Advanced Search
Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents

WANG XinYao, JIN ZhenKui, ZHU YiXiu, HU ZongQuan, LIU GuangXiang, ZHAO GuoWei, LI Shuo, SHI ShuTing. The Genesis of Quartz in Ziliujing Nonmarine Shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1010-1018. doi: 10.14027/j.issn.1000-0550.2021.053
Citation: WANG XinYao, JIN ZhenKui, ZHU YiXiu, HU ZongQuan, LIU GuangXiang, ZHAO GuoWei, LI Shuo, SHI ShuTing. The Genesis of Quartz in Ziliujing Nonmarine Shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1010-1018. doi: 10.14027/j.issn.1000-0550.2021.053

The Genesis of Quartz in Ziliujing Nonmarine Shale, Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.053
Funds:

National Science and Technology Major Project 2017ZX05036004-002

  • Received Date: 2020-04-07
  • Rev Recd Date: 2021-03-28
  • Publish Date: 2022-08-10
  • Gas shale from the Ziliujing Formation in the Sichuan Basin was studied to investigate the genesis of quartz in continental shale and its distribution and influencing factors. Terrigenous quartz and quartz formed during diagenesis were identified using X-ray diffraction (XRD) analysis, observation of thin sections, scanning electron microscope cathodoluminescence (SEM-CL) and electron microprobe, combined with geochemical element test methods. Terrigenous quartz has a brown cathodoluminescence and large particle size, whereas quartz formed during diagenesis shows no cathodoluminescence, has a better shape and smaller size. Quartz formed during diagenesis is either formed at the edge of siliceous shells or during the transformation of clay minerals. Depending on its diagenesis, the quartz is formed at the edge of the silica-metasomatic shell or is formed during illitization. Analysis of the different forms found that the quartz in the Dongyuemiao member was mostly formed during illitization and from terrigenous input. In the Ma’anshan member it is mainly terrigenous; and in the Da’anzhai member the genesis is siliceous metasomatism and terrigenous input. Based on this, the influence of the different forms of quartz in nonmarine shale is summarized, taking depositional environment and formation pressure into account. In terms of depositional environment, the proportion of terrigenous quartz increases with increase in terrigenous input. At the same time, suitable salinity of the lake water is conducive to the survival of shells of organisms, which provides the material for the formation of silica in silica-metasomatic shells. In addition, abnormally high pressure inhibits illitization, and a decrease of silica precipitation hinders authigenic quartz precipitation.
  • [1] Bowker K A. Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
    [2] Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
    [3] Bowker K A. Recent developments of the Barnett Shale play, Fort Worth Basin[J]. West Texas Geological Society Bulletin, 2003, 42(6): 4-11.
    [4] Papazis P K. Petrographic characterization of the barnett shale, Fort Worth Basin, Texas[D]. Texas: University of Texas, 2005.
    [5] Boles J R, Franks S G. Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Research, 1979, 49(1): 55-70.
    [6] 何发岐,朱彤. 陆相页岩气突破和建产的有利目标:以四川盆地下侏罗统为例[J]. 石油实验地质,2012,34(3):246-251.

    He Faqi, Zhu Tong. Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 246-251.
    [7] 李英强,何登发. 四川盆地及邻区早侏罗世构造—沉积环境与原型盆地演化[J]. 石油学报,2014,35(2):219-232.

    Li Yingqiang, He Dengfa. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232.
    [8] 邹才能,杨智,王红岩,等. “进源找油”:论四川盆地非常规陆相大型页岩油气田[J]. 地质学报,2019,93(7):1551-1562.

    Zou Caineng, Yang Zhi, Wang Hongyan, et al. "Exploring petroleum inside source kitchen": Jurassic unconventional continental giant shale oil & gas field in Sichuan Basin, China[J]. Acta Geologica Sinica, 2019, 93(7): 1551-1562.
    [9] 朱彤,包书景,王烽. 四川盆地陆相页岩气形成条件及勘探开发前景[J]. 天然气工业,2012,32(9):16-21.

    Zhu Tong, Bao Shujing, Wang Feng. Pooling conditions of non-marine shale gas in the Sichuan Basin and its exploration and development prospect[J]. Natural Gas Industry, 2012, 32(9): 16-21.
    [10] 张本琪,余宏忠,姜在兴,等. 应用阴极发光技术研究母岩性质及成岩环境[J]. 石油勘探与开发,2003,30(3):117-120.

    Zhang Benqi, Yu Hongzhong, Jiang Zaixing, et al. Characteristics and diagenetic environments of source rocks by cathodoluminescence[J]. Petroleum Exploration and Development, 2003, 30(3): 117-120.
    [11] 程峰,于少勇,邢德敬,等. 阴极发光技术在储层研究中的应用[J]. 断块油气田,1998,5(6):17-19.

    Cheng Feng, Yu Shaoyong, Xing Dejing, et al. The application of cathodoluminescence technology in studying oil and gas reservoirs[J]. Fault-Block Oil & Gas Field, 1998, 5(6): 17-19.
    [12] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 117-140.
    [13] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
    [14] Thyberg B, Jahren J, Winje T, et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea: Changes in rock properties due to dissolution of smectite and precipitation of micro-quartz crystals[J]. Marine and Petroleum Geology, 2010, 27(8): 1752-1764.
    [15] Metwally Y M, Chesnokov E M. Clay mineral transformation as a major source for authigenic quartz in thermo-mature gas shale[J]. Applied Clay Science, 2012, 55: 138-150.
    [16] 罗文军,徐伟,朱正平,等. 四川盆地高石梯地区震旦系灯影组四段硅质岩成因及地质意义[J]. 天然气勘探与开发,2019,42(3):1-9.

    Luo Wenjun, Xu Wei, Zhu Zhengping, et al. Origin of siliceous rocks in Sinian Dengying 4 member, Gaoshiti area, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(3): 1-9.
    [17] 杨水源,姚静. 安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J]. 高校地质学报,2008,14(1):39-48.

    Yang Shuiyuan, Yao Jing. Geochemistry and origin of siliceous rocks from the Gufeng Formation of Middle Permian in the Pingdingshan area, Chaohu region, Anhui province[J]. Geological Journal of China Universities, 2008, 14(1): 39-48.
    [18] 罗龙,孟万斌,冯明石,等. 致密砂岩中硅质胶结物的硅质来源及其对储层的影响:以川西坳陷新场构造带须家河组二段为例[J]. 天然气地球科学,2015,26(3):435-443.

    Luo Long, Meng Wanbin, Feng Mingshi, et al. Selica sources of quartz cements and its effects on the reservoir in tight sandstones: A case study on the 2th member of the Xujiahe Formation in Xinchang structural belt, western Sichuan Depression[J]. Natural Gas Geoscience, 2015, 26(3): 435-443.
    [19] 彭军,夏文杰,伊海生. 湘西晚前寒武纪层状硅质岩的热水沉积地球化学标志及其环境意义[J]. 岩相古地理,1999,19(2):29-37.

    Peng Jun, Xia Wenjie, Yi Haisheng. Geochemical characteristics and depositional environments of the Late Precambrian bedded siliceous rocks in western Hunan[J]. Sedimentary Facies and Palaeogeography, 1999, 19(2): 29-37.
    [20] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
    [21] Veizer J, Demovic R. Strontium as a tool in facies analysis[J]. Journal of Sedimentary Research, 1974, 44(1): 93-115.
    [22] Jarvis I, Murphy A M, Gale A S. Geochemistry of pelagic and hemipelagic carbonates: Criteria for identifying systems tracts and sea-level change[J]. Journal of the Geological Society, 2001, 158(4): 685-696.
    [23] 田洋,赵小明,王令占,等. 重庆石柱二叠纪栖霞组地球化学特征及其环境意义[J]. 沉积学报,2014,32(6):1035-1045.

    Tian Yang, Zhao Xiaoming, Wang Lingzhan, et al. Geochemical characteristics and its paleoenvironmental implication of Permian Qixia Formation in Shizhu, Chongqing[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1035-1045.
    [24] Magara K. Compaction and fluid migration: Practical petroleum geology[M]. Amsterdam: Elsevier Scientific Pub. Co., 1978.
    [25] Luo X R, Wang Z M, Zhang L Q, et al. Overpressure generation and evolution in a compressional tectonic setting, the southern margin of Junggar Basin, northwestern China[J]. AAPG Bulletin, 2007, 91(8): 1123-1139.
    [26] 陈绥祖,曾恕蓉. 封存箱与上三叠统天然气成藏模式[J]. 天然气工业,1994,14(5):24-28,95.

    Chen Suizu, Zeng Shurong. Mothballed box and gas pool-formed mode of Upper Triassic series[J]. Natural Gas Industry, 1994, 14(5): 24-28, 95.
    [27] 张健,刘树根,冉波,等. 异常高压与页岩气保存[J]. 成都理工大学学报(自然科学版),2016,43(2):177-187.

    Zhang Jian, Liu Shugen, Ran Bo, et al. Abnormal overpressure and shale gas preservation[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(2): 177-187.
    [28] van Groos A F K, Guggenheim S. High-pressure differential thermal analysis (HP-DTA) of the dehydroxylation of Na-rich montmorillonite and K-exchanged montmorillonite[J]. American Mineralogist, 1987, 72(11/12): 1170-1175.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article Metrics

Article views(407) PDF downloads(135) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-04-07
  • Revised:  2021-03-28
  • Published:  2022-08-10

The Genesis of Quartz in Ziliujing Nonmarine Shale, Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2021.053
Funds:

National Science and Technology Major Project 2017ZX05036004-002

Abstract: Gas shale from the Ziliujing Formation in the Sichuan Basin was studied to investigate the genesis of quartz in continental shale and its distribution and influencing factors. Terrigenous quartz and quartz formed during diagenesis were identified using X-ray diffraction (XRD) analysis, observation of thin sections, scanning electron microscope cathodoluminescence (SEM-CL) and electron microprobe, combined with geochemical element test methods. Terrigenous quartz has a brown cathodoluminescence and large particle size, whereas quartz formed during diagenesis shows no cathodoluminescence, has a better shape and smaller size. Quartz formed during diagenesis is either formed at the edge of siliceous shells or during the transformation of clay minerals. Depending on its diagenesis, the quartz is formed at the edge of the silica-metasomatic shell or is formed during illitization. Analysis of the different forms found that the quartz in the Dongyuemiao member was mostly formed during illitization and from terrigenous input. In the Ma’anshan member it is mainly terrigenous; and in the Da’anzhai member the genesis is siliceous metasomatism and terrigenous input. Based on this, the influence of the different forms of quartz in nonmarine shale is summarized, taking depositional environment and formation pressure into account. In terms of depositional environment, the proportion of terrigenous quartz increases with increase in terrigenous input. At the same time, suitable salinity of the lake water is conducive to the survival of shells of organisms, which provides the material for the formation of silica in silica-metasomatic shells. In addition, abnormally high pressure inhibits illitization, and a decrease of silica precipitation hinders authigenic quartz precipitation.

WANG XinYao, JIN ZhenKui, ZHU YiXiu, HU ZongQuan, LIU GuangXiang, ZHAO GuoWei, LI Shuo, SHI ShuTing. The Genesis of Quartz in Ziliujing Nonmarine Shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1010-1018. doi: 10.14027/j.issn.1000-0550.2021.053
Citation: WANG XinYao, JIN ZhenKui, ZHU YiXiu, HU ZongQuan, LIU GuangXiang, ZHAO GuoWei, LI Shuo, SHI ShuTing. The Genesis of Quartz in Ziliujing Nonmarine Shale, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2022, 40(4): 1010-1018. doi: 10.14027/j.issn.1000-0550.2021.053
  • 非常规油气革命的风潮让页岩气成为近年来油气地质研究的热点,吸引了全世界学者的关注。伴随着北美和中国四川盆地海相页岩气的成功勘探与开发,学者们对页岩岩石学的研究与认知越来越深入。理清储层成岩矿物的演化过程,对页岩有利储层的研究和分布预测有着至关重要的作用。页岩油气储层具有低孔低渗的特点,储层岩石中的石英作为页岩中含量最高的脆性矿物,经过人工压裂可以产生大量裂缝,提高油气的开采效率[1-2]。本文旨在研究陆相页岩中石英的类型和成因,为页岩油气储层的勘探提供理论指导。

    近年来,学者们通过研究美国Barnett、Woodford、Marcellus页岩和中国含油气盆地的页岩发现,其中的石英不仅来源于陆源物质输入,还来源于硅质生物、火山沉积作用和热水沉积等作用[3-5]。陆相盆地受构造变化影响大,沉积环境复杂,岩石类型变化快,页岩分布范围较海相小,生物类型不同,导致了陆相地层的石英成因与海相存在差异,且现阶段针对陆相页岩石英成因的研究较少[6-8]。通过老井复查发现,四川盆地下侏罗统陆相页岩具有较好的天然气显示,说明其具有勘探潜力[9]。因此,本文以四川盆地下侏罗统陆相页岩为研究对象,结合前人研究成果,利用X射线衍射分析、普通薄片、扫描电镜、阴极发光、电子探针及元素地球化学分析测试手段,分析陆相页岩中石英的类型和成因,探讨石英的分布规律和影响因素。

  • 四川盆地位于扬子地台西部,以西部龙门山,北部米仓山和大巴山,东部七曜山,南部娄山为界[6-7,9]。盆地面积为19×104 km2,是一个在上扬子克拉通基础上发展起来的叠合盆地。由4个一级构造单元组成:川西坳陷、川中隆起、川东高陡和川南低陡构造区(图1)。盆地内沉积物多数来源于北部米仓山构造带。四川陆相盆地形成于晚三叠世。受晚印支运动影响,伴随着南秦岭造山带与扬子板块碰撞闭合,古特提斯洋关闭,四川盆地晚三叠世须家河组发育不整合界面,沉积环境以冲积扇、河流、三角洲和湖泊沉积为主[7,9]。早侏罗世自流井组,龙门山逆冲推覆作用减弱,米仓山—大巴山逆冲推覆活跃,使得盆地沉积中心由龙门山前缘向米仓山—大巴山过渡,此时以滨湖—浅湖沉积环境为主。中上侏罗统,湖平面逐渐变浅,主要发育河流—三角洲沉积环境。因此,陆相页岩主要分布在下侏罗统自流井组,全盆地分布,厚度为50~330 m。岩性以页岩、介壳页岩、粉砂岩、细砂岩、灰岩为主[7,9]

    Figure 1.  Tectonic map and lithology of the Sichuan Basin

    四川盆地下侏罗统自流井组从老到新发育4个层段,包括珍珠冲段、东岳庙段、马鞍山段和大安寨段[6-7,9]。其中,珍珠冲段为三角洲沉积环境,岩性以细砂岩为主。东岳庙段、马鞍山段和大安寨段主要为滨湖、浅湖、半深湖沉积环境,岩性以页岩、介壳页岩、粉砂岩和灰岩为主。浅湖环境沉积的页岩和灰岩中瓣鳃类生物发育,在岩心和显微镜下可以明显地观察到大量生物介壳[7,9]。因此,页岩主要出现在东岳庙段、马鞍山段和大安寨段。研究区位于四川盆地北部元坝地区,北临米仓山—大巴山推覆构造带,西临龙门山推覆构造带,地层旋回特征完整。

  • 研究区自流井组东岳庙段、马鞍山段和大安寨段页岩的X衍射分析结果表明,页岩由石英、黏土矿物、碳酸盐矿物及少量的长石和黄铁矿组成(图2)。其中,石英含量为15.3%~77.3%,平均值为46.2%。东岳庙段石英含量30.1%~77.3%,平均值53.9%;马鞍山段石英含量30.4%~50.2%,平均值为39.4%;大安寨段石英含量15.3%~66.2%,平均值为37.1%。

    Figure 2.  Mineralogical triangle diagram of Ziliujing Formation shales

    根据自流井组矿物组成和沉积构造,识别出6种岩石类型:黏土质页岩、粉砂质页岩、泥质粉砂岩、细砂岩、介屑灰岩和介壳页岩。利用阴极发光特征,可以有效地区分陆源石英和成岩过程中形成的自生石英[10-11]。其中,陆源碎屑石英在阴极发光图像上表现为棕色光[10-11]图3)。自生石英阴极发光强度弱,在阴极发光下表现为不发光。通过普通薄片、扫描电镜和阴极发光观察发现,自流井组陆相页岩中的石英不仅来源于陆源碎屑,还存在自生成因(图4)。

    Figure 3.  Terrigenous quartz in the Ma’anshan member

    Figure 4.  Authigenic quartz sourced from smectite⁃to⁃illite reaction

  • 泥页岩中的陆源碎屑大多数是由于母岩的风化产生,少数来源于火山物质,生物遗体及宇宙物质。石英作为陆源碎屑中含量最高的一种矿物成分,抗风化能力强,受河流、冰川或者风的作用,被搬运到盆地中沉积。研究区自流井组陆源搬运的石英含量多,颗粒直径较大,介于30~120 μm,呈次圆状—次棱角状,部分呈棱角状,阴极发光下为棕黄色。

  • 根据前人的研究,常见的自生石英成因包括:1)生物成因;2)黏土转化成因;3)长石溶解成因;4)火山成因;5)热水沉积成因[5,12-15]。安徽巢湖平顶山中二叠统硅质岩为生物和火山成因[16-18];川西坳陷新场构造带须家河组二段致密砂岩中的石英为黏土转化和长石溶解成因[18];四川五峰组—龙马溪组页岩中的石英为生物和黏土转化成因[13];湘黔桂前寒武系层状硅质岩为生物沉积和热水沉积的成因[19];美国东部泥盆系页岩中的石英多为生物成因[20]

    其中,生物成因的石英主要源于硅质浮游生物(放射虫及其碎屑、海绵骨针及其碎屑)的躯壳;火山成因的石英硅质岩,常夹有岩浆岩或火山碎屑岩;热水沉积成因石英在形成过程中,伴有大规模的热水沉积作用。然而,在自流井组岩心和野外露头样品中均未观察到硅质浮游生物和火山物质,且地层沉积过程,未发生大规模热水活动和火山喷发。因此,排除了自流井组石英的生物成因、火山和热水成因。

    我们利用普通薄片、扫描电镜、阴极发光观察自流井组页岩中石英形貌,石英与其他矿物的接触关系,识别出两种主要的自生石英成因,包括黏土矿物经转化作用形成的石英以及硅质交代生物介壳边缘形成的石英。

  • 学者们研究发现,页岩中黏土矿物的转化(尤其是伊利石化)可伴生的二氧化硅沉淀[13-14]。当温度大于70 ℃时,蒙脱石矿物向伊利石转化(蒙脱石+Al3++K+=伊利石+Si4++nH2O),蒙脱石溶解使孔隙水中硅的浓度超过石英的饱和度,从而在黏土矿物周围形成微米级的石英晶体。同时,钾长石的溶解可为黏土矿物转化提供所需的K+,促进黏土转化。Metwally et al.[15]通过研究皮埃尔页岩,认为黏土矿物的转化过程中形成的自生石英,呈微米级板片状或小晶片状的形态嵌在黏土矿物中。利用扫描电镜观察自流井组页岩发现,黏土矿物中存在呈短链状、斑板片状的石英,颗粒直径较小,大小介于2~10 μm,自形形态较好(图4)。在阴极发光下不发光,证实其自生成因。因此,自流井组页岩成岩演化过程中,黏土的转化作用可形成大量自生石英。

  • 在偏光显微镜下,可以观察到自流井组页岩中存在大量平行排列的瓣鳃类生物介壳化石。其中,介壳页岩中的生物介壳边缘常常镶嵌着大小不一的石英矿物,由介壳边缘向内逐渐增大(图5a)。这些镶嵌在介壳边缘的石英,在阴极发光下不发光,说明其为自生成因(图5b)。自生石英晶形较好,呈棱角状,直径相对较为适中,介于10~70 μm。

    Figure 5.  Authigenic quartz sourced from silica replacement of biological shells

    利用扫描电镜和电子探针观察自流井页岩,可以识别出以方解石为主要成分的生物介壳附近存在晶形较好的石英、大量黏土矿物和少量次圆状—次棱角状长石(图5c,d、表1)。页岩成岩演化过程中,有机质成熟产生的有机酸和CO2可溶解长石形成石英(钾长石+2H++H2O=高岭石+4SiO2+2K+;钠长石+2H++H2O=高岭石+4SiO2+2Na+),在长石附近沉淀下来。镜下观察发现,硅质交代自生的石英不仅在介壳页岩中普遍存在,在黏土含量较多的介壳灰岩中也能观察到硅质交代的现象。据此推断自流井组页岩在成岩演化过程中,黏土矿物转化析出的硅质与长石溶解形成的硅质不仅能在矿物孔隙中生成石英,也能在生物介屑边缘,交代方解石,形成的自形程度较好的石英。由介壳边缘向内,交代程度增加,自生石英形态逐渐增大。

    测点 Na2O SrO SiO2 Al2O3 MgO CaO BaO TiO2 K2O MnO 矿物
    1 0.02 0.28 98.78 0.14 0.02 1.14 0.02 0.02 0.01 0.02 石英
    2 0.00 0.30 0.03 0.00 0.70 56.13 0.04 0.02 0.00 0.00 方解石
    3 0.00 0.30 0.04 0.00 0.66 52.90 0.06 0.00 0.01 0.00 方解石
    4 10.89 0.21 69.22 17.97 0.00 0.23 0.00 0.00 0.02 0.00 长石
    5 0.02 0.25 96.53 0.06 0.00 1.86 0.00 0.00 0.01 0.01 石英
    6 0.00 0.06 0.26 0.10 0.73 52.47 0.02 0.00 0.02 0.03 方解石

    Table 1.  Contents of elements in shell shale detected by electron microprobe analysis (%)

  • 根据X衍射分析结果,A井自流井组石英含量介于15.3%~77.3%,平均含量为46.2%;碳酸盐矿物含量介于0~63.8%,平均含量为9.3%;黏土矿物含量介于7.9%~63.7%,平均含量为40.6%。其中石英和黏土矿物在大安寨段、马鞍山段和东岳庙段地层中内普遍富集,而作为介壳类生物主要成分的碳酸盐矿物主要出现在大安寨段,马鞍山段和东岳庙段几乎没有(图6)。

    Figure 6.  Distribution of mineral and element content in well A

    瓣鳃类生物必须有氧气才能存活,多发育在氧化—还原界面之上。沉积相分析认为富含大量瓣鳃类生物的介壳灰岩主要发育在水体动荡的浅湖[6-7,9]。因此,研究层位的介壳灰岩、页岩均为原地沉积,可利用元素地球化学指标反映介壳沉积时的水体环境。通过A井的岩石组成矿物和元素含量分布图可知,东岳庙段和马鞍山段的碳酸盐矿物少,说明介壳生物较少,因此硅质交代的自生石英几乎不存在。东岳庙段内石英含量多,陆源元素Al、Ti含量适中,说明东岳庙段内石英矿物主要为陆源输入和黏土转化成因。从东岳庙段到马鞍山段,石英含量逐渐少,但是陆源元素Al、Ti含量增多,表明陆源碎屑增多,陆源石英增多,黏土转化石英减少。大安寨段中陆源元素Al、Ti含量下降,碳酸盐矿物含量增加,生物介壳增多,为硅质交代成因的自生石英提供物质基础。通过黏土转化和少量的长石溶解作用生成的硅质,交代方解石介壳边缘形成大量自生石英。当碳酸盐含量减少,陆源元素含量再次增加时,陆源石英含量增加。因此,大安寨段的石英主要为硅质交代自生和陆源输入成因。

  • 陆相页岩的沉积环境,大多数情况下较海相环境离母岩区更近,更易受陆源物质的影响。在沉积物的搬运过程中石英的抗风化能力强,受风化的影响小,所以陆相页岩中存在大量的陆源石英。因此,当陆相页岩沉积环境中的陆源输入增多,陆源石英相应增多。

    根据前文所述,介壳生物为硅质交代形成自生石英提供了物质条件。同时,研究发现,沉积水体的盐度影响着瓣鳃类介壳生物的发育,从而间接影响自生石英的生成。在沉积物沉积过程中,元素Sr比Ba具有更大的流动性[21-22]。当淡水和咸水混合时,淡水中的Ba2+与咸水中的 S O 4 2 - 结合形成BaSO4沉淀出来。而SrSO4溶解度高,可通过生物途径进一步迁移。因此,随着盐度的增加,Sr/Ba的比值逐渐增大。MgO含量与盐度呈正相关,Al2O3含量与盐度呈负相关。当湖泊变得更咸时,MgO/Al2O3比率增加[23]。因此,学者们常利用Sr/Ba和100×MgO/Al2O3值判断古盐度。根据Sr/Ba和100×MgO/Al2O3含量的变化可知,由东岳庙段到大安寨段,湖水的盐度逐渐增加(图6)。合适的湖水盐度,为介壳生物提供了良好的生存条件,介壳生物逐渐增多,为硅质交代作用形成的自生石英提供了物质基础。因此,合适的湖水盐度,有利于硅质交代石英的生成。

  • 元坝地区A井东岳庙段石英含量与陆源元素相关性差,说明存在大量的自生石英(图6)。分析自流井组页岩中矿物含量和孔隙度的关系发现,东岳庙段伊利石和伊/蒙混层呈现非常好的此消彼长的趋势,说明伊利石主要由黏土转化作用产生(图7)。一般随着深度的增加,地层温度相应增加,成岩演化程度增高,伊/蒙混层逐渐减少,伊利石含量逐渐增加,为自生石英的沉淀提供硅质来源。但在A井的3 997~4 011 m段,变化趋势相反,随地层深度的增加,伊利石含量减少,而伊/蒙混层含量增加(图7)。

    Figure 7.  Relationship between mineral content and porosity in Dongyuemiao member, well A

    前人利用声波时差反映岩石孔隙度,声波时差越高,岩石的孔隙度越高[24-25]。研究发现A井东岳庙段3 997~4 011 m声波时差与孔隙度呈正比,因此可以利用声波时差反映页岩孔隙度变化(图7)。通常随着地层深度增加,岩石受上覆地层的压实作用孔隙度逐渐减少,声波时差逐渐减少。A井东岳庙段4 004~4 011 m随着深度增加,声波时差增加,地层孔隙度异常增大,说明此处存在异常高压[26-27],这也解释了伊/蒙混层含量异常增加的现象。异常高压的存在会使蒙脱石层间水的稳定性增强,蒙脱石脱水速率下降,阻碍蒙脱石向伊利石转化,伊/蒙混层含量增加,自生石英减少[28]。因此,在A井东岳庙段的超压能够抑制自生石英的生成。

  • (1) 四川盆地自流井组陆相页岩中识别出陆源石英和自生石英。陆源石英含量多,颗粒直径较大。自生石英包括黏土矿物转化过程中形成的石英和硅质交代生物介壳边缘的石英。黏土矿物转化过程中形成的自生石英是由于页岩在成岩演化过程中,蒙脱石向伊利石转化析出的硅质,在伊利石或者伊蒙混层矿物周围沉淀形成的自生石英,其直径较小。硅质交代介壳边缘的自生石英由介壳边缘向介壳内部生长而形成。其晶形较好,直径适中,多出现在介壳页岩和介壳灰岩中。

    (2) 石英和黏土矿物在东岳庙段、马鞍山段和大安寨段大量分布,碳酸盐矿物则主要分布在大安寨段。其中东岳庙段内石英矿物主要为陆源输入和黏土转化成因;马鞍山段的石英主要为陆源输入成因;大安寨段的石英则为硅质交代自生和陆源输入成因。

    (3) 陆相页岩的沉积环境和地层压力的变化影响了石英成因。页岩中的陆源石英随陆源物质输入的增加而增加。合适的湖水盐度,有利于介壳生物的生存,为硅质交代介壳生物自生石英提供物质基础。地层的异常高压会抑制黏土转化,硅质析出减少,限制自生石英的沉淀。

Reference (28)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return