变化又形成了数个为不同性质界面分开的III级层序。华北地区张夏组以上划分为4个三级层序,传统张夏组、崮山组、长山组和凤山组各划分出1个三级层序,各三级层序的沉积结构相似,每个层序的海侵体系域(TST)不发育或较薄,高水位体系域(HST)厚度较大。

    寒武系苗岭统张夏组上部到芙蓉统炒米店组下部划分为4个三级层序(图5),张夏组上部为三级层序III1的高水位体系域,由2个向上变浅的四级层序IV1、IV2组成,每个四级层序的下部为鲕粒灰岩、上部为藻纹层灰岩(图6a,f)。崮山组构成了三级层序III2。III2和 III1之间的层序界面为张夏组与崮山组之间的岩性分界面,为侵蚀面,亦为淹没不整合层序界面,即“3”型层序界面(SB3),它接近三叶虫Blackwelderia paronai带底部。此界面之上为深水陆棚相页岩,界面之下为潮间带高能环境的叠层石灰岩,二者突变接触,反映存在地层间断。

    Figure 6.  Lithological characteristics of Zhangxia, Gushan and Chaomidian Formations in Henan and Shandong

    层序III2对应寒武系崮山组,是一个海侵体系域不发育、高水位体系域(HST)厚度较大的三级层序。由四级层序IV3、IV4组成,其中,四级层序IV3的下部为灰绿色钙质页岩,为最大海泛期深水陆棚相沉积(CS)、上部为灰色薄层状泥晶灰岩;IV4的下部为灰色钙质泥岩夹泥晶灰岩,上部为灰色薄层状泥晶灰岩,见柱状叠层石灰岩(图6g);层序III2的沉积特征指示海侵较快、海退较慢的一次海平面升降事件。

    层序III3与III2之间的界面为沉积间断面(SB2),与崮山组与炒米店组分界面一致,在崮山组顶部表现为微弱的侵蚀面,附近灰岩层具沉积变形及软沉积构造,三叶虫Prochuangia带缺失,致使三叶虫Chuangia带的底部直接与三级层序界面重合。在该界面之下三叶虫德氏虫科绝灭,牙形石Laiwugnathus属绝灭,Westergaardodina属锐减,界面之上篙里山虫科(Kaolihsaniidae)和长山虫科(Changshaniidae)、牙形石Proomeotodus属、Distacodtus属和Prosagittodontus属等大量出现。界面之上为III3层序的海侵体系域(TST),由四级层序IV5构成,IV5下部为灰色钙质泥岩,中部为灰色泥晶灰岩、深水相竹叶状砾屑灰岩(图6c,h),上部为浅水相砾屑灰岩夹藻灰岩(图6b),顶部为叠层石礁灰岩(图6d,e)。由下向上生物灰岩表现为藻凝块灰岩—丘状叠层石灰岩—柱状叠层石礁灰岩,上部风暴砾屑灰岩中的砾屑出现铁红色氧化边,指示海水逐渐变浅的沉积序列。

    层序III4由四级层序IV6、IV7等构成;IV6底部为褐黄色厚层状灰岩,下部为含细砾微晶灰岩,上部为薄层状灰色微晶灰岩,IV7下部为灰色厚层状藻灰岩,上部为灰色微晶灰岩与风暴砾屑互层,均为向上加深的沉积层序。

    海相碳酸盐岩的δ13C演化趋势与海平面升降之间亦存在一定的耦合性。苗岭世晚期,随着海平面的下降,δ13C演化呈下降趋势;鲁西地区苗岭世晚期(崮山组沉积时期),随着快速海侵的发生及海平面的上升,δ13C先是下降到较低的值,至芙蓉世早期海平面达到较高位置时,海域面积最大,δ13C演化表现出显著的正漂移演化趋势。芙蓉世中期,风暴潮汐作用强烈,海底沉积物频繁遭受侵蚀和再沉积作用,不同时代和不同沉积环境的沉积物混合在一起,其碳同位素组分变化较大。海平面升降变化对浅海生态环境的影响最为显著,海平面上升时期,海域面积逐渐扩大,海洋生态环境得到改善,海洋浮游植物繁盛,同时有机碳的埋藏量加大,此时沉积的海相碳酸盐岩δ13C表现为较高的值或正漂移演化趋势。

  • (1) 豫北鲁西地区寒武系苗岭统上部δ13C演化表现为下降趋势,芙蓉统下部δ13C呈上升趋势,并表现出显著正漂移,这次δ13C正漂移出现在三叶虫Chuangia带内,具有区域同时性之特点,并可与世界各地芙蓉统排碧阶的碳同位素组成正漂移(SPICE)对比。

    (2) δ13C演化趋势与各种藻类、三叶虫等后生动物的繁盛与消亡相耦合,鲁西地区苗岭世晚期,出现各类藻类消失、三叶虫大规模绝灭,δ13C下降到最低值;芙蓉世早期,较多三叶虫科大量繁盛,δ13C上升到最大值,表现出显著正漂移。

    (3) δ13C演化趋势与海平面升降、沉积环境演化相耦合,海侵初期δ13C较低,随着海平面的上升δ13C呈增大趋势,高水位早期为δ13C最高值时期,高水位晚期、或海平面下降期δ13C演化表现为下降趋势。

Reference (59)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return