Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

PENG SiZhong, LIU DeXun, ZHANG LeiFu, QIU Zhen, WANG YiCheng, FENG CongJun, SUN MengSi. Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning⁃Jixian Area, Eastern Margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 47-59. doi: 10.14027/j.issn.1000-0550.2021.058
Citation: PENG SiZhong, LIU DeXun, ZHANG LeiFu, QIU Zhen, WANG YiCheng, FENG CongJun, SUN MengSi. Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning⁃Jixian Area, Eastern Margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 47-59. doi: 10.14027/j.issn.1000-0550.2021.058

Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning⁃Jixian Area, Eastern Margin of Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.058
Funds:

Major Science and Technology Projects of PetroChina 2020E-31

Natural Science Basic Research Program of Shaanxi 2020JQ-798, 2017JM4013

  • Received Date: 2020-10-23
  • Rev Recd Date: 2021-05-13
  • Publish Date: 2022-01-10
  • A s ystematic study was conducted using cores, rock thin sections and drill logging data to identify lithofacies in the Daning-Jixian region of the Shanxi Formation and establish their association and sedimentary facies. Ten types of lithofacies were identified: massive silty mudstone or shale, silt-bearing mudstone or shale with small ripples, silty mudstone or shale with lenticular bedding, calcareous shale, coal, carbonaceous shale, black shale, muddy siltstone with wave bedding, middleto fine sandstone with tidal cross-bedding, and massive middle size sandstone. In additon, ten lithofacies were classified into four associations that reflect four depositional environments: tidal flat deposits (supratidal to intertidal zones), lagoon deposits, tidal channel to tidal flat deposits and lagoon-tidal flat deposits. The study area lies within a marine-continental transitional facies sedimentary environment, the central part is a lagoon deposit, the southwestern and eastern parts comprise two barrier islands and a sand bar deposition area and barrier island, and in the north, a delta front transitioning to a tidal flat in the direction of the lake. The lithofacies association in the deep lagoon and tidal flat deposits(supra /intertidal zones) are favorable for the development of a high-TOC shale gas reservoir.
  • [1] 邹才能,陶士振,侯连华,等. 非常规油气地质[M]. 北京:地质出版社,2011.

    ZouCaineng, TaoShizhen, HouLianhua, et al. Unconventional oil and gas geology[M]. Beijing: Geological Publishing House, 2011.
    [2] 姜福杰,庞雄奇,欧阳学成,等. 世界页岩气研究概况及中国页岩气资源潜力分析[J]. 地学前缘,2012,19(2):198-211.

    JiangFujie, PangXiongqi, OuyangXuecheng, et al. The main progress and problems of shale gas study and the potential prediction of shale gas exploration[J]. Earth Science Frontiers, 2012, 19(2): 198-211.
    [3] 刘洪林,王红岩,刘人和,等. 非常规油气资源发展现状及关键问题[J]. 天然气工业,2009,29(9):113-116.

    LiuHonglin, WangHongyan, LiuRenhe, et al. The present status and essential points of developing the unconventional hydrocarbon resources in China[J]. Natural Gas Industry, 2009, 29(9): 113-116.
    [4] JarvieD M, HillR J, RubleT E, et al. Unconventional shale-gas systems: The Mississippian Barnett Shale of northcentral Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4): 475-499.
    [5] HillR J, ZhangE T, KatzB J, et al. Modeling of gas generation from the Barnett shale, Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 501-521.
    [6] BowkerK A, Barnett Shale gas production, fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
    [7] 潘涛,陈发晓,宋明信. 借鉴美国经验协调推进我国非常规天然气发展[J]. 国际石油经济,2010,18(9):4-8.

    PanTao, ChenFaxiao, SongMingxing. Learning from the US experience to systematically promote development of unconventional natural gas in China[J]. International Petroleum Economics, 2010, 18(9): 4-8.
    [8] 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.

    DongDazhong, WangYuman, LiXinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.
    [9] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    ZouCaineng, DongDazhong, WangShejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
    [10] YangC, ZhangJ C, TangX, et al. Comparative study on micro-pore structure of marine, terrestrial and transitional shales in key areas, China[J]. International Journal of Coal Geology, 2017, 171: 76-92.
    [11] 匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435-446.

    KangLichun, DongDazhong, HeWenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446.
    [12] 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律[M]. 北京:石油工业出版社,2002.

    YangJunjie. Tectonic evolution and oil-gas reservoirs distribution in Ordos Basin[M]. Beijing: Petroleum Industry Press, 2002.
    [13] 郭家铭. 苏里格南部上古生界山1段、盒8段物源分析与沉积体系展布特征[J]. 非常规油气,2019,6(6):41-49.

    GuoJiaming. Provenance analysis and sedimentary system distribution characteristics in the Shan1 and He8 member of Upper Paleozoic in southern Sulige area[J]. Unconventional Oil & Gas, 2019, 6(6): 41-49.
    [14] 杨智,邹才能. “进源找油”:源岩油气内涵与前景[J]. 石油勘探与开发,2019,46(1):173-184.

    YangZhi, ZouCaineng. “Exploring petroleum inside source kitchen”: Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184.
    [15] LiY, YangJ H, PanZ J, et al. Unconventional natural gas accumulations in stacked deposits: A discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China[J]. Acta Geologica Sinica, 2019, 93(1): 111-129.
    [16] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.

    JiaChengzao, ZhengMin, ZhangYongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J] Petroleum Exploration and Development, 2012, 39(2): 129-136.
    [17] 王子龙,郭少斌. 海陆过渡相页岩储层孔隙表征方法对比研究[J/OL]. 中国地质,2020:1-16. (2020-06-16). https://kns.cnki.net/kcms/detail/11.1167.P.20200616.0840.002.html. https://kns.cnki.net/kcms/detail/11.1167.P.20200616.0840.002.html

    WangZilong, GuoShaobin. Comparative study on pore characterization methods of shale reservoir[J/OL]. Geology in China, 2020: 1-16. (2020-06-16).https://kns.cnki.net/kcms/detail/11.1167.P.20200616.0840.002.html. https://kns.cnki.net/kcms/detail/11.1167.P.20200616.0840.002.html
    [18] 赵帮胜,李荣西,覃小丽,等. 鄂尔多斯盆地中部上古生界山西组页岩储层特征[J]. 沉积学报,2019,37(6):1140-1151.

    ZhaoBangsheng, LiRongxi, QinXiaoli, et al. Characteristics of shale reservoirs in the Upper Paleozoic Shanxi Formation, central Ordos Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1140-1151.
    [19] 上官静雯,胡芸冰. 鄂尔多斯盆地东部山西组山1段致密气砂岩储层分类评价[J]. 非常规油气,2017,4(2):56-63.

    ShangguanJingwen, HuYunbing. Classification and evaluation of tight gas sandstone reservoirs in Shanxi section 1, Shanxi, eastern Ordos Basin[J]. Unconventional Oil & Gas, 2017, 4(2): 56-63.
    [20] 祁攀文,薛培,赵谦平,等. 鄂尔多斯盆地下寺湾地区山西组页岩气储层特征与评价[J]. 非常规油气,2019,6(4):10-17.

    QiPanwen, XuePei, ZhaoQianping, et al. Research on evaluation methods and characteristics of shale gas reservoirs in Shanxi Formation in Xiasiwan area, Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(4): 10-17.
    [21] 何自新. 鄂尔多斯盆地演化与油气[M]. 北京:石油工业出版社,2003.

    HeZixin. Evolution of Ordos Basin and oil and gas[M]. Beijing: Petroleum Industry Press, 2003.
    [22] 赵振宇,郭彦如,王艳,等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏,2012,19(5):15-20.

    ZhaoZhenyu, GuoYanru, WangYan, et al. Study progress in tectonic evolution and paleogeography of Ordos Basin[J]. Special Oil and Gas Reservoirs2012, 19(5): 15-20.
    [23] 杨秀春,屈争辉,姜波,等. 山西大宁—吉县地区中新生代构造特征及其演化[J]. 中国煤炭地质,2013,25(5):1-6.

    YangXiuchun, QuZhenghui, JiangBo, et al. Mesozoic-Cenozoic structural features and their evolution in Daning-Jixian area, Shanxi[J]. Coal Geology of China, 2013, 25(5): 1-6.
    [24] 赵可英,郭少斌. 海陆过渡相页岩气储层孔隙特征及主控因素分析:以鄂尔多斯盆地上古生界为例[J].石油实验地质,2015,37(2):141-149.

    ZhaoKeying, GuoShaobin. Characteristics and main controlling factors of shale gas reservoirs in transitional facies: A case study of Upper Paleozoic in Ordos Basin [J]. Petroleum Geology and Experiment, 2015, 37(2): 141-149.
    [25] 孙则朋,王永莉,魏志福,等. 海陆过渡相页岩含气性及气体地球化学特征:以鄂尔多斯盆地山西组页岩为例[J]. 中国矿业大学学报,2017,46(4):859-868.

    SunZepeng, WangYongli, WeiZhifu, et al. Shale gas content and geochemical characteristics of marine-continental transitional shale: A case from the Shanxi Formation of Ordos Basin [J]. Journal of China University of Mining & Technology. 2017, 46(4): 859-868.
    [26] 闫德宇,黄文辉,张金川. 鄂尔多斯盆地海陆过渡相富有机质泥页岩特征及页岩气意义[J]. 地学前缘,2015,22(6):197-206.

    Yan Deyu, Huang Wenhui, Zhang Jinchuan, Characteristics of marine-continental transitional organic-rich shale in the Ordos Basin and its shale gas significance[J]. Earth Science Frontiers, 2015, 22(6): 197-206.
    [27] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    QiuZhen, ZouCaineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [28] QiuZ, ZouC N. Controlling factors on the Formation and distribution of “sweet-spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194: 103989.
    [29] 冯增昭. 沉积相的一些术语定义的评论[J]. 古地理学报,2020,22(2):207-220.

    FengZengzhao. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography, 2020, 22(2): 207- 220.
    [30] 谢小平,李姝臻,鲁宁,等. 川北广元须家河组一段沉积相与沉积环境演化分析[J]. 沉积学报,2021,39(2):493-505.

    XieXiaoping, LiShuzhen, LuNing, et al. Sedimentary facies and sedimentary environment evolution of First member of the Xujiahe Formation in Guangyuan area, northern Sichuan province[J]. Acta Sedimentologica Sinica, 2021, 39(2): 493-505.
    [31] 邓孝亮,张迎朝,陆江,等. 文昌B凹陷北坡珠海组潮汐沉积特征及演化[J].沉积学报,2020,38(6):1313-1326.

    DengXiaoliang, ZhangYingzhao, LuJiang, et al. Tidal sedimentary characteristics and evolution of the Zhuhai Formation, northern slope of the Wenchang B Sag[J]. Acta Sedimentologica Sinica, 2020, 38(6): 1313-1326.
    [32] 罗顺社,汪凯明. 元素地球化学特征在识别碳酸盐岩层序界面中的应用:以冀北坳陷中元古界高于庄组为例[J]. 中国地质,2010,37(2):430-437.

    LuoShunshe, WangKaiming. The application of element geochemical characteristics to the recognition of carbonate sedimentary sequence boundary: A case study of the Mesoproterozoic Gaoyuzhuang Formation in northern Hebei Depression[J]. Geology in China, 2010, 37(2): 430-437.
    [33] 邓平. 微量元素在油气勘探中的应用[J]. 石油勘探与开发,1993,20(1):27-32.

    DengPing. The application of trace amount of elements in the exploration of oil and gas[J]. Petroleum Exploration and Development, 1993, 20(1): 27-32.
    [34] HatchJ R ,LeventhalJ S. 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) stark shale member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 99(1/2/3): 65-82.
    [35] 林治家,陈多福,刘芊. 海相沉积氧化还原环境的地球化学识别指标[J]. 矿物岩石地球化学通报,2008,27(1):72-80.

    LinZhijia, ChenDuofu, LiuQian. Geochemical indices for redox conditions of marine sediments[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2008, 27(1): 72-80.
    [36] 郭艳琴,李文厚,郭彬程,等. 鄂尔多斯盆地沉积体系与古地理演化[J]. 古地理学报,2019,21(2):293-320.

    GuoYanqin, LiWenhou, GuoBincheng, et al. Sedimentary systems and palaeogeography evolution of Ordos Basin[J]. Journal of Palaeogeography, 2019, 21(2): 293-320.
    [37] 董大忠,邹才能,李建忠,等. 页岩气资源潜力与勘探开发前景[J].地质通报,2011,30(2/3):324-336.

    DongDazhong, ZouCaineng, LiJianzhong, et al. Resource potential, exploration and development prospect of shale gas in the whole world[J]. Geological Bulletin of China, 2011, 30(2/3): 324-336.
    [38] 聂海宽,唐玄,边瑞康. 页岩气成藏控制因素及中国南方页岩气发育有利区预测[J]. 石油学报,2009,30(4):484-491.

    NieHaikuan, TangXuan, BianRuikang. Controlling factors for shale gas accumulation and prediction of potential development area in shale gas reservoir of South China[J]. Acta Petrolei Sinica, 2009, 30(4): 484-491.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(2)

Article Metrics

Article views(597) PDF downloads(161) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-10-23
  • Revised:  2021-05-13
  • Published:  2022-01-10

Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning⁃Jixian Area, Eastern Margin of Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.058
Funds:

Major Science and Technology Projects of PetroChina 2020E-31

Natural Science Basic Research Program of Shaanxi 2020JQ-798, 2017JM4013

Abstract:  A s ystematic study was conducted using cores, rock thin sections and drill logging data to identify lithofacies in the Daning-Jixian region of the Shanxi Formation and establish their association and sedimentary facies. Ten types of lithofacies were identified: massive silty mudstone or shale, silt-bearing mudstone or shale with small ripples, silty mudstone or shale with lenticular bedding, calcareous shale, coal, carbonaceous shale, black shale, muddy siltstone with wave bedding, middleto fine sandstone with tidal cross-bedding, and massive middle size sandstone. In additon, ten lithofacies were classified into four associations that reflect four depositional environments: tidal flat deposits (supratidal to intertidal zones), lagoon deposits, tidal channel to tidal flat deposits and lagoon-tidal flat deposits. The study area lies within a marine-continental transitional facies sedimentary environment, the central part is a lagoon deposit, the southwestern and eastern parts comprise two barrier islands and a sand bar deposition area and barrier island, and in the north, a delta front transitioning to a tidal flat in the direction of the lake. The lithofacies association in the deep lagoon and tidal flat deposits(supra /intertidal zones) are favorable for the development of a high-TOC shale gas reservoir.

PENG SiZhong, LIU DeXun, ZHANG LeiFu, QIU Zhen, WANG YiCheng, FENG CongJun, SUN MengSi. Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning⁃Jixian Area, Eastern Margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 47-59. doi: 10.14027/j.issn.1000-0550.2021.058
Citation: PENG SiZhong, LIU DeXun, ZHANG LeiFu, QIU Zhen, WANG YiCheng, FENG CongJun, SUN MengSi. Shale Lithofacies and Sedimentary Facies of the Permian Shanxi Formation, Daning⁃Jixian Area, Eastern Margin of Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 47-59. doi: 10.14027/j.issn.1000-0550.2021.058
  • 继煤层气和致密砂岩气之后,页岩气已成为重要的非常规天然气资源[1-3],北美海相页岩气资源的勘探对研究中国海相、陆相以及海陆过渡相地层中页岩气成藏条件、模式以及聚集规律,具有启发性的影响[4-7]。我国海陆过渡相页岩气资源丰富,资源量约19.8×1012 m3,占中国页岩气资源总量的25%,具有较大的开发前景[8-11],但当前海陆过渡相页岩气正处于起步阶段,其基础地质理论与评价系统尚在探索之中。

    鄂尔多斯盆地位于华北地台西缘,是我国重要的含油气盆地。在晚古生代,主要经历了海相沉积为主的陆表海盆地、海陆过渡相沉积为主的近海湖盆以及陆相碎屑岩沉积为主的内陆坳陷湖盆的古地理演化过程[12-13]。其东缘二叠系山西组发育一套海陆过渡环境下的泥页岩,其厚度大,有机质丰度高,热演化程度高,其页岩气勘探潜力已引起人们的重视[14-16]。目前,对于山西组的研究多是分析其资源潜力、成藏条件以及孔隙特征[17-20],而对于山西组岩相的精细划分及沉积微相对页岩储层的控制作用研究不多。本文通过对大吉XX钻井 2 3 亚段的岩心、薄片、测井以及地球化学资料进行分析,识别二叠系山西组页岩岩相并建立沉积相组合,划分页岩优势沉积相,确定富有机质页岩相控模式,为鄂尔多斯盆地海陆过渡相页岩气的勘探开发提供有利依据。

  • 鄂尔多斯盆地是华北板块西部典型的克拉通边缘叠合盆地,基本构造格架形成于燕山期,于喜山期发展完成,整体呈一个东翼缓而长、西翼陡而短、南北翘起的大向斜[21-23]。前人根据鄂尔多斯盆地的基底性质、构造形态和地质演化历史,将其划分为六个一级构造单元,分别为伊盟隆起、晋西挠褶带、渭北隆起、天环坳陷、西缘冲断带和陕北斜坡[24-26]

    研究区位于鄂尔多斯盆地东缘的大宁—吉县地区,山西组1段时期主要为海相向陆相发展的过渡期[27-28],强烈的构造运动使得海水从盆地东西两侧后退,研究区内主要发育灰黑色泥岩夹煤线以及灰白色砂岩夹泥岩。山西组2段时期盆地进入沉降期,出现大面积海侵,以海陆过渡相沉积为主,形成了厚层富有机质海陆过渡相页岩。山西组2段自上而下又细分为 2 1 2 2 2 3 共3个亚段, 2 3 亚段为本次研究的目标层段(图1)。

    Figure 1.  Location of study area and stratigraphic column

  • 岩相,是沉积岩和沉积环境的综合,用来表征沉积岩的岩石特征和沉积特征[29]。一般通过颜色、粒度、矿物成分、原生沉积构造、变形构造、生物扰动等定性和定量的参数来描述和区分沉积岩相,以区分其形成的沉积环境。通过对大吉XX井岩心的岩性、沉积构造以及镜下照片等特征进行仔细观察,在山西组山2 3亚段共识别出10种典型的岩相类型(表1),分别为粉砂质泥岩/页岩相(Mm)、纹层状层理含粉砂泥岩/页岩相(Ml)、透镜状层理粉砂质泥岩/页岩相(Mle)、钙质页岩相(Mca)、煤层(C)、碳质页岩相(Mc)、黑色页岩相(B)、波状层理泥质粉砂岩相(Fw)、交错层理中—细砂岩相(Sl)和中砂岩相(Sm)。

    代号 岩相类型 沉积构造 沉积环境
    Mm 粉砂质泥岩/页岩相 无明显层理 泥坪、潟湖
    Ml 纹层状层理含粉砂泥岩/页岩相 纹层状层理 泥坪
    Mle 透镜状层理粉砂质泥岩/页岩相 透镜状层理 混合坪
    Mca 钙质页岩相 钙质,水平层理 潟湖
    Mc 碳质页岩相 碳质,水平层理 泥坪
    C 煤层 沼泽
    B 黑色页岩相 水平层理 潟湖
    Fw 波状层理泥质粉砂岩 波状层理 混合坪
    Sl 交错层理细—中砂岩相 低角度交错层理(<15%)/羽状交错层理 砂坪
    Sm 中砂岩相 局部发育双向交错层理及大型板状交错层理 潮汐水道

    Table 1.  Lithofacies classification

  • 该岩相主要为粉砂质泥岩或页岩,颜色为灰色—深灰色,泥质结构,无明显层理,主要矿物成分有黏土矿物,砂质碎屑物及极少量的黄铁矿和有机质。黏土矿物含量大于75%,呈显微鳞片状。砂质碎屑物含量约占32%,成分多为石英,呈次圆状单晶分布。黄铁矿和有机质含量小于3%。该类泥岩/页岩形成于水动力较弱的环境,沉积机理以高能态的悬浮沉积为主,为浅湖或潮上带沉积环境的产物。

  • 该岩相主要为含粉砂质纹层的页岩和泥岩,颜色为灰色—深灰色,纹层状层理。宏观上粉砂呈近水平的连续或不连续细纹层夹在泥岩或页岩之间(图2a),含量不超过15%,粉砂纹层厚度较薄,一般小于2 mm。微观上黏土矿物是其主要成分,含量大于70%,呈显微鳞片状,局部长轴具定向分布特征。其次为砂质碎屑物,成分多为石英,少为长石和岩屑,集中沿某些微层理面分布,粉砂颗粒分选中到好,磨圆为次棱角状。黏土矿物和粉砂碎屑物混合层相间分布,形成水平纹层状构造(图3a),指示水动力较弱,为潮上带沉积环境产物。

    Figure 2.  Typical sedimentary structures in core from lower part of the Second member of Shanxi Formation, Daning⁃Jixian, at eastern margin of Ordos Basin

    Figure 3.  Microscopic properties of different lithofacies (crossed polarizers, except(c))

  • 该岩相主要为页岩和泥岩,颜色为灰色—深灰色,主要发育构造为透镜状层理,球枕构造。宏观上粉砂质呈透镜体状或条带状夹在泥岩或页岩之间(图2b),整体呈近水平,局部呈小型交错状,粉砂质条带间局部可见小型粉砂球。粉砂含量约为15%~40%,粉砂质透镜体厚度为2~5 mm。微观上岩石主要由黏土矿物组成,其中黏土矿物呈显微鳞片状,局部具定向排列趋势。砂质碎屑物种类多为石英,含少量岩屑,含极少量长石。部分砂质碎屑物集中呈透镜状或条带状与黏土矿物微层相间分布(图3b),指示潮坪沉积环境中潮下带的沉积环境。

  • 该岩相主要为页岩,颜色为灰色—灰黑色,水平层理。宏观上页岩整体呈灰黑色块状,能与稀盐酸反应,偶夹近水平波状砂质条带,宽度1~4 mm不等,反映了水动力较弱的波浪作用。微观上岩石主要由黏土矿物组成,碎屑物质主要为石英,菱铁矿含量较多,约占10%,呈粒装单晶均匀分布,或呈团状集合体集中沿某些微层分布。页岩中方解石呈它形粒装,充填于砂质碎屑物中,起胶结作用,富黏土矿物微层与富方解石和粉砂碎屑物的微层相间分布,形成水平状或微波状(图3d)。钙质页岩中有机质含量变化较大,最大可达20%。

  • 煤层呈黑色,能污手,富含光泽(图2g)。煤层为植物碎屑和泥炭淤积而成。指示了沼泽的沉积环境。

  • 该岩相整体呈灰黑色—黑色,多为块状,钙质含量为5%~10%,灰黑色碳质页岩常和煤层同时出现(图2h),下部碳质页岩过渡到上部的煤层。碳质页岩块状构造,常见碳质植物化石(图2d),能污手。为潮坪环境中潮上带的产物。

  • 不同的沉积环境会形成不同颜色的沉积岩,颜色加深说明了岩石有机质含量的增加[30]。该岩相宏观上整体呈黑色,不污手,页理发育,局部可见厘米级黄铁矿斑块(图2e),偶夹方解石脉(图2f)。微观上中黏土矿物为主要矿物,含量约80%,呈显微鳞片状,定向排列形成页理状构造(图3e),其表面多被深色有机质附着,光性较弱。含极少量粉砂碎屑物和砂质碎屑物,成分单一为石英,呈次圆状单晶分布。有机质呈黑色粉末状集合体沿微层理面吸附于黏土矿物表面显黑色,因含量较高使得薄片整体显黑色。含生物屑,部分泥化或硅化,保留其外形,呈圆形、单壳状或不规则状(图3h),种类有有孔虫、介形虫等(图3f)。黑色页岩有机质含量较高,一般大于10%,最大可达28%。并可见菱铁矿、黄铁矿等自生矿物(图3g),反映了强还原环境的较深水体。

  • 该岩相宏观上由薄层的粉砂和泥岩互层组成,粉砂质含量在40%~50%,颜色为灰色,发育波状层理,粉砂质层与泥岩层糅杂在一起(图2c),生物扰动较强,常发育大量生物潜穴。微观上其中主要矿物为黏土矿物,其次为粉砂碎屑物,砂质碎屑物种类多为石英,含少量岩屑(包括黏土岩岩屑和燧石岩岩屑)和长石(种类为具聚片双晶的斜长石和具泥化的钾长石)。砂质碎屑物集中呈条带状与黏土矿物微层相间分布。富砂质碎屑物的微层与富黏土矿物的微层相间,相邻纹层倾向相反,呈羽状或人字形分布(图3c),指示水体具双向流动特征,常发育于潮汐环境。

  • 该岩相为中砂岩和细砂岩,岩石整体呈灰白色,分选性一般,磨圆度较差,多呈次棱角状,为短距离搬运产物,其成份主要是石英,含一定量的其他岩屑和少量的长石。杂基成分为显微鳞片状的黏土矿物,胶结物成分为方解石。宏观上局部发育低角度交错层理(图2i)或双向交错层理,指示具有双向水流的潮汐环境。

  • 该岩相为中砂岩,岩石整体呈灰白色,其成份主要是石英,含一定量的其他岩屑和少量的长石,还含有少量有机质和重矿物。砂质碎屑物粒度以中砂级为主,细砂级次之。分选性一般,磨圆度较差,多呈次棱角状,少数为棱角状,为短距离搬运产物。整体呈块状,局部发育人字形交错层理,指示具有双向水流的潮汐环境。

  • 根据岩心观察结果,结合沉积成因分析,山西组 2 3 亚段主要发育有障壁海岸相的潮坪沉积和潟湖沉积,可划分为4种岩相组合(图4)。

    Figure 4.  Typical sedimentary sequence in lower part of Second member of Shanxi Formation at Daning⁃Jixian, eastern margin of the Ordos Basin

  • 该组合底部为块状灰黑色粉砂质泥岩,并含植物碳屑,发育潜穴,反映其水深较浅;向上发育小型交错层理的细砂岩,再向上为灰黑色碳质页岩,发育纹层状构造,其中偶见泥质团块,最上部为煤炭沼泽。总体粒度呈细—粗—细,反映潮汐作用的构造弱发育,反映其潮流作用较弱,为一套潟湖—泥质潮坪沉积。

  • 该组合底部为一套较厚的砂岩组合,底部为块状中粒砂岩,与下部粉砂质页岩突变接触,发育板状或槽状交错层理,为潮汐水道沉积;向上为一套中—细粒砂岩,下部发育双向交错层理,向上部粒度变细,靠近泥岩的过渡处也见少量泥质夹层,向上演化为泥炭坪,自下而上粒度由粗变细,为一套潮汐水道—潮坪沉积。

  • 该组合为粒度较细的泥质组合,岩性为粉砂质泥岩、粉砂质页岩夹钙质页岩、黑色页岩、碳质页岩,为一套潟湖沉积序列。潟湖是为海岸所限制、被障壁岛拦截的浅水盆地,其中波浪作用较弱,水动力较弱,沉积构造一般以水平层理为主,反映强水动力的交错层理不发育。黑色页岩厚度较厚,约10 m,含介形虫、有孔虫等生物化石,发育菱铁矿、黄铁矿等自生矿物,黄铁矿呈厘米级斑块,反映了此时潟湖出现强还原环境,也侧面反映了水体盐度发生变化。

  • 该组合主要为交替出现的泥质和粉砂质韵律组合,属于潮坪相潮间带的混合坪和潮上带的泥坪,包括粉砂质泥岩、粉砂质页岩和泥质粉砂岩,偶夹块状粉砂质泥岩。由于潮汐水流活动期与停滞期交替出现,在砂泥供应充足的潮间带,砂层沉积于水流活动期,水动力较强,泥质呈悬浮状态;而水流停滞期,水动力较弱,细粒悬浮物沉积于砂层之上,从而形成波状层理和透镜状层理的复合层理,是潮坪沉积的重要标志[31]

  • 泥页岩由于其沉积环境稳定,受外界影响较小,因此泥岩中的微量元素含量与比值常常用来判别沉积时期的古环境[32]。本次选取了12块粉砂质泥岩和泥页岩样品进行微量元素分析。

    Sr/Ba值常是判别古盐度的灵敏标志。在自然界水体中,Sr迁移能力比Ba迁移能力强,水介质矿化度即盐度很低时,Sr与Ba均以重碳酸盐的形式出现,当水体矿化度即盐度逐渐加大时,钡以BaSO4的形式首先沉淀,留在水体中的Sr相对Ba趋于富集,因而沉积物中Sr丰度和Sr/Ba比值与古盐度呈明显正相关性[32]。结果显示Sr/Ba范围为0.57~2.29,平均0.98(表2)。研究认为Sr/Ba比值小于0.5为淡水环境,在0.5~1.0之间为海陆过渡半咸水,大于1.0为咸水环境[33]。因此,研究区山2 3段古盐度为咸水—半咸水的海陆过渡环境。

    井深/m 岩性 微量元素含量/×10-6 地球化学指标
    V Ni Sr Ba Cr Sr/Ba V/(Ni+V) V/Cr
    2 126.55 粉砂质泥岩 148 31.8 127 120 28 1.06 0.82 5.29
    2 126.92 粉砂质泥岩 195 55.1 191 308 79.5 0.62 0.78 2.45
    2 128.30 粉砂质泥岩 39 39.3 103 82 28.6 1.26 0.50 1.36
    2 129.92 粉砂质泥岩 75 19.5 304 461 35.4 0.66 0.79 2.12
    2 138.88 含粉砂页岩 87.4 18.6 622 843 30.3 0.74 0.82 2.88
    2 139.57 黑色页岩 156 29.3 425 742 58.8 0.57 0.84 2.65
    2 140.66 黑色页岩 90.9 62 381 551 44.6 0.69 0.59 2.04
    2 142.19 黑色页岩 97.1 67.9 425 599 46.7 0.71 0.59 2.08
    2 143.81 黑色页岩 108 64 387 511 50.4 0.76 0.63 2.14
    2 144.65 黑色页岩 97.6 59.3 588 504 43.7 1.17 0.62 2.23
    2 145.43 黑色页岩 122 88.6 722 559 57.8 1.29 0.58 2.11
    2 146.31 碳质页岩 144 117 686 300 59.5 2.29 0.55 2.42
    范围 39~195 18.6~117 103~722 82~843 28~79.5 0.57~2.29 0.5~0.84 1.36~5.29
    平均值 133.33 54.37 413.41 465 46.94 0.98 0.68 2.48

    Table 2.  Geochemicalparameters of lower part of Second member of Shanxi Formation at Daning⁃Jixian, eastern margin of Ordos Basin

    V/Cr、V/(V+Ni)等指标常用来判定沉积物的古氧化还原环境。Hatch et al.[34]提出V/(V+Ni)指标在0.84~0.6之间为缺氧环境,在0.6~0.46之间为贫氧环境,<0.46为富氧环境。研究区样品V/(V+Ni)范围在0.5~0.84之间,平均值为0.68(表2)。林治家等[35]认为,V/Cr可有效鉴别泥岩的氧化还原环境,V/Cr <2.00代表富氧环境,2.00<V/Cr<4.25指示次富氧环境,V/Cr>4.25代表贫氧和缺氧环境。研究区样品V/Cr范围在1.36~5.29之间,平均值为2.48。因此,研究区样品处于缺氧—贫氧环境的还原—半还原环境。

  • 研究区山西组山2 3亚段总体属于障壁岛—潟湖沉积体系(图5)。下部主要为海退沉积,主要为潮坪相的泥坪和混合坪,厚度约14 m,发育具有纹层状层理、透镜体层理以及波状层理的粉砂质泥岩、页岩和泥质粉砂岩,生物扰动强烈;向上为海进,主要为还原环境的潟湖相,发育一套厚层黑色页岩,约10 m厚,并且菱铁矿、黄铁矿等自生矿物十分发育,指示了还原环境的潟湖相;然后发育一套潮坪相沉积,粒度总体较粗,为交错层理的中细砂岩、泥岩和煤层;接着为一套潟湖—潮坪沉积,下部为粉砂质泥岩,向上发育潮汐层理的细砂、碳质页岩和煤层。总体上粒度较细,垂向上表现出水体深度不断变化的特征。

    Figure 5.  Stratigraphic column and sedimentary facies of well Daji XX, lower part of Second member, Shanxi Formation, eastern margin of the Ordos Basin

  • 潮坪相粒度较细,主要受潮汐影响,水流能量不稳定,变化频繁,岩性主要为粉砂质泥岩、页岩和泥质粉砂岩的互层,GR曲线大部平直低幅,微齿化;潟湖相粒度最细,水体较为平静,水动力很弱,GR曲线大部平直低幅,局部漏斗状;潮汐水道—潮坪相粒度较粗,水动力较强,GR曲线中高幅,呈钟形;潟湖—潮坪相发育较厚煤层,总体粒度较细,GR曲线呈中高幅度的指形(图6)。

    Figure 6.  Logging curve characteristics of well Daji XX

  • 结合区域古地理背景,绘制了研究区 2 3 亚段页岩厚度等值线图(图7a), 2 3 亚段页岩呈条带状分布,主要有两条厚度带:一条为条带状,以宁县为中心,过隰县—大宁—吉县,呈弓形展布,大致走向为南北向,中间厚度为35~45 m,两侧较薄;另一条以研究区西北部为中心,呈“S”形向西北方向延伸,向两侧减薄,最厚区域页岩厚度超过40 m。

    Figure 7.  Contour map of shale thickness and planar distribution of sedimentary facies in lower part of Second member, Shanxi Formation, eastern margin of Ordos Basin

  • 结合区域古地理[36],绘制了研究区的沉积相分布图(图7b), 2 3 段沉积相展布特征显示: 2 3 段时期研究区中央为潟湖沉积,存在2个中心。潟湖沉积范围内,西南部以及东部有2个障壁岛砂坝沉积的区域,北部边界处为三角洲前缘沉积。障壁岛及北部三角洲前缘向湖方向过渡为潮坪的潮上带、潮间带和潮下带沉积,总体潟湖沉积范围相对较广且连通性好,有利于泥/页岩发育。

  • 山西组 2 3 段泥/页岩在潟湖—泥质潮坪、潮汐水道—潮坪、潟湖和潮坪(潮间带/潮上带)4种均有发育。通过统计大吉XX井4种岩相组合的TOC频率分布发现,潟湖相TOC最高,平均可达7.79%,潟湖—泥质潮坪相TOC次之,平均为2.56%,潮坪(潮上带/潮间带)相TOC平均为1.81%,潮汐水道—潮坪相TOC平均为1.54%(图8)。国内外开发成功的页岩气藏其TOC范围一般在2%~4%[37],也有部分学者认为TOC超过0.3%,就具有经济效益[38],TOC越高的页岩含气量越高,更具有形成页岩气藏得潜力。因此, 2 3 亚段页岩TOC含量整体较高,生气潜力较强,其中潟湖相的泥/页岩厚度最大,且TOC含量最高,潮坪(潮上带/潮间带)的泥/页岩厚度次之,是生气最有利的沉积相组合。

    Figure 8.  Histogram of TOC distributions in lower part of Second member of Shanxi Formation, eastern margin of Ordos Basin

  • (1) 根据大吉XX井岩性、沉积构造以及镜下照片等特征,在山西组 2 3 亚段共识别出10种岩相类型,分别为粉砂质泥岩/页岩相、纹层状层理含粉砂泥岩/页岩相、透镜状层理粉砂质泥岩/页岩相、钙质页岩相、煤层、碳质页岩相、黑色页岩相、波状层理泥质粉砂岩相、交错层理细砂岩相和中砂岩相。

    (2) 结合沉积成因,将研究区山西组 2 3 亚段划分为4种岩相组合,由下向上分别为潮坪沉积,GR曲线大部平直低幅,微齿化;潟湖相沉积,GR曲线大部平直低幅,局部漏斗状;潮汐水道—潮坪相沉积,GR曲线中高幅,呈钟形;潟湖—潮坪相沉积,GR曲线呈中高幅度的指形。

    (3) 综合岩相特征、沉积序列以及古地理资料,认为研究区属于海陆过渡相沉积,中央为潟湖沉积,西南部以及东部有2个障壁岛砂坝沉积的区域,北部边界处为三角洲前缘沉积。障壁岛及北部三角洲前缘向湖方向过渡为潮坪的潮上带、潮间带和潮下带沉积。 2 3 亚段页岩TOC含量较高,生气潜力较好,其中潟湖相和潮坪(潮上带/潮间带)是生气最有利的沉积相组合。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return