Advanced Search
Volume 40 Issue 6
Dec.  2022
Turn off MathJax
Article Contents

LIAO DongXia, GUO HaiTing, WU MengMeng, PAN ShaoMing. Sedimentation Rate in Lake Xingkai, Northeastern China, Based on 137Cs Dating[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1718-1727. doi: 10.14027/j.issn.1000-0550.2021.055
Citation: LIAO DongXia, GUO HaiTing, WU MengMeng, PAN ShaoMing. Sedimentation Rate in Lake Xingkai, Northeastern China, Based on 137Cs Dating[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1718-1727. doi: 10.14027/j.issn.1000-0550.2021.055

Sedimentation Rate in Lake Xingkai, Northeastern China, Based on 137Cs Dating

doi: 10.14027/j.issn.1000-0550.2021.055
Funds:

National Key R&D Program of China, No. 2016YF A0600502

National Natural Science Foundation of China 41671466

  • Received Date: 2020-11-02
  • Rev Recd Date: 2021-04-21
  • Publish Date: 2022-12-10
  • Lacustrine sedimentary records are very significant for gaining an understanding of basin erosion, since they reveal regional climatic and environmental changes and the influence of human activities. The 137Cs dating method, which has been widely used since the early 1970s, has greatly promoted high-resolution studies of climate and environmental changes recorded in lake sediments. Based on 137Cs dating and particle-size analysis for Lake Xingkai sediment cores, the distribution of 137Cs was investigated to calculate modern sedimentation rates and the reasons for the different rates. An inventory of 137Cs deposition was compiled for the sediment cores, and the modern sedimentary environment of Lake Xingkai was analyzed using C–M diagrams. The main findings of the study were: (1) The estuary region of the Bailing River west of Xingkai Lake is under the dual influence of terrestrial input and sediment disturbance, causing uniform and higher 137Cs concentrations in the upper part of the vertical profile. This differs from the typical 137Cs global atmospheric precipitation model. In Lake Xingkai the global 137Cs fallout peak (due to atmospheric nuclear weapons testing in other parts of the world in 1963) is smaller than in most lakes in northeastern China, mainly influenced by the grain size of the sediment. (2) The deposition inventory and average activity of 137Cs in the Bailing River estuary region in western Lake Xingkai is higher than in the central area. Deposition in Lake Xingkai is affected by basin input, hydrodynamic conditions and sediment particle size. (3) The average sedimentation rates indicated in cores XKH-1, XKH-2 and XKH-3 are 0.143 cm/a, 0.080 cm/a and 0.036 cm/a, respectively, from 1963 to 2019. Due to the influence of the particular wind/wave conditions and human activities (e.g., release sluices), the regional sedimentation rate in central and eastern Lake Xingkai is lower than in the west. (4) The particle sizes in all cores from Lake Xingkai indicated by the C-M charts are located either to the left of the III region or beneath it, evidence that mostly still water was the historical sedimentary environment of Lake Xingkai. The cumulative probability curve has two segments due to the two modes of saltation and suspension. The C value of core XKH-1 is relatively dispersed because of the influence of human activities in the upper reaches of the Bailing River. The strong hydrodynamic environment near the second release sluice causes a larger C value for core XKH-3 than for cores XKH-1 and XKH-2, on the whole. (5) The vertical variation of grain size distribution and parameters in core XKH-1 reflects vegetation destruction and soil erosion in the Xingkai Lake Basin since 1963. The mean particle size and sorting coefficient of XKH-2 fluctuate frequently with depth, indicating that the hydrodynamic conditions in the lake bottom varied at different times. The grain size of XKH-3 sediment is coarser at 0~5 cm depths, evidence that the shore of Lake Xingkai has silted up continuously in recent decades. This study provides a theoretical basis and scientific reference for further research. The annual gross accumulation of sediment can be calculated and the internal load of pollutants in lake sediments, lake evolution and environmental changes in the lake basin can be studied further.
  • [1] 沈吉.湖泊沉积研究的历史进展与展望[J]. 湖泊科学,2009,21(3):307-313.

    Shen Ji. Progress and prospect of palaeolimnology research in China[J]. Journal of Lake Sciences, 2009, 21(3): 307-313.
    [2] 王小雷,杨浩,丁兆运,等. 云南抚仙湖近现代沉积速率变化研究[J]. 地理学报,2011,66(11):1551-1561.

    Wang Xiaolei, Yang Hao, Ding Zhaoyun, et al. Modern sedimentation rates of Fuxian Lake by 210Pb and 137Cs dating[J]. Acta Geographica Sinica, 2011, 66(11): 1551-1561.
    [3] 万国江. 137Cs及210Pbex方法湖泊沉积计年研究新进展[J]. 地球科学进展,1995,10(2):188-192.

    Wan Guojiang. Progresses on 137Cs and 210Pbex dating of lake sediments[J]. Advance in Earth Sciences, 1995, 10(2): 188-192.
    [4] Klaminder J, Appleby P, Crook P, et al. Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating[J]. Sedimentology, 2012, 59(7): 2259-2267.
    [5] Lan J H, Wang T L, Sakonvan C, et al. Time marker of 137Cs fallout maximum in lake sediments of Northwest China[J]. Quaternary Science Reviews, 2020, 241: 106413.
    [6] Williams D F, Kuzmin M I, Prokopenko A A, et al. The Lake Baikal drilling project in the context of a global lake drilling initiative[J]. Quaternary International, 2001, 80-81: 3-18.
    [7] 吴健,沈吉. 兴凯湖沉积物有机碳和氮及其稳定同位素反映的28ka BP以来区域古气候环境变化[J]. 沉积学报,2010,28(2): 365-372.

    Wu Jian, Shen Ji. Paleoenviromental and paleoclimatic changes in Lake Xingkai inferred from stable carbon and nitrogen isotopes of bulk organic matter since 28ka BP[J]. Acta Sedimentologica Sinica, 2010, 28(2): 365-372.
    [8] 吴健,沈吉. 兴凯湖沉积物粒度特征揭示的 27.7ka BP以来区域古气候演化[J]. 湖泊科学,2010,22(1):110-118.

    Wu Jian, Shen Ji. Paleoclimate evolution since 27.7ka BP reflected by grain size variation of a sediment core from Lake Xingkai, northeastern Asia[J]. Journal of Lake Sciences, 2010, 22(1): 110-118.
    [9] Xin S Z, Shen J, Zhang W F, et al. East Asian winter monsoon evolution since the Late Pliocene based on a pollen record from Lake Xingkai, northeast Asia[J]. Quaternary Research, 2020, 93(1): 40-59.
    [10] 高霞. 浅谈穆棱河下游地区洪水防御与利用[J]. 水利科技与经济,2010,16(5):557.

    Gao Xia. Discussion on flood prevention and utilization in the lower reaches of Muling River[J]. Water Conservancy Science and Technology and Economy, 2010, 16(5): 557.
    [11] 李智,衣起超,吴明官. 兴凯湖水位逐年上升原因分析[J]. 水利科技与经济,2011,17(8):30-33.

    Li Zhi, Yi Qichao, Wu Mingguan. Analysis of the reason why the water level increase in Khanka Lake year by year[J]. Water Conservancy Science and Technology and Economy, 2011, 17(8): 30-33.
    [12] 白友良,王华伟,吴润江,等. 新疆孔雀河北岸中更新世湖相沉积物年代学及沉积速率特征[J]. 干旱区地理,2017,40(1):70-76.

    Bai Youliang, Wang Huawei, Wu Runjiang, et al. Chronology and characteristics of sedimentation rate from 727-93 ka BP lake sediments at northern margin of the Kongqi River, Xinjiang, China[J]. Arid Land Geography, 2017, 40(1): 70-76.
    [13] 王苏民,窦鸿身. 中国湖泊志[M]. 北京:科学出版社,1998:503.

    Wang Sumin, Dou Hongshen. China lakes record[M]. Beijing: Science Press, 1998: 503.
    [14] 孙万光,范宝山,陈晓霞,等. 典型风况下兴凯湖波流耦合数值模拟研究[J]. 人民长江,2014,45(23):92-97.

    Sun Wanguang, Fan Baoshan, Chen Xiaoxia, et al. Numerical simulation study on wave-current coupling in Xingkai Lake under typical wind condition[J]. Yangtze River, 2014, 45(23): 92-97.
    [15] 刘秀明,李文宝,邢春颖. MS2000激光粒度分析仪在沉积物分析中的应用[J]. 实验技术与管理,2007,24(9):49-52.

    Liu Xiuming, Li Wenbao, Xing Chunying. Application of laser grain analyser MS2000 to deposit analysis[J]. Experimental Technology and Management, 2007, 24(9): 49-52.
    [16] UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation). Sources and effects of ionizing radiation: Annex J. Exposure and effects of Chernobyl accident[R]. New York: Report to General Assembly, 2000: 158-291.
    [17] 廖梦娜,李艳玲. 东北镜泊湖硅藻对近现代气候变化和人类干扰的响应过程[J]. 生态学报,2018,38(4):1458-1469.

    Liao Mengna, Li Yanlin. Diatom response to climate changes and anthropogenic disturbances in Jingpo Lake (NE China)[J]. Acta Ecologica Sinica, 2018, 38(4): 1458-1469.
    [18] 桂智凡,薛滨,姚书春,等. 黑龙江省五大连池近百年环境变化研究[J]. 第四纪研究,2011,31(3):544-553.

    Gui Zhifan, Xue Bin, Yao Shuchun, et al. Environmental changes of Wudalianchi Lake inferred from lake sediments in the past century[J]. Quaternary Sciences, 2011, 31(3): 544-553.
    [19] 游海涛,刘强,刘嘉麒,等. 纹层计年与137Cs、210Pb法对比研究东北二龙湾玛珥湖现代沉积速率[J]. 吉林大学学报(地球科学版),2007,37(1):59-64.

    You Haitao, Liu Qiang, Liu Jiaqi, et al. A comparative study on model sedimentation rates with varve dating, 137Cs and 210Pb dating in Erlongwan Maar Lake, NE China[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(1): 59-64.
    [20] Wu F C, Zheng J, Liao H Q, et al. Vertical distributions of plutonium and 137Cs in lacustrine sediments in northwestern China: Quantifying sediment accumulation rates and source identifications[J]. Environmental Science & Technology, 2010, 44(8): 2911-2917.
    [21] 柴社立,高丽娜,邱殿明,等. 吉林省西部月亮湖沉积物的210Pb和137Cs测年及沉积速率[J]. 吉林大学学报(地球科学版),2013,43(1):134-141.

    Chai Sheli, Gao Lina, Qiu Dianming, et al. 210Pb and 137Cs dating of the sediment core and its recent accumulation rates in Yueliang Lake in west Jilin province[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1): 134-141.
    [22] 徐仪红,潘少明. Pu同位素在土壤侵蚀示踪中的应用[J]. 土壤学报,2012,49(5):1021-1029.

    Xu Yihong, Pan Shaoming. Application of Pu isotope as a tracer in soil erosion[J]. Acta Pedologica Sinica, 2012, 49(5): 1021-1029.
    [23] Evrard O, Laceby J P, Lepage H, et al. Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review[J]. Journal of Environmental Radioactivity, 2015, 148: 92-110.
    [24] Xu Y H, Pan S M, Wu M M, et al. Association of plutonium isotopes with natural soil particles of different size and comparison with 137Cs[J]. Science of the Total Environment, 2017, 581-582: 541-549.
    [25] Japan Meteoorlogieal Agney. Bulletin of the radioaetiviy vol. 83[R]. Tokyo: JMA, 2001: 21.
    [26] Zhang Y Q, Long Y, Lu X, et al. Dating reservoir deposits to assess the recently changing sediment yields from a medium-sized agricultural catchment[J]. Land Degradation & Development, 2019, 30(16): 1939-1953.
    [27] Fang H J, Yang X M, Zhang X P, et al. Using 137Cs tracer technique to evaluate erosion and deposition of black soil in northeast China[J]. Pedosphere, 2006, 16(2): 201-209.
    [28] 张威,潘少明,张克新,等. 中国大陆Cs-137背景值研究[J]. 地理学报,2015,70(9):1477-1490.

    Zhang Wei, Pan Shaoming, Zhang Kexin, et al. Study of the cesium-137 reference inventory in the mainland of China[J]. Acta Geographica Sinica, 2015, 70(9): 1477-1490.
    [29] 张艳君. 白棱河农场水土流失防治对策[J]. 水土保持应用技术,2012(1):47-49.

    Zhang Yanjun. Prevention and control measures of soil erosion in Baileng River farm[J]. Technology of Soil and Water Conservation, 2012(1): 47-49.
    [30] 李艳杰. 兴凯湖灌区发展规模论证[J]. 黑龙江农业科学,2007(4):31-34.

    Li Yanjie. Developed scale demonstration of Xingkaihu irrigated area[J]. Heilongjiang Agricultural Sciences, 2007(4): 31-34.
    [31] 明久安,成光民. 白棱河口淤沙形态及成因分析[J]. 黑龙江水利科技,2003,30(3):63-64.

    Ming Jiuan, Cheng Guangmin. Analysis of sediment morphology and genesis in Baileng Estuary[J]. Heilongjiang Science and Technology of Water Conservancy, 2003, 30(3): 63-64.
    [32] Passega R. Texture as characteristic of clastic deposition[J]. AAPG Bulletin, 1957, 41(9): 1952-1984.
    [33] 王振东,刘宗键,杨福勃. 兴凯湖风光和岸边的主要水利工程[J]. 水利天地,2001(9):47.

    Wang Zhendong, Liu Zongjian, Yang Fubo. Xingkai Lake scenery and the main water conservancy projects along the shore[J]. Hydro Science and Cold Zone Engineering, 2001(9): 47.
    [34] 王宇平. 流场及波浪对兴凯湖第二泄洪闸站破坏的分析与研究[D]. 哈尔滨:黑龙江大学,2015.

    Wang Yuping. Research and analysis on the destruction of the second spillway sluice of Lake Xingkai because of the flow field and wave field[D]. Harbin: Heilongjiang University, 2015.
    [35] 虎林县志编纂委员会. 虎林县志[M]. 北京:中国人事出版社,1992:134-136.

    Hulin County Annals Compilation Committee. Hulin county annals[M]. Beijing: China Personnel Publishing House, 1992: 134-136.
    [36] Vasskog K, Nesje A, Støren E N, et al. A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence in Oldevatnet, western Norway[J]. The Holocene, 2011, 21(4): 597-614.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(3)

Article Metrics

Article views(258) PDF downloads(60) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-11-02
  • Revised:  2021-04-21
  • Published:  2022-12-10

Sedimentation Rate in Lake Xingkai, Northeastern China, Based on 137Cs Dating

doi: 10.14027/j.issn.1000-0550.2021.055
Funds:

National Key R&D Program of China, No. 2016YF A0600502

National Natural Science Foundation of China 41671466

Abstract: Lacustrine sedimentary records are very significant for gaining an understanding of basin erosion, since they reveal regional climatic and environmental changes and the influence of human activities. The 137Cs dating method, which has been widely used since the early 1970s, has greatly promoted high-resolution studies of climate and environmental changes recorded in lake sediments. Based on 137Cs dating and particle-size analysis for Lake Xingkai sediment cores, the distribution of 137Cs was investigated to calculate modern sedimentation rates and the reasons for the different rates. An inventory of 137Cs deposition was compiled for the sediment cores, and the modern sedimentary environment of Lake Xingkai was analyzed using C–M diagrams. The main findings of the study were: (1) The estuary region of the Bailing River west of Xingkai Lake is under the dual influence of terrestrial input and sediment disturbance, causing uniform and higher 137Cs concentrations in the upper part of the vertical profile. This differs from the typical 137Cs global atmospheric precipitation model. In Lake Xingkai the global 137Cs fallout peak (due to atmospheric nuclear weapons testing in other parts of the world in 1963) is smaller than in most lakes in northeastern China, mainly influenced by the grain size of the sediment. (2) The deposition inventory and average activity of 137Cs in the Bailing River estuary region in western Lake Xingkai is higher than in the central area. Deposition in Lake Xingkai is affected by basin input, hydrodynamic conditions and sediment particle size. (3) The average sedimentation rates indicated in cores XKH-1, XKH-2 and XKH-3 are 0.143 cm/a, 0.080 cm/a and 0.036 cm/a, respectively, from 1963 to 2019. Due to the influence of the particular wind/wave conditions and human activities (e.g., release sluices), the regional sedimentation rate in central and eastern Lake Xingkai is lower than in the west. (4) The particle sizes in all cores from Lake Xingkai indicated by the C-M charts are located either to the left of the III region or beneath it, evidence that mostly still water was the historical sedimentary environment of Lake Xingkai. The cumulative probability curve has two segments due to the two modes of saltation and suspension. The C value of core XKH-1 is relatively dispersed because of the influence of human activities in the upper reaches of the Bailing River. The strong hydrodynamic environment near the second release sluice causes a larger C value for core XKH-3 than for cores XKH-1 and XKH-2, on the whole. (5) The vertical variation of grain size distribution and parameters in core XKH-1 reflects vegetation destruction and soil erosion in the Xingkai Lake Basin since 1963. The mean particle size and sorting coefficient of XKH-2 fluctuate frequently with depth, indicating that the hydrodynamic conditions in the lake bottom varied at different times. The grain size of XKH-3 sediment is coarser at 0~5 cm depths, evidence that the shore of Lake Xingkai has silted up continuously in recent decades. This study provides a theoretical basis and scientific reference for further research. The annual gross accumulation of sediment can be calculated and the internal load of pollutants in lake sediments, lake evolution and environmental changes in the lake basin can be studied further.

LIAO DongXia, GUO HaiTing, WU MengMeng, PAN ShaoMing. Sedimentation Rate in Lake Xingkai, Northeastern China, Based on 137Cs Dating[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1718-1727. doi: 10.14027/j.issn.1000-0550.2021.055
Citation: LIAO DongXia, GUO HaiTing, WU MengMeng, PAN ShaoMing. Sedimentation Rate in Lake Xingkai, Northeastern China, Based on 137Cs Dating[J]. Acta Sedimentologica Sinica, 2022, 40(6): 1718-1727. doi: 10.14027/j.issn.1000-0550.2021.055
  • 湖泊沉积物记录了流域人类活动的信息和湖泊生态环境的演变过程,是流域侵蚀和环境污染物质运移的重要宿体[1]。湖泊沉积速率是湖泊沉积学研究的重要内容,是反映湖泊沉积的基本因素,它对了解流域侵蚀、流域物质运移和湖泊沉积环境演化过程等具有重要意义,是当前全球环境变化研究的热点和焦点问题[2]。在众多测定沉积速率的方法中,同位素测年法因计算定量化和精确化等优势而应用广泛,其中137Cs计年法是通过识别沉积物137Cs剖面中因人类核活动事件形成的特殊的137Cs蓄积层位来进行定年的,这种定年法非常独特而有效。1954年和1963年是137Cs计年法的两个通用时标,分别对应于核爆散落137Cs在沉积物中仪器可检测到的起始层位和蓄积最高峰层位[3]。由于137Cs易被黏土和有机颗粒吸附且绝大多数处于稳定态,扩散作用不足以改变蓄积峰的位置,确保了137Cs计年的可靠性[4],137Cs计年法在现代沉积物定年研究中得到广泛应用[5]

    过去全球变化(PAGES)极地—赤道—极地(PEP)计划中根据气候变化特殊响应和区域重要性提出了全球几个湖泊钻探点,兴凯湖是该计划唯一建议的中国东北区域湖泊[6]。前人的工作大多偏向于利用多种环境代用指标来研究古气候环境和古季风变化等长时间尺度问题[7-9],有关兴凯湖近现代沉积速率的相关报道较少,特别是近百年来兴凯湖区域人类活动频繁且气候变化复杂[10-11],而短期的沉积速率能更准确地反映现代沉积动力及水体与沉积物的交换过程[12]。本研究通过采集兴凯湖我国湖区不同区域的沉积物柱样,对样品进行137Cs比活度分析和粒度分析,利用137Cs比活度分析结果建立沉积剖面年代框架,分析兴凯湖不同区域137Cs沉积通量和沉积速率的差异及原因;结合沉积物粒度C-M图,分析兴凯湖现代沉积环境。为估算兴凯湖年沉积通量,了解兴凯湖水体环境演化和合理开发利用湖泊资源提供理论依据和科学参考。

  • 兴凯湖(44°32′~45°21′ N,131°58′~132°51′ E)位于我国东北黑龙江省密山市东缘俄罗斯远东滨海边区,湖面总面积、行政区划范围横跨中俄边界,是东北亚最大的淡水湖,也是我国最大的国际界湖[11]。兴凯湖呈椭圆形,北宽南窄,南北长约90 km,东西宽约50 km。湖面松阿察河口与白棱河口连线为界,界长70.0 km,以南属俄罗斯,以北属我国,湖泊总面积4 380 km2,我国境内面积1 080 km2,总集水面积5.6×104 km2,补给系数为11.6[13]。兴凯湖接纳穆棱河、洛格河、白棱河、新图河、门河、列夫河等近十余条河流的来水,其中列夫河、门河、新图河是兴凯湖的主要水源(图1[13],我国境内兴凯湖地面水的主要来源是穆棱河分洪水。松阿察河是兴凯湖的唯一泄流通道[11]。本文的研究区域为我国境内的兴凯湖水域部分。

    Figure 1.  Catchment map of Lake Xingkai

    大、小兴凯湖湖水由新开流、鲤鱼圈及湖岗泄洪闸等人工河道相互联通,第一泄洪闸修建于1976年,第二泄洪闸修建于1999年[11]。第二泄洪闸是兴凯湖灌区渠首工程,也是穆棱河下游地区主要的防洪治涝工程,兼具调水和泄洪的功能。兴凯湖的泥沙主要来自入湖河流河槽中挟带的悬移质泥沙和推移质泥沙,大穆棱河来水挟带的泥沙是影响兴凯湖湖口淤积的较大沙源[11]。大穆棱河来沙流经穆兴分洪道、东北泡子和小兴凯湖,通过第一、第二泄洪闸进入兴凯湖,最后淤积在湖口位置形成沙洲,直接影响小兴凯湖向大兴凯湖泄流[11]

    兴凯湖地区年平均风速3~4 m/s,4—5月平均风速4.4~4.8 m/s,风是兴凯湖水体运动的主要动力来源,兴凯湖由于水域面积较大,风对于湖泊中水位高程、波浪及湖岸的冲刷有着相当大的影响[14]。兴凯湖风向主要从俄罗斯侧吹向我国侧,主风向为SSW,湖水位空间分布与风向有较好的一致性,即上风向湖水位远低于下风向水位,水位差达5.3 m[14]。受风向影响,波浪的波向大体从俄方指向中方,中方湖岸呈比较规则的弧形,波向与湖岸垂直,这也是中方湖岸更容易遭受冲蚀的重要原因[14]

  • 2019年10月,使用重力活塞柱状采样器在兴凯湖采集3个浅层沉积物柱样(图2),所采柱样沉积物—水界面清晰,未受扰动。其中,XKH-1位于湖西岸距岸3.51 km处,取样点水深5 m,柱样长度18 cm;XKH-2位于兴凯湖东北方向距岸9.88 km,水深8 m处,柱样长度16.5 cm;XKH-3位于第二泄洪闸附近,取样点水深8 m,柱样长度11.5 cm。XKH-1柱样15 cm以上按0.5 cm间隔分样,以下按1.0 cm间隔分样;XKH-2和XKH-3全部按0.5 cm间隔分样。所有样品采集后,现场密封保存带回实验室进行分析处理。

    Figure 2.  Sampling sites in Lake Xingkai

  • 沉积物137Cs活度测定步骤如下:1)将分层样品放置60 ℃烘箱中烘至恒重,将干燥的样品在研钵中研磨成细粉状,过200目筛,称取约50 g放入专用塑料杯中。2)137Cs活度采用γ谱仪直接测量计算,仪器为美国ORTEC公司生产的GMX30P-A高纯Ge同轴探测器。137Cs标准源由加拿大Bedford海洋研究所提供,比活度为582.7 Bq/kg,质量为65.4 g,参考时间为2020年1月1日,测量时间为72 000 s,使用IAEA-327标样进行了对比校正。本测试在南京大学海岸与海岛开发教育部重点实验室完成。

  • 沉积物粒度测试步骤如下:1)取1 g左右样品放入100 mL烧杯中,加入20 mL蒸馏水和适量浓度为10%过氧化氢,不停搅拌使之充分反应,以除去有机质。2)加入10 mL10%的盐酸并搅拌,使碳酸盐与盐酸充分反应,放置24 h以除去钙胶结物。3)加入蒸馏水100 mL,搅拌,静置24 h,待其完全沉淀后倒去清液,再加蒸馏水,搅拌,静置,如此反复多次,直至样品液接近中性。4)加入10 mL浓度为0.05 mol/L的六偏磷酸钾,静置24 h,搅拌均匀后采用英国Mastersize 2000型激光粒度仪进行粒度分析[12]。激光粒度仪的测量范围为0.02~2 000 μm,分辨率为0.01 ϕ(粒径),正负测量的相对误差小于3%。根据粒径数据统计样品中黏土(<4 μm)、粉砂(4~63 μm)和砂(>63 μm)的百分含量,并计算得到沉积物粒度的平均粒径、分选系数等粒度参数[15]。本测试在南京大学海岸与海岛开发教育部重点实验室完成。

  • 三个采样点沉积物柱样中的137Cs比活度垂直分布如图3所示,XKH-1中137Cs比活度总体上大于XKH-2和XKH-3。XKH-1位于白棱河河口附近,沉积物表层5 cm为黄褐色的粉砂质颗粒,下部为灰黑色的黏土,137Cs最大蓄积峰值层位出现在7.5~8.5 cm段,比活度为14.63 Bq/kg,8 cm以下137Cs比活度随深度呈明显下降趋势,8 cm以上137Cs比活度无明显变化,137Cs比活度起始值出现在12.5 cm附近。XKH-2表层黄褐色的粉砂质颗粒厚度较XKH-1薄,为2 cm,下部为灰黑色的黏土,137Cs比活度最大值出现在4~5 cm,为3.58 Bq/kg,5 cm以下137Cs比活度随深度增加而迅速减小,起始层位出现在8 cm附近。XKH-3位于第二泄洪闸附近,距离第二泄洪闸约4.11 km,沉积物分层与XKH-1类似,表层5 cm为黄褐色的粉砂质颗粒,下部同样为灰黑色的黏土,137Cs比活度最大值出现在表层1~2 cm,为6.13 Bq/kg,2 cm深度以下137Cs比活度显著下降,起始层位在6.5 cm附近。

    Figure 3.  Vertical profiles of 137Cs activity of sediment cores from Lake Xingkai

    137Cs在全球范围内的沉降受气压带和风带的影响,在北纬50°以内沉降量随纬度的增加而增加,同纬度圈内大气中137Cs的含量非常接近,其沉降量的差异主要是降水不同引起的[16]。从表1可以看到兴凯湖137Cs剖面蓄积峰值小于东北地区大多数其他湖泊[17-21],其中,除了二龙湾和四海龙湾1958—1968年(137Cs主要沉降期)年均降水量较大之外,镜泊湖和五大连池的年均降水量与兴凯湖相差不大,但1963年蓄积峰值却比兴凯湖高很多。一般来说,在纬度变化不大,气象条件均一的地区,137Cs的空间分布是均匀的[22],但是137Cs到达地表之后会被强烈吸附在黏土矿物及有机质当中,其比活度与黏土含量和有机质含量有关,粒径越小的沉积物对137Cs的吸附能力越强,黏土组分对137Cs的吸附能力明显强于其他组分[23]。Xu et al.[24]分析了两个区域10个不同的土壤样品,结果表明所有样品中137Cs主要集中吸附在粒径小于2 μm的颗粒上,粒径越细,对137Cs的吸附能力越强,因此细颗粒物质含量较高的沉积物中137Cs浓度较高。东北地区湖泊例如镜泊湖、五大连池、二龙湾和四海龙湾沉积物都以黏土和细粉砂等细颗粒物质为主[17-21],镜泊湖的黏土和细粉砂含量大于85%,五大连池的黏土和细粉砂含量占60%~80%。而从兴凯湖的粒度分析结果可以看到(表2),三根沉积物柱样以粗粉砂和中粉砂为主,黏土和细粉砂含量都小于26%,且三根柱样137Cs蓄积峰值处的黏土和细粉砂含量仅为18.5%、24.4%和14.7%,因此推测沉积物粒径大小是影响兴凯湖沉积物中137Cs剖面蓄积峰值小于东北地区大多数湖泊的重要因素。

    湖泊纬度/(°)经度/(°)137Cs1963年蓄积峰比活度(a)/Bq∙kg-1137Cs1963年蓄积峰深度/cm沉积速率/cm∙a-11958—1968年均降水量(b)/mm参考文献
    兴凯湖45.25132.0614.638.00.143588.7本研究
    45.24132.523.584.50.080
    45.23132.686.132.00.036
    镜泊湖43.77128.3791.05230.47570.1[17]
    五大连池48.67126.1057.76270.55579.2[18]
    二龙湾42.30126.37121.235.50.15781.9[19]
    四海龙湾42.28126.60155.565.50.11781.9[20]
    月亮湖45.65123.7011.30320.90406.2[21]
    注:(a)137Cs比活度统一衰变校正到2020年1月1日;(b)降水数据来源:中国气象数据网http://data.cma.cn/
    柱样编号砂(>63 μm)/%粗粉砂(32~63 μm)/%中粉砂(16~32 μm)/%细粉砂(4~16 μm)/%黏土(<4 μm)/%平均粒径/ϕ分选系数
    XKH-10.040.338.415.26.114.81.21
    XKH-20.136.837.418.47.314.01.27
    XKH-30.455.125.514.14.919.11.31

    XKH-1中137Cs比活度在0~8 cm范围内无明显变化(图3)。据日本东京核沉降监测资料[25],137Cs年沉降量最大为2 000 Bq/m2,出现在1963年;1970年之后的年沉降量大都低于100 Bq/m2,仅占1963年的5%;1986年前苏联切尔诺贝利核事故产生的年沉降量约为200 Bq/m2,也仅占1963年峰值的1/10。XKH-1沉积物137Cs剖面分布不同于典型的137Cs全球大气沉降模式[26]。这可能是由于兴凯湖湖区有潮汐现象,风浪较大,XKH-1柱样又位于白棱河河口附近,该区域水动力环境复杂,很大程度上导致沉积物的混合扰动作用增强。此外,兴凯湖湖床有坡度很缓的斜坡,形成大片的湖岸浅滩区,地势相对平坦,沉积速率缓慢,导致湖泊沉积物中混合扰动大于沉积过程,经过复杂的混合、扩散、沉积以及可能存在的生物过程,使得137Cs相对均匀地分布在上层沉积物中。另一方面,兴凯湖集水面积约为湖泊面积的13倍,流域接收到的大气137Cs沉降量远大于湖面接收到的137Cs沉降量,XKH-1位于白棱河河口附近,流域137Cs后期输入对沉积物的137Cs剖面形态有一定的影响。下文将对柱样中137Cs沉积通量进行讨论,XHK-1的137Cs沉积通量可以进一步证实流域输入的137Cs对沉积剖面的贡献。

  • 位于白棱河河口处的XKH-1中137Cs沉积通量为1 604.28 Bq/m2,XKH-2中137Cs沉积通量为231.12 Bq/m2,XKH-3中137Cs沉积通量为288.73 Bq/m2表3),XKH-1的137Cs沉积通量约为XKH-2的6.9倍、XKH-3的5.6倍,XKH-1的137Cs平均活度大于XKH-2和XKH-3。

    柱样编号采样点水深/m距岸/km距第二泄洪闸/km137Cs沉积通量(a)/Bq∙m-2沉积速率(b)/cm∙a-11963—2019137Cs平均活度(c)/Bq∙g-1干密度(d)/g∙cm-2
    XKH-153.5151.661604.280.1430.012 11.028
    XKH-289.8815.93231.120.0800.001 91.190
    XKH-384.044.11288.730.0360.004 51.238
    注:(a)137Cs沉积通量为每一层节137Cs比活度与沉积物质量积的累加,即Inventory=∑(Masssection×Activitysection)/S面积.;(b)1963—2019年平均沉积速率=137Cs最高峰对应深度/(2019—1963);(c)137Cs平均活度为137Cs最高峰到沉积物最表层137Cs活度的质量加权平均;(d)干密度为整根沉积物柱样的平均干密度。

    Fang et al.[27]根据标准土壤剖面估算出东北黑土地区(44.72° N,125.87° E)137Cs的背景值为1 619.16 Bq/m2(衰变校正至2020年1月1日)。从前文分析可知,由于兴凯湖沉积物中细粉砂和黏土的含量远低于东北其他湖泊,受粒径效应的影响,沉积物中137Cs浓度应更低,沉积物中137Cs沉积通量理应小于区域背景值,但XKH-1柱样中137Cs沉积通量与黑土137Cs背景值相当,结合气候背景资料和采样位置信息,推测流域输入对XKH-1的137Cs沉积通量具有较大的贡献。

    XKH-2和XKH-3的137Cs沉积通量远低于XKH-1。通过分析相关流域背景资料和前人研究成果,推测有以下几方面的原因:1)陆源物质的输入。兴凯湖流域处于温带湿润、半湿润季风型大陆性气候区,南面受日本海暖流影响,北部受高纬度西伯利亚寒流侵袭,季风期长,风力大[13]。张威等[28]建立了中国大陆137Cs背景值(CRI)修正模型,模拟结果显示中国大陆CRI在东北及新疆局部地区达到最大值,估算出东北地区CRI变化范围为1 484~3 652 Bq/m2(衰变校正至2020年1月1日)。而兴凯湖集水面积约为湖泊面积的13倍,流域接收到的大气137Cs沉降量远大于湖面接收到的137Cs沉降量。白棱河小流域位于八五一〇农场东部,属中温带大陆性季风气候,流域地面坡度大,耕地以白浆土为主,透水能力差,容易形成地表径流,且该地区大雨、暴雨集中,极易造成水蚀,加上新中国成立以来该地区无计划地采伐和毁林开荒,导致该地区水土流失严重[29]。因此,位于白棱河河口的XKH-1接收到的陆源物质较多,使得其137Cs沉积通量和平均活度大于XKH-2和XKH-3。2)水动力条件。湖区风速大,年平均风速为3~4 m/s,风是兴凯湖水体运动的主要动力来源,在风的持久作用下,水体形成水平环流和垂向环流,根据孙万光等[14]关于兴凯湖近底轨迹流速(在湖底,水质点沿湖底以一定速度作水平运动,即为轨迹流速,该速度的大小有助于了解波浪扰动底泥,使得底泥再悬浮的特性)的计算结果可知,处于下风向位置的XKH-2和XKH-3近底轨迹流速大于XKH-1,三者大小关系为XKH-2(0.8~0.9 m/s)>XKH-3(0.7~0.8 m/s)>XKH-1(0.5~0.6 m/s)。再因该地区1992年开始以旱改水为中心的大规模水利建设,将兴凯湖和穆棱河作为灌溉水源,以第一、第二泄洪闸为进出水口[30],使得第一、第二泄洪闸附近的区域受到泄洪和调水的影响。此外,从粒度分析可知,XKH-2和XKH-3沉积物分选系数随深度波动变化较大,平均值为1.27和1.31,说明沉积物分选性差,沉积环境复杂,XKH-2和XKH-3所在区域的沉积动力环境比较不利于沉积物的堆积。3)沉积物粒径。137Cs极易吸附在黏土、细粉砂等细颗粒物质上面[23]。从表2可以看到,三个柱样的黏土和细粉砂平均含量大小关系为XKH-2>XKH-1>XKH-3,由于离岸较远,XKH-2细颗粒物质含量较另外两根柱样稍高,不过相差不大。但XKH-3的粗粉砂含量占43.7%~68.5%,平均值为55.1%,大于XKH-1(40.3%)和XKH-2(36.8%),XKH-3孔中砂的含量亦是三者中最大的,因此粗颗粒物质含量较多的XKH-3沉积物137Cs沉积通量小于XKH-1,但又由于XKH-3离岸距离比XKH-2近,且近底轨迹流速较XKH-2小,故137Cs沉积通量比XKH-2稍大。因此,兴凯湖沉积物柱样中的137Cs沉积通量受陆源输入、水动力条件以及沉积物粒度等因素综合影响。

  • 吴健等[8]对兴凯湖的研究显示,兴凯湖浅层沉积物沉积过程比较稳定,137Cs和210Pb的计年结果基本一致。从各个沉积柱样剖面137Cs比活度分布图(图3)可以看到,XKH-1孔的137Cs剖面在8 cm深度附近出现了一个较为明显的蓄积峰,对应1963年,由此估算出1963—2019年的平均沉积速率为0.143 cm/a。离岸较远的XKH-2孔,在深度4.5 cm附近存在一个峰值,137Cs的比活度为3.58 Bq/kg,根据137Cs时标,判断4.5 cm处的峰值对应1963年,据此得出沉积物0~4.5 cm深度段的平均沉积速率为0.080 cm/a。XKH-3的137Cs峰值出现在表层2 cm处,将该137Cs蓄积峰年代定为1963年,由此估算出XKH-3孔1963—2019年的平均沉积速率为0.036 cm/a。

    三个沉积物柱样中,XKH-1柱样1963—2019年平均沉积速率最大,主要与其位于白棱河河口附近有关。新中国成立以来白棱河流域无计划地采伐和毁林开荒[29],导致该地区水土流失严重,泥沙入湖量大,因此河口区域的沉积速率高。位于研究区中、东部的XKH-2和XKH-3柱样1963—2019年平均沉积速率较XKH-1低得多,主要受人类活动和水动力条件的影响。XKH-3柱样所处位置距离第二泄洪闸很近,常年受第二泄洪闸泄洪和调水的影响,水流的冲刷和侵蚀作用使得该区域沉积环境不利于沉积物的堆积。此外,从粒度分析结果(表2)亦可看到,XKH-3黏土含量相对较低,平均粒径较大,沉积物以粗粉砂为主,分选性差,表明此处水动力条件强,不利于沉积物的堆积,故XKH-3所在区域1963—2019年的平均沉积速率较低。XKH-2虽离第二泄洪闸较远,但也受第一、第二泄洪闸等水利工程建设的间接影响。穆兴分洪道、第一泄洪闸和第二泄洪闸等水利工程的建设,使得穆棱河河水挟带的泥沙有了进入兴凯湖的途径。据资料记载[31],1960年以前兴凯湖流域及穆棱河流域植被覆盖率较高,水土保持状况良好,穆棱河来水分流后进入兴凯湖的挟沙量较小,湖口形态基本上为未淤积前的自然状态,入湖流水挟带的泥沙能顺利向深水区运移。然而近几十年来由于人类的砍伐和毁林开荒,穆棱河流域植被大量破坏,水土保持状况大幅度恶化,穆棱河分洪后入兴凯湖的大量泥沙在第一泄洪闸—第二泄洪闸—湖口沿岸淤积,影响小兴凯湖向大兴凯湖泄流,导致入湖水流挟带的泥沙难以向湖心方向移动。此外,兴凯湖湖面有潮汐现象,风力大,沉积动力环境复杂,湖流可能是把泥沙推向岸边沙滩或阻止泥沙由岸边向深水区移动的主要因素[31]。从XKH-2粒度分析结果(图4)可以看出,1960年以后沉积物黏土含量增加,平均粒径减小,结合上述湖岸泥沙淤积的情况,可以推测粗颗粒物质大都沉积在湖岸,只有少数黏土等细颗粒物质被搬运到深水区。综合以上分析可知,在人为因素和自然因素的双重影响下,研究区西岸白棱河河口区域1963—2019年平均沉积速率高于中、东部区域1963—2019年平均沉积速率。

    Figure 4.  Grain size parameters of core XKH⁃2 compared with annual precipitation at Hulin station (1957-2019)

  • 由于不同沉积环境的沉积物具有明确的界线,综合分析粒度参数的散点图可以判别湖泊过去的沉积环境,C-M图是最为常用的粒度散点图[32],沉积物在C-M图中的位置取决于搬运方式,可以为沉积环境的解释提供参考。现代沉积环境C-M图基本图形如图5所示,其中C值是累积曲线上1%处对应的粒度(最粗颗粒粒径),代表搬运的最大动能;M值是50%处对应的粒度(中值粒径),代表搬运动力的平均动能。

    Figure 5.  Basic C⁃M diagram for sediment

    兴凯湖XKH-1、XKH-2和XKH-3各个柱样的C-M图显示,除了一些异常点以外,兴凯湖各个柱样的C-M散点图多分布于Ⅲ区的下方(图6),表明兴凯湖现代沉积环境多为静水沉积。相对于XKH-2柱样,XKH-1和XKH-3柱样C-M图中的C值整体上分布较为分散,原因如下:XKH-1位于白棱河河口附近,白棱河流域面积为217 km2[31],上游人类活动频繁,流域的泥沙输入会给兴凯湖的沉积带来一定的影响,导致XKH-1沉积过程中的C-M图分布较为分散;而XKH-3位于第二泄洪闸附近,该泄洪闸泄洪流量为650 cm3/s,设有10台高扬程抽水泵和10台低扬程抽水泵,用于农业灌溉[33],受泄洪和调水的影响,该区域沉积环境水动力较XKH-1和XKH-2所在区域强,导致其C-M图中的C值较为分散,且整体上大于XKH-1和XKH-2。

    Figure 6.  C⁃M diagram of cores in Lake Xingkai

    概率累积曲线可以反映沉积物的搬运方式,兴凯湖3根沉积物柱样的概率累积曲线均为两段式(图7),反映跃移和悬移2种方式,指示相对平静的低能沉积环境,这与C-M图解的结果一致。此外,从直线段的斜率可以看出,跃移组分的分选程度明显高于悬移组分。

    Figure 7.  Accumulation probability curves of typical samples from cores

    根据不同深度平均粒径和分选系数等粒度参数指标变化,可将XKH-1剖面大致分为两段:1)8~18 cm深度段,砂、粉砂和黏土含量较为稳定,平均粒径变化也不明显,分选系数较小,反映该时段人类活动影响较弱,湖泊沉积环境较为稳定;2)0~8 cm深度段,粗粉砂含量高,平均粒径波动大,分选系数大,反映了该时段较复杂的沉积环境。沉积物的物源往往是造成湖泊沉积物中粗颗粒含量存在差异的主要因素,XKH-1离白棱河河口较近,1960年以前兴凯湖流域植被覆盖率较高,水土保持状况良好,河口形态基本上为未淤积前的自然状态,因此8~18 cm深度段各组分含量和各粒度参数较稳定。而近些年来,兴凯湖流域植被大量破坏、水土保持状况大幅度恶化[34],由此推测,1963年之后(深度0~8 cm)河流携带进入湖的泥沙增多,粒径偏粗,且分选性较差。

    XKH-2柱样的平均粒径和分选系数随深度波动频繁,分选系数偏大,分选性总体较差,表明该区域湖底水动力条件在不同的时间段强弱变化频繁。据虎林县志记载[35],1949—1992年,穆棱河地区发生11次洪涝灾害,其中大洪水有3次,分别发生在1964年、1971年和1991年。根据1963—2019年沉积速率0.080 cm/a推算出深度2.26 cm、3.86 cm和4.42 cm处对应年份分别为1991年、1971年和1964年。洪水期间入湖径流侵蚀和搬运能力较强,粗颗粒物质较容易被搬运至湖泊,导致沉积物粒径增大,在组分上通常表现为砂、粉砂等粗颗粒物质含量增多,黏土占比减小[36]。穆棱河来水流经穆兴分洪道、东北泡子和小兴凯湖,携带的泥沙一部分经过沉积,另一部分通过第一、第二泄洪闸进入兴凯湖。从粒度分析(图4)可以看出,XKH-2记录的粉砂和平均粒径的峰值与虎林站记录的年均降水量峰值有较好的对应关系:深度2.26 cm附近粉砂含量增加,黏土含量减少,沉积物分选性较差,表明当时沉积环境水动力较强的沉积环境,指示了1991年的洪水事件;深度3.86 cm处平均粒径较大,分选系数大,分选性差,表明当时水动力条件较强,指示了1971年的洪水事件;深度4.42 cm附近沉积物粉砂含量大,黏土含量少,平均粒径增大,沉积物粒径变粗,表明当时沉积环境动力增强,指示了1964年穆棱河地区发生的大洪水。

    XKH-3柱样0~5 cm深度段的沉积物平均粒径随深度呈逐渐变粗的趋势,说明该点位这一时段水深逐渐变浅。近年来人类活动的影响使得兴凯湖地区水土流失现象十分严重且呈加剧趋势,并使得小兴凯湖和靠近第一、第二泄洪闸附近的大兴凯湖沿岸、松阿察河龙王庙湖口处泥沙淤积高度逐年增加,结果导致松阿察河湖口处泄洪能力大大降低,使大兴凯湖水位逐年上升[11]。随着兴凯湖近岸不断淤积,按水深越来越浅推测,XKH-3处沉积物的粒度变化趋势应该是越来越粗,这与XKH-3柱样表层到深度5 cm的平均粒径变化相吻合。

  • (1) 兴凯湖我国水域沉积物中137Cs平均活度空间分布与137Cs通量空间分布正相关联。XKH-1、XKH-2和XKH-3柱样137Cs沉积通量分别为1 604.28 Bq/m2、231.12 Bq/m2和288.73 Bq/m2,西岸137Cs通量高,中部和东部区域137Cs通量低,兴凯湖137Cs沉积通量的空间分布受流域输入、水动力条件和沉积物粒径的影响。

    (2) XKH-1、XKH-2和XKH-3柱样1963—2019年的平均沉积速率分别为0.143 cm/a、0.080 cm/a和0.036 cm/a。受特殊的风浪条件和泄洪闸等人类活动的影响,兴凯湖我国水域1963—2019年平均沉积速率空间分布上呈现西部高,中、东部低的特点。

    (3) 兴凯湖现代沉积环境多表现为静水沉积,不同区域间的沉积动力条件差异与人类活动密切的相关,泄洪闸等水利工程的建设对兴凯湖沉积环境有较大影响。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return