Advanced Search
Volume 40 Issue 5
Oct.  2022
Turn off MathJax
Article Contents

DONG HongKun, WAN ShiMing, LIU XiTing. Research Progress on Geochemical Behavior of Minerals and Elements in Early Diagenesis of Marine Sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1172-1187. doi: 10.14027/j.issn.1000-0550.2021.038
Citation: DONG HongKun, WAN ShiMing, LIU XiTing. Research Progress on Geochemical Behavior of Minerals and Elements in Early Diagenesis of Marine Sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1172-1187. doi: 10.14027/j.issn.1000-0550.2021.038

Research Progress on Geochemical Behavior of Minerals and Elements in Early Diagenesis of Marine Sediments

doi: 10.14027/j.issn.1000-0550.2021.038
Funds:

National Natural Science Foundation of China 42076052

Strategic Science and Technology Pilot Project of the Chinese Academy of Sciences (Class B) XDB40010100

Taishan Scholars and Aoshan Talent Plan 2017ASTCP-ES01

  • Received Date: 2020-09-27
  • Publish Date: 2022-10-10
  • The early diagenesis of marine sediments is a series of biological, physical and chemical changes during the process of their deposition and burial. The driving force is the degradation of organic matter. According to the free energy of reaction, the order of oxidants involved in the reaction is O2> NO3->Mn4+> Fe3+> SO42-. With increasing burial depth, a series of redox chemical zones are formed, which promote the formation of some authigenic minerals and the geochemical cycle and isotopic fractionation of C, N, S, Fe, Mn, etc. The series of organic matter degradation reactions change the geochemical information preserved in primary sediments, which is of great significance to the study of paleoenvironment and paleoclimate. In early diagenesis, carbonate ions produced by organic matter degradation combine with calcium and ferrous ions to form carbonate minerals (e.g., calcite, aragonite and siderite). The reduced sulfur produced by sulfate reduction finally forms pyrite with ferrous iron. In addition, four surrogate indices commonly used in redox environment reconstruction are summarized: (1) Fe component; (2) Corg/P ratio; (3) redox-sensitive trace elements; (4) Mo and U isotopes. The mechanism of organic matter degradation during the early diagenesis is reviewed based on the geochemical behavior of minerals and elements in the early diagenesis of marine sediments. The geochemical cycle and isotopic fractionation of elements in the reaction process, and the formation mechanisms of accompanying authigenic minerals such as carbonate minerals and pyrite, are discussed. Finally, the shortcomings of the existing research and future research directions are discussed.
  • [1] Berner R A. Early diagenesis: A theoretical approach[M]. New Jersey: Princeton University Press, 1980.
    [2] Henrichs S M. Early diagenesis of organic matter in marine sediments progress and perplexity[J]. Marine Chemistry, 1992, 39(1/2/3): 119-149.
    [3] 吴雪停,刘丽华,吴能友,等. 海洋沉积物中早期成岩作用地球化学研究进展[J]. 海洋地质前沿,2015,31(12):17-26.

    Wu Xueting, Liu Lihua, Wu Nengyou, et al. Geochemistry of early diagenesis in marine sediments: Research progress[J]. Marine Geology Frontiers, 2015, 31(12): 17-26.
    [4] Canfield D E, Thamdrup B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 2009, 7(4): 385-392.
    [5] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075-1090.
    [6] Hesse R, Schacht U. Early diagenesis of deep-sea sediments[J]. Developments in Sedimentology, 2011, 63: 557-713.
    [7] Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatise on geochemistry.Oxford: Elsevier,2014: 293-334.
    [8] Arndt S, Jørgensen B B, LaRowe D E, et al. Quantifying the degradation of organic matter in marine sediments: A review and synthesis[J]. Earth-Science Reviews, 2013, 123: 53-86.
    [9] Warnken K W, Santschi P H, Roberts K A, et al. The cycling and oxidation pathways of organic carbon in a shallow estuary along the Texas Gulf Coast[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 69-84.
    [10] 朱茂旭,史晓宁,杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展,2011,26(4):355-364.

    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4): 355-364.
    [11] Hensen C, Zabel M, Schulz H N. Benthic cycling of oxygen, nitrogen and phosphorus[M]//Schulz H D, Zabel M.Marine geochemistry. Berlin:Springer, 2006: 207-240.
    [12] Middelburg J J, Soetaert K, Herman P M J, et al. Denitrification in marine sediments: A model study[J]. Global Biogeochemical Cycles, 1996, 10(4): 661-673.
    [13] Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(III) and Mn(IV) reduction[J]. Advances in Microbial Physiology, 2004, 49: 219-286.
    [14] Canfield D E. Reactive iron in marine sediments[J]. Geochimica et Cosmochimica Acta, 1989, 53(3): 619-632.
    [15] Zopfi J, Böttcher M E, Jørgensen B B, et al. Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central chile[J]. Geochimica et Cosmochimica Acta, 2008, 72(3): 827-843.
    [16] Canfield D E, Raiswell R, Bottrell S H. The reactivity of sedimentary iron minerals toward sulfide[J]. American Journal of Science, 1992, 292(9): 659-683.
    [17] Burdige D J, Nealson K H. Chemical and microbiological studies of sulfide‐mediated manganese reduction[J]. Geomicrobiology Journal, 1986, 4(4): 361-387.
    [18] Canfield D E, Thamdrup B, Hansen J W, et al. The anaerobic degradation of organic matter in Danish coastal sediments: Iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867-3883.
    [19] de Schamphelaire L, Rabaey K, Boon N, et al. Minireview: The potential of enhanced manganese redox cycling for sediment oxidation[J]. Geomicrobiology Journal, 2007, 24(7/8): 547-558.
    [20] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[M]//Schink B. Advances in microbial ecology.Boston:Springer,2000: 41-84.
    [21] Thamdrup B, Glud R N, Hansen J W, et al. Manganese oxidation and in situ manganese fluxes from a coastal sediment[J]. Geochimica et Cosmochimica Acta, 1994, 58(11): 2563-2570.
    [22] Aller R C. The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2, and Corg flux on diagenetic reaction balances[J]. Journal of Marine Research, 1994, 52(2): 259-295.
    [23] Canfield D E, Jørgensen B B, Fossing H, et al. Pathways of organic carbon oxidation in three continental margin sediments[J]. Marine Geology, 1993, 113(1/2): 27-40.
    [24] Taylor K G, Macquaker J H S. Iron minerals in marine sediments record chemical environments[J]. Elements, 2011, 7(2): 113-118.
    [25] Zhao B, Yao P, Bianchi T S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495: 104-117.
    [26] 施春华,颜佳新,韩欣. 早期成岩作用过程中硫酸盐还原反应研究进展[J]. 广西地质,2001,14(1):21-26.

    Shi Chunhua, Yan Jiaxin, Han Xin. Development of sulfate reduction during early diagenesis[J]. Geology of Guangxi, 2001,14(1): 21-26.
    [27] Canfield D E. Sulfate reduction in deep-sea sediments[J]. American Journal of Science, 1991, 291(2): 177-188.
    [28] Borowski W S, Paull C K, Ussler III W, et al. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655-658.
    [29] Aharon P, Fu B S. Microbial sulfate reduction rates and sulfur and oxygen isotope fractionations at oil and gas seeps in deep-water gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2000, 64(2): 233-246.
    [30] Canfield D E. Biogeochemistry of sulfur isotopes[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 607-636.
    [31] 刘喜停,李安春,马志鑫,等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报,2020,38(1):124-137.

    Liu Xiting, Li Anchun, Ma Zhixin, et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124-137.
    [32] Jørgensen B B, Beulig F, Egger M, et al. Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2019, 254: 231-245.
    [33] Milucka J, Ferdelman T G, Polerecky L, et al. Zero-valent sulphur is a key intermediate in marine methane oxidation[J]. Nature, 2012, 491(7425): 541-546.
    [34] Zigah P K, Oswald K, Brand A, et al. Methane oxidation pathways and associated methanotrophic communities in the water column of a tropical lake[J]. Limnology and Oceanography, 2015, 60(2): 553-572.
    [35] Haroon M F, Hu S H, Shi Y, et al. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage[J]. Nature, 2013, 500(7464): 567-570.
    [36] Ettwig K F, Butler M K, Le Paslier D, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548.
    [37] Rooze J, Egger M, Tsandev I, et al. Iron-dependent anaerobic oxidation of methane in coastal surface sediments: Potential controls and impact[J]. Limnology and Oceanography, 2016, 61(Suppl.1): S267-S282.
    [38] Liu J R, Izon G, Wang J S, et al. Vivianite formation in methane-rich deep-sea sediments from the South China Sea[J]. Biogeosciences, 2018, 15(20): 6329-6348.
    [39] Egger M, Kraal P, Jilbert T, et al. Anaerobic oxidation of methane alters sediment records of sulfur, iron and phosphorus in the Black Sea[J]. Biogeosciences, 2016, 13(18): 5333-5355.
    [40] Jing H M, Wang R N, Jiang Q Y, et al. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps[J]. Science of the Total Environment, 2020, 748: 142459.
    [41] Ettwig K F, Zhu B L, Speth D, et al. Archaea catalyze iron-dependent anaerobic oxidation of methane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(45): 12792-12796.
    [42] Devol A H, Anderson J J, Kuivila K, et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1004.
    [43] Kuivila K M, Murray J W, Devol A H, et al. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington[J]. Geochimica et Cosmochimica Acta, 1989, 53(2): 409-416.
    [44] Reeburgh W S. Oceanic methane biogeochemistry[J]. Chemical Reviews, 2007, 107(2): 486-513.
    [45] Rust G W. Colloidal primary copper ores at Cornwall mines, southeastern Missouri[J]. The Journal of Geology, 1935, 43(4): 398-426.
    [46] Rickard D. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 522: 62-75.
    [47] Oenema O. Pyrite accumulation in salt marshes in the eastern Scheldt, southwest Netherlands[J]. Biogeochemistry, 1990, 9(1): 75-98.
    [48] Allen K D, Hahn G A. Geology of the sunbeam and grouse creek gold-silver deposits, Yankee Fork mining district, Eocene Challis volcanic field, Idaho; a volcanic dome- and volcaniclastic-hosted epithermal system[J]. Economic Geology, 1994, 89(8): 1964-1982.
    [49] Berner R A. Sedimentary pyrite formation[J]. American Journal of Science, 1970, 268(1): 1-23.
    [50] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 1997, 61(2): 323-339.
    [51] Lan Y, Butler E C. Monitoring the transformation of mackinawite to greigite and pyrite on polymer supports[J]. Applied Geochemistry, 2014, 50: 1-6.
    [52] Sugawara H, Sakakibara M, Belton D, et al. Formation process of pyrite polyframboid based on the heavy-metal analysis by micro-PIXE[J]. Environmental Earth Sciences, 2013, 69(3): 811-819.
    [53] Huang H W, Gong S G, Li N, et al. Formation of authigenic low-magnesium calcite from sites SS296 and GC53 of the gulf of Mexico[J]. Minerals, 2019, 9(4): 251.
    [54] Tong H P, Feng D, Peckmann J, et al. Environments favoring dolomite formation at cold seeps: A case study from the gulf of Mexico[J]. Chemical Geology, 2019, 518: 9-18.
    [55] 冯东,陈多福,漆亮,等. 墨西哥湾Alaminos Canyon冷泉碳酸盐岩地质地球化学特征[J]. 科学通报,2008,53(8):966-974.

    Feng Dong, Chen Duofu, Qi Liang, et al. Geological and geochemical characteristics of Alaminos Canyon cold spring carbonates in the gulf of Mexico[J]. Scientific Bulletin, 2008, 53(8): 966-974.
    [56] 赵洁,王家生,岑越,等. 南海东北部GMGS2-16站位自生矿物特征及对水合物藏演化的指示意义[J]. 海洋地质与第四纪地质,2018,38(5):144-155.

    Zhao Jie, Wang Jiasheng, Cen Yue, et al. Authigenic minerals at site GMGS2-16 of northeastern South China Sea and its implications for gas hydrate evolution[J]. Marine Geology & Quaternary Geology, 2018, 38(5): 144-155.
    [57] Han X Q, Suess E, Huang Y Y, et al. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea[J]. Marine Geology, 2008, 249(3/4): 243-256.
    [58] Magalhães V H, Pinheiro L M, Ivanov M K, et al. Formation processes of methane-derived authigenic carbonates from the gulf of Cadiz[J]. Sedimentary Geology, 2012, 243-244: 155-168.
    [59] Naehr T H, Eichhubl P, Orphan V J, et al. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study[J]. Deepsea Research Part II: Topical Studies in Oceanography, 2007, 54(11/12/13): 1268-1291.
    [60] Baker J C, Kassan J, Hamilton P J, et al. Early diagenetic siderite as an indicator of depositional environment in the Triassic Rewan Group, southern Bowen Basin, eastern Australia[J]. Sedimentology, 1996, 43(1): 77-88.
    [61] 陈惠昌,赖勇,卢海龙,等. 南海神狐天然气水合物系统沉积物中自生黄铁矿的特征研究[J]. 海洋学报,2018,40(7):116-133.

    Chen Huichang, Lai Yong, Lu Hailong, et al. Study on authigenic pyrite in sediments of gas hydrate geo-system in the Shenhu area, South China Sea[J]. Haiyang Xuebao, 2018, 40(7): 116-133.
    [62] Taylor K G, Curtis C D. Stability and facies association of early diagenetic mineral assemblages; an example from a Jurassic ironstone-mudstone succession, U.K.[J]. Journal of Sedimentary Research, 1995, 65(2A): 358-368.
    [63] Mozley P S, Carothers W W. Elemental and isotopic composition of siderite in the Kuparuk Formation, Alaska; effect of microbial activity and water sediment interaction on early pore-water chemistry[J]. Journal of Sedimentary Research, 1992, 62(4): 681-692.
    [64] Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/2/3): 291-314.
    [65] Feng D, Qiu J W, Hu Y, et al. Cold seep systems in the South China Sea: An overview[J]. Journal of Asian Earth Sciences, 2018, 168: 3-16.
    [66] Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 362-407.
    [67] Greinert J, Bohrmann G, Suess E, et al. Gas hydrate‐associated carbonates and methane‐venting at hydrate ridge: Classification, distribution, and origin of authigenic lithologies[J]. Geophysical MonographSeries, 2013, 124: 99-113.
    [68] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3/4): 443-467.
    [69] Mansour A S, Sassen R. Mineralogical and stable isotopic characterization of authigenic carbonate from a hydrocarbon seep site, gulf of Mexico slope: Possible relation to crude oil degradation[J]. Marine Geology, 2011, 281(1/2/3/4): 59-69.
    [70] Mozley P S, Wersin P. Isotopic composition of siderite as an indicator of depositional environment[J]. Geology, 1992, 20(9): 817-820.
    [71] Mozley P S. Relation between depositional environment and the elemental composition of early diagenetic siderite[J]. Geology, 1989, 17(8): 704-706.
    [72] 张凌,陈繁荣,杨永强,等. 珠江口外近海沉积有机质化学及稳定同位素组成的早期成岩改变[J]. 海洋学报,2008,30(5):43-51.

    Zhang Ling, Chen Fanrong, Yang Yongqiang, et al. Chemical and isotopic alteration of organic matter during early diagenesis: Evidence from the coastal area offshore the Zhujiang Estuary in China[J]. Acta Oceanologica Sinica, 2008, 30(5): 43-51.
    [73] Lehmann M F, Bernasconi S M, Barbieri A, et al. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis[J]. Geochimica et Cosmochimica Acta, 2002, 66(20): 3573-3584.
    [74] DeNiro M J, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis[J]. Science, 1977, 197(4300): 261-263.
    [75] Macko S A, Estep M L F. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter[J]. Organic Geochemistry, 1984, 6: 787-790.
    [76] Prahl F G, de Lange G J, Scholten S, et al. A case of post-depositional aerobic degradation of terrestrial organic matter in turbidite deposits from the Madeira Abyssal Plain[J]. Organic Geochemistry, 1997, 27(3/4): 141-152.
    [77] Sachs J P, Repeta D J. Oligotrophy and nitrogen fixation during eastern Mediterranean Sapropel events[J]. Science, 1999, 286(5449): 2485-2488.
    [78] Freudenthal T, Wagner T, Wenzhofer F, et al. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: Evidence from stable nitrogen and carbon isotopes[J]. Geochimica et Cosmochimica Acta, 2001, 65(11): 1795-1808.
    [79] Altabet M A, Pilskaln C, Thunell R, et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the eastern North Pacific[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1999, 46(4): 655-679.
    [80] Goldhaber M B. Sulfur-rich sediments[J]. Treatise on Geochemistry, 2003, 7: 257-288.
    [81] Rickard D, Morse J W. Acid volatile sulfide (AVS)[J]. Marine Chemistry, 2005, 97(3/4): 141-197.
    [82] Böttcher M E, Lepland A. Biogeochemistry of sulfur in a sediment core from the west-central Baltic Sea: Evidence from stable isotopes and pyrite textures[J]. Journal of Marine Systems, 2000, 25(3/4): 299-312.
    [83] Wilkin R T, Arthur M A. Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: Evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1399-1416.
    [84] Lin Z Y, Sun X M, Peckmann J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea[J]. Chemical Geology, 2016, 440: 26-41.
    [85] Li N, Feng D, Chen L Y, et al. Using sediment geochemistry to infer temporal variation of methane flux at a cold seep in the South China Sea[J]. Marine and Petroleum Geology, 2016, 77: 835-845.
    [86] Lin Z Y, Sun X M, Lu Y, et al. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea[J]. Journal of Asian Earth Sciences, 2016, 123: 213-223.
    [87] Hu Y, Chen L Y, Feng D, et al. Geochemical record of methane seepage in authigenic carbonates and surrounding host sediments: A case study from the South China Sea[J]. Journal of Asian Earth Sciences, 2017, 138: 51-61.
    [88] Lin Q, Wang J S, Taladay K, et al. Coupled pyrite concentration and sulfur isotopic insight into the paleo sulfate-methane transition zone (SMTZ) in the northern South China Sea[J]. Journal of Asian Earth Sciences, 2016, 115: 547-556.
    [89] Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193): 1973-1975.
    [90] Wortmann U G, Bernasconi S M, Böttcher M E, et al. Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction[J]. Geology, 2001, 29(7): 647-650.
    [91] Sim M S, Bosak T, Ono S, et al. Large sulfur isotope fractionation does not require disproportionation[J]. Science, 2011, 333(6038): 74-77.
    [92] Canfield D E, Farquhar J, Zerkle A L, et al. High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog[J]. Geology, 2010, 38(5): 415-418.
    [93] Deusner C, Holler T, Arnold G L, et al. Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration[J]. Earth and Planetary Science Letters, 2014, 399: 61-73.
    [94] Sivan O, Antler G, Turchyn A V, et al. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): E4139-E4147.
    [95] Borowski W S, Rodriguez N M, Paull C K, et al. Are 34S-enriched authigenic sulfide minerals a proxy for elevated methane flux and gas hydrates in the geologic record?[J]. Marine and Petroleum Geology, 2013, 43: 381-395.
    [96] Fritz P, Basharmal G M, Drimmie R J, et al. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate[J]. Chemical Geology: Isotope Geoscience Section, 1989, 79(2): 99-105.
    [97] Brunner B, Bernasconi S M, Kleikemper J, et al. A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4773-4785.
    [98] Wortmann U G, Chernyavsky B, Bernasconi S M, et al. Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: Dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130)[J]. Geochimica et Cosmochimica Acta, 2007, 71(17): 4221-4232.
    [99] Wankel S D, Bradley A S, Eldridge D L, et al. Determination and application of the equilibrium oxygen isotope effect between water and sulfite[J]. Geochimica et Cosmochimica Acta, 2014, 125: 694-711.
    [100] Müller I A, Brunner B, Breuer C, et al. The oxygen isotope equilibrium fractionation between sulfite species and water[J]. Geochimica et Cosmochimica Acta, 2013, 120: 562-581.
    [101] van Cappellen P, Ingall E D. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A model of the coupled marine biogeochemical cycles of carbon and phosphorus[J]. Paleoceanography, 1994, 9(5): 677-692.
    [102] 刘喜停,颜佳新. 铁元素对海相沉积物早期成岩作用的影响[J]. 地球科学进展,2011,26(5):482-492.

    Liu Xiting, Yan Jiaxin. Advances in the role of iron in marine sediments during early diagenesis[J]. Advances in Earth Science, 2011, 26(5): 482-492.
    [103] Beard B L, Johnson C M, Cox L, et al. Iron isotope biosignatures[J]. Science, 1999, 285(5435): 1889-1892.
    [104] Johnson C M, Roden E E, Welch S A, et al. Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 963-993.
    [105] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67-88.
    [106] Calvert S E, Pedersen T F. Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales[J]. Economic Geology, 1996, 91(1): 36-47.
    [107] Rajendran A, Kumar M D, Bakker J F. Control of manganese and iron in Skagerrak sediments (northeastern North Sea)[J]. Chemical Geology,1992, 98(1/2): 111-129.
    [108] Morford J L, Russell A D, Emerson S. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC[J]. Marine Geology, 2001, 174(1/2/3/4): 355-369.
    [109] Caplan M L, Bustin R M. Palaeoenvironmental and palaeoceanographic controls on black, laminated mudrock deposition: Example from Devonian-Carboniferous strata, Alberta, Canada[J]. Sedimentary Geology, 2001, 145(1/2): 45-72.
    [110] Cruse A M, Lyons T W. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales[J]. Chemical Geology, 2004, 206(3/4): 319-345.
    [111] Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232(1/2): 12-32.
    [112] 鲍根德. 铁、锰在早期成岩过程中分离及其生物地球化学机制[J]. 中国科学:B辑,1989(1):93-102.

    Bao Gende. Separation of iron and manganese in the early diagenetic processes and its mechanism of biogeochemistry[J]. Science in China(Seri.B), 1989(1): 93-102.
    [113] Madison A S, Tebo B M, Mucci A, et al. Abundant porewater Mn(III) is a major component of the sedimentary redox system[J]. Science, 2013, 341(6148): 875-878.
    [114] Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview[J]. Geological Society, London, Special Publications, 1991, 58(1): 1-24.
    [115] 颜佳新,张海清. 古氧相:一个新的沉积学研究领域[J]. 地质科技情报,1996,15(3):8-14.

    Yan Jiaxin, Zhang Haiqing. Paleo-oxygenation facies: A new research field in sedimentology[J]. Geological Science and Technology Information, 1996, 15(3): 8-14.
    [116] 汤冬杰,史晓颖,赵相宽,等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标:进展、问题与展望[J]. 现代地质,2015,29(1):1-13.

    Tang Dongjie, Shi Xiaoying, Zhao Xiangkuan, et al. Mo-U covariation as an important proxy for sedimentary environment redox conditions-progress,problems and prospects[J]. Geoscience, 2015,29(1): 1-13.
    [117] Lyons T W, Severmann S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5698-5722.
    [118] Poulton S W, Canfield D E. Ferruginous conditions: A dominant feature of the ocean through Earth's history[J]. Elements, 2011, 7(2): 107-112.
    [119] Raiswell R, Hardisty D S, Lyons T W, et al. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice[J]. American Journal of Science, 2018, 318(5): 491-526.
    [120] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J]. American Journal of Science, 1985, 285(8): 710-724.
    [121] Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottom-water oxygenation[J]. Journal of Sedimentary Research, 1988, 58(5): 812-819.
    [122] Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
    [123] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran Ocean[J]. Science, 2010, 328(5974): 80-83.
    [124] Poulton S W, Raiswell R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition[J]. American Journal of Science, 2002, 302(9): 774-805.
    [125] Poulton S W, Fralick P W, Canfield D E. Spatial variability in oceanic redox structure 1.8 billion years ago[J]. Nature Geoscience, 2010, 3(7): 486-490.
    [126] Redfield A C. The biological control of chemical factors in the environment[J]. American Scientist, 1958, 46(3): 205-221.
    [127] Algeo T J, Ingall E. Sedimentary Corg: P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2 [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 130-155.
    [128] Steenbergh A K, Bodelier P L E, Hoogveld H L, et al. Phosphatases relieve carbon limitation of microbial activity in Baltic Sea sediments along a redox-gradient[J]. Limnology and Oceanography, 2011, 56(6): 2018-2026.
    [129] Kraal P, Slomp C P, Reed D C, et al. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea[J]. Biogeosciences, 2012, 9(7): 2603-2624.
    [130] Algeo T J, Li C. Redox classification and calibration of redox thresholds in sedimentary systems[J]. Geochimica et Cosmochimica Acta, 2020, 287: 8-26.
    [131] Morford J L, Emerson S R, Breckel E J, et al. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin[J]. Geochimica et Cosmochimica Acta, 2005, 69(21): 5021-5032.
    [132] Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/2/3/4): 111-129.
    [133] Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211-225.
    [134] Little S H, Vance D, Lyons T W, et al. Controls on trace metal authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient settings[J]. American Journal of Science, 2015, 315(2): 77-119.
    [135] Sweere T, van den Boorn S, Dickson A J, et al. Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations[J]. Chemical Geology, 2016, 441: 235-245.
    [136] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[J]. The Journal of Geology, 1985, 94(4): 57-72.
    [137] McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
    [138] 张明亮,郭伟,沈俊,等. 古海洋氧化还原地球化学指标研究新进展[J]. 地质科技情报,2017,36(4):95-106.

    Zhang Mingliang, Guo Wei, Shen Jun, et al. New progress on geochemical indicators of ancient oceanic redox condition[J]. Geological Science and Technology Information, 2017, 36(4): 95-106.
    [139] Noordmann J, Weyer S, Montoya-Pino C, et al. Uranium and molybdenum isotope systematics in modern euxinic basins: Case studies from the central Baltic Sea and the Kyllaren fjord (Norway)[J]. Chemical Geology, 2015, 396: 182-195.
    [140] Barling J, Arnold G L, Anbar A D. Natural mass-dependent variations in the isotopic composition of molybdenum[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 447-457.
    [141] Siebert C, Nägler T F, von Blanckenburg F, et al. Molybdenum isotope records as a potential new proxy for paleoceanography[J]. Earth and Planetary Science Letters, 2003, 211(1/2): 159-171.
    [142] Poulson R L, Siebert C, McManus J, et al. Authigenic molybdenum isotope signatures in marine sediments[J]. Geology, 2006, 34(8): 617-620.
    [143] Montoya-Pino C, Weyer S, Anbar A D, et al. Global enhancement of ocean anoxia during Oceanic Anoxic Event 2: A quantitative approach using U isotopes[J]. Geology, 2010, 38(4): 315-318.
    [144] Romaniello S J, Herrmann A D, Anbar A D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: Assessing a novel paleoredox proxy[J]. Chemical Geology, 2013, 362: 305-316.
    [145] Goto K T, Anbar A D, Gordon G W, et al. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: Implications for the marine 238U/235U isotope system[J]. Geochimica et Cosmochimica Acta, 2014, 146: 43-58.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(1)

Article Metrics

Article views(1215) PDF downloads(461) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-09-27
  • Published:  2022-10-10

Research Progress on Geochemical Behavior of Minerals and Elements in Early Diagenesis of Marine Sediments

doi: 10.14027/j.issn.1000-0550.2021.038
Funds:

National Natural Science Foundation of China 42076052

Strategic Science and Technology Pilot Project of the Chinese Academy of Sciences (Class B) XDB40010100

Taishan Scholars and Aoshan Talent Plan 2017ASTCP-ES01

Abstract: The early diagenesis of marine sediments is a series of biological, physical and chemical changes during the process of their deposition and burial. The driving force is the degradation of organic matter. According to the free energy of reaction, the order of oxidants involved in the reaction is O2> NO3->Mn4+> Fe3+> SO42-. With increasing burial depth, a series of redox chemical zones are formed, which promote the formation of some authigenic minerals and the geochemical cycle and isotopic fractionation of C, N, S, Fe, Mn, etc. The series of organic matter degradation reactions change the geochemical information preserved in primary sediments, which is of great significance to the study of paleoenvironment and paleoclimate. In early diagenesis, carbonate ions produced by organic matter degradation combine with calcium and ferrous ions to form carbonate minerals (e.g., calcite, aragonite and siderite). The reduced sulfur produced by sulfate reduction finally forms pyrite with ferrous iron. In addition, four surrogate indices commonly used in redox environment reconstruction are summarized: (1) Fe component; (2) Corg/P ratio; (3) redox-sensitive trace elements; (4) Mo and U isotopes. The mechanism of organic matter degradation during the early diagenesis is reviewed based on the geochemical behavior of minerals and elements in the early diagenesis of marine sediments. The geochemical cycle and isotopic fractionation of elements in the reaction process, and the formation mechanisms of accompanying authigenic minerals such as carbonate minerals and pyrite, are discussed. Finally, the shortcomings of the existing research and future research directions are discussed.

DONG HongKun, WAN ShiMing, LIU XiTing. Research Progress on Geochemical Behavior of Minerals and Elements in Early Diagenesis of Marine Sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1172-1187. doi: 10.14027/j.issn.1000-0550.2021.038
Citation: DONG HongKun, WAN ShiMing, LIU XiTing. Research Progress on Geochemical Behavior of Minerals and Elements in Early Diagenesis of Marine Sediments[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1172-1187. doi: 10.14027/j.issn.1000-0550.2021.038
  • 早期成岩作用是指沉积物在温度较低(<25 ℃)的环境沉积至浅埋藏过程中,在孔隙水完全充填的情况下,沉积物颗粒、孔隙水及沉积环境水介质之间发生的一系列物理、生物及化学变化[1]。早期成岩作用的持续时间会因沉积物的堆积速率差异而相差很大。比如,在快速堆积的沉积物中,其时间尺度最短约50年;而在缓慢堆积的沉积物中,其时间尺度甚至和洋盆相当[2]。早期成岩作用对海洋体系中的生物地球化学循环起到了至关重要的作用,微生物的参与使得沉积物中的有机质分解,随之发生元素的氧化还原以及同位素分馏,并伴随有自生矿物的生成。

    早期成岩作用的研究始于20世纪30年代,直到20世纪70年代,学术界逐渐认识到早期成岩作用在海洋生物地球化学循环中的重要意义,并且在元素的地球化学行为及自生矿物的形成等方面取得了重要进展[3]

  • 有机质降解是非常重要的早期成岩过程,是沉积物中发生的大多数生物地球化学转化的主要驱动力[1],其在理想状态下,主要包括有氧呼吸、硝酸盐还原、金属(铁、锰)氧化物还原、硫酸盐还原和甲烷生成等反应(表1)。根据反应自由能大小,参与反应的氧化剂顺序为:O2>NO3->Mn4+>Fe3+>SO42-[3,5-6]。因此随着沉积物埋深的增加,形成了一系列理想状态下的氧化还原带(图1)。

    有机质降解作用化学反应反应自由能Δ G(KJ)
    有氧呼吸O2+1/2C2H3O2-→HCO3-+1/2H+-402
    硝酸盐还原4/5NO3-+3/5H++1/2C2H3O2-→2/5N2+HCO3-+1/5H2O-359
    锰还原(软锰矿)7/2H++2MnO2+1/2C2H3O2-→2Mn2++HCO3-+2H2O-385
    铁还原(非晶态FeOOH)15/2H++4FeOOH+1/2C2H3O2-→HCO3-+6H2O+4Fe2+-241
    硫酸盐还原1/2H++1/2SO42-+1/2C2H3O2-→1/2H2S+HCO3--43.8
    甲烷生成1/2H2O+1/2C2H3O2-→1/2CH4+1/2HCO3--19.9

    Figure 1.  Vertical section of early diagenesis (modified from reference [7])

    有机质的氧化降解是整个氧化还原反应系列的基础。作为主要电子受体,海底有机质(包括碳水化合物、含氮化合物、脂类、腐殖质等)在有氧与厌氧两种环境下的氧化降解过程明显不同[3,8]。有氧环境下,需氧细菌利用自身产生的水解酶和高反应性的含氧自由基(O2-、H2O2、OH等)将有机质氧化为H2O、CO2[3]。厌氧环境下,微生物则会先将有机质水解,然后通过发酵作用将其转化为小分子化合物(CH3COOH、H2等),最终这些小分子化合物与O2、NO3-、Mn4+、Fe3+、SO42-等氧化剂反应生成H2O、CO2[3]

  • 有氧呼吸作用发生于沉积物表层的几毫米至几百米不等(图1[5-7]。由深海向浅海,有机质的通量会随着初级生产力的升高或水深的降低而增加,因此随着水深的变浅,有氧呼吸的速率也就越大,活性有机质会更快地消耗O2,进而抑制O2扩散的深度,因此浅海有氧呼吸对有机质矿化的相对贡献度随之降低。不过,强水动力条件下的再悬浮可以提高浅海地区有氧呼吸对有机质矿化的相对贡献,如美国Galveston海湾有氧呼吸对有机质矿化相对贡献甚至可达90%[9]。相比之下,在深海中,初级生产力和沉积速率都很低,沉积到水体底部的有机质活性极低。因此,O2在沉积物中的扩散速率大于消耗速率,几乎所有的有机质都通过有氧呼吸被消耗,只是消耗速率比较低,但对有机质矿化的相对贡献却很高,其相对贡献最高可达到硫酸盐还原和其他途径的100~1 000倍[10-11]

  • 图1所示,在有氧呼吸作用带之下,硝酸盐还原开始出现,该层底部氧化还原环境逐渐变为厌氧。其中由于Mn还原的自由能与硝酸盐还原的自由能很接近(表1),所以在硝酸盐还原带,二者的还原会同时进行[5]。硝酸盐还原区发生的化学反应,对沉积物有机质降解的相对贡献为7%~11%[12]。在大部分海洋沉积物中,O2和NH4+的含量决定了硝化作用的速率,硝化作用一般发生于O2含量较高的区域,反硝化作用则一般发生于O2含量较低的区域。

  • Fe、Mn氧化物的还原是有机质降解矿化的主要反应。在近海厌氧沉积物中,铁锰氧化物的还原主要有两种:生物还原,即在微生物(铁锰还原菌)作用下,以有机质为电子供体的异化还原(DIR)[13];非生物还原,即铁锰氧化物被S2-NH4+还原[14-15]。因为Fe供给有限,所以两种还原途径是存在竞争的[10,16-18]

    在许多沉积物中,锰主要通过与铁或硫发生电子交换从而间接地参与有机质分解[19]。在现代绝大多数海域中,锰含量很低(地壳丰度仅为0.072%)[10],多以非生物还原为主要途径[20],所以锰的异化还原对有机质降解矿化的相对贡献很小。但在极少数高锰海区,如巴拿马海盆和Skagerrak海峡中的锰含量分别可达10%和4%[18,21-22],其锰异化还原对有机质矿化的相对贡献占主导,可达30%~90%[23]。近年来,现代海洋陆架沉积物中的异化铁还原受到越来越多的关注[24]。如我国大河控制的东部边缘海,接收了大量含活性铁的陆源沉积物,异化铁还原可能比硫酸盐还原更加重要[25]

  • 据估计,在近海沉积物中,硫酸盐还原对有机质矿化的平均相对贡献可达(62±17)%[20],其还原效率与有机质的含量、活性和沉积速率均呈正相关[10,26],且已有相关的定量研究[27]

    在硫酸盐还原中主要存在两个反应:甲烷厌氧氧化作用(AOM)和有机质硫酸盐还原作用[26]。通常存在甲烷时,孔隙流体中可用的大部分硫酸盐通过甲烷厌氧氧化作用进行还原[28-29],而在无甲烷海洋沉积物中,有机质硫酸盐还原则是有机质再矿化和硫化物形成的主要机制[30]

    最近研究表明,在硫酸盐甲烷转化带(SMTZ)中,有机质硫酸盐还原作用和甲烷厌氧氧化作用是在硫酸盐还原细菌和甲烷氧化古菌作用下同时发生的[31-33],且两种细菌大多会以一种共生体的形式存在,但仍有少数甲烷氧化古菌是以单体形式存在[34]

    不过,硫酸盐并非AOM的唯一电子受体,Fe3+、Mn4+、NO3-、NO2-等都是AOM的电子受体,且在热力学上相对于硫酸盐更容易参与AOM[35-36]。有研究表明,铁氧化物还原和甲烷厌氧氧化之间的耦合(铁-AOM)可能会对沉积物铁循环及其相关过程产生重要影响[37],比如,在硫酸盐甲烷转化带(SMTZ)之下,发现的自生蓝铁矿就与铁驱动的AOM有关[38]。但目前对于海洋中有利于铁-AOM的环境条件的了解仍知之甚少[39]。又比如在缺氧区,如果存在硝酸盐,那么硝酸盐相关的甲烷厌氧氧化可能是冷泉或含天然气水合物沉积物中的主要甲烷汇[40]。对于该过程,目前已经明确两种相关微生物:甲基奥米拉毕菌(Methylomirabilis oxyfera)和甲烷八叠球菌(Methanosarcinales)。此外,目前关于锰参与AOM的证据仍显不足,还有待进一步研究[41]

    硫酸盐还原带之下由产甲烷细菌产生甲烷是有机质降解的最终阶段。在早期成岩作用中,硫酸盐还原与甲烷生成是相互抑制又相互关联的[42]。相互抑制是因为硫酸盐还原反应需要消耗氢,而只有硫酸根被消耗完(<1 mmol/L)之后,在微生物的作用下,氢才会被用来生成甲烷[43]。但二者又相互关联,因为在氧化带系列中,硫酸根的浓度是影响甲烷生成带深度的重要影响因素[10,44]

  • 在海洋沉积物早期成岩过程中,随着一系列氧化还原反应的进行,沉积物和孔隙水中元素会发生扩散和迁移,在沉积物中会形成硫化物和自生碳酸盐矿物(图1)。

  • 在海洋沉积物早期成岩作用过程中,草莓状黄铁矿[45]是特征矿物(图2),其主要出现在缺氧环境中[47],但在热液喷口附近也可能出现[48]。自生黄铁矿可依据形成环境的不同分为两种:形成于海水中的同生黄铁矿和形成于沉积物孔隙水的成岩黄铁矿[43],其形成主要受活性有机质含量、硫酸盐的还原和活性铁含量的限制[49]

    Figure 2.  Strawberry pyrite from Eocene London clay in southeastern England (SEM photograph by Stephen Grimes) (after reference [46])

    Wilkin et al.[50]对草莓状黄铁矿的特征和形成机理进行了详细的研究。其形成机理目前主要有以下两种认识:第一种形成机理认为黄铁矿的形成需要以硫复铁矿(Fe3S4)等为中间产物[50-51]。即海洋沉积物中出现FeS微晶结核并逐渐生长至形成硫复铁矿(Fe3S4),之后粒度相近的硫复铁矿微晶聚合形成草莓状结构。最后聚合而成的硫复铁矿发生加硫反应形成黄铁矿。第二种形成机理则认为黄铁矿的形成不需要经过硫复铁矿生成的中间过程[52]

    另外,草莓状黄铁矿的形貌和粒度特征可以很好的反映其形成环境。在相同时代,同生草莓状黄铁矿的粒度大小要小于成岩黄铁矿[31,46],在纵向时间线上,古代沉积物和现代沉积物中草莓状黄铁矿的几何平均直径却没有显著变化[46],因此粒度大小不能用来指示形成时代,但可以粗略推测其形成环境。

  • 海洋中的自生碳酸盐矿物多与冷泉活动有关,主要包括镁方解石、白云石和文石(图3),可分为两大类[57-58]:1)以文石为主要矿物的碳酸盐形成于海水—沉积物界面;2)以高镁方解石或白云石为主要矿物的碳酸盐形成于产甲烷带和硫酸盐还原带附近。Magalhães et al.[58]绘制了加的斯湾甲烷自生碳酸盐岩形成的图解模型,可以很好地展示其形成过程(图4)。自生碳酸盐矿物的形成必须保证碱度够高,甲烷厌氧氧化作用产生的HCO3-,刚好为碳酸盐沉淀提供了足够高的碱度。近年来的研究表明,文石更倾向于出现在SO42-和碱度都偏高的偏氧化环境中,而SO42-浓度过高则会抑制白云石和高镁方解石的形成[59]

    Figure 3.  (a, b) Microcrystalline hypidiomorphic low⁃Mg calcite at station SS296 in gulf of Mexico (after reference [53]); (c, d) hypidiomorphic dolomite crystals in cold seep carbonate rocks at station GB382,gulf of Mexico (after reference [54]); (e) acicular aragonite crystals filled with holes in Alaminos Canyon oil and gas leakage area, gulf of Mexico deepwater area (after reference [55]); (f) gypsum crystals (prismatic) at station GMGS2⁃16, northeastern South China Sea (after reference [56])

    Figure 4.  Graphical model of the formation of methane authigenic carbonates in the gulf of Cadiz (modified from reference [58])

    菱铁矿(FeCO3),作为富铁的碳酸盐矿物,如果在海洋沉积物大量出现,则是孔隙水硫酸盐减少和早期成岩过程中形成的水硫化物完全反应的证据[60]。陈惠昌等[61]在神狐海域发现沉积物中有菱铁矿充填黄铁矿晶间空隙的现象。此外,在大陆边缘沉积物的产甲烷带中也发现有菱铁矿[62]。在海洋厌氧环境中的自生菱铁矿指示的是缺硫(或硫化物分解缓慢)、Fe2+和HCO3-含量高、Ca2+含量低的沉积环境[63]

    冷泉中的甲烷主要有两种:生物成因甲烷和热成因甲烷(图4[58]。生物成因甲烷中的δ13C通常在-110‰~-50‰[64],而产热甲烷的δ13C值通常在-50‰~-30‰[65]。冷泉碳酸盐岩中的碳元素主要来源于甲烷中的碳,因此其δ13C值偏负[66],一般在-70‰~-35‰[67],但目前很难根据δ13C值确定详细的甲烷源[65]

    冷泉碳酸盐的氧同位素组成偏重,δ18O通常为-0.7‰~7‰,这是因为天然气水合物释放的流体富含18O[59,68]。此外黏土矿物的脱水作用也会释放富含18O的层间水。但也有研究认为冷泉碳酸盐富集18O是沉淀时周围孔隙水与深部富集18O的流体发生混合所致[69]

    菱铁矿的δ13C可以用来判断其形成环境。Mozley et al.[70]认为δ13C值小于-8‰的菱铁矿可能是海洋成因,因为其碳元素基本来自沉积物中的有机质,δ18O值小于-13‰且δ13C值为正值的菱铁矿更可能为陆相成因。此外,钙、镁、锰的含量也可以用来判断菱铁矿的形成环境,因为大洋中含有更多的Mg2+、Ca2+和更少的Fe2+、Mn2+ [71]

  • 在早期成岩作用过程中,有机质的降解矿化,自生矿物的形成,以及微生物的存在,都会改变沉积物和孔隙水中的元素化学组成,影响元素的迁移转化和同位素分馏。

  • 海洋中的碳元素分为有机碳和无机碳。按照δ13C的值可以将有机碳分为以下几种:可水解氨基酸(平均值-19.93‰)和碳水化合物(平均值-20.74‰)中的δ13C较高,而脂类(平均值-25.37‰)和酸不溶部分(平均值-22.94‰)的δ13C较低[72]。这种同位素的分馏是在生物大分子合成时期就已形成,对此不做过多讨论。在早期成岩作用过程中,碳水化合物和可水解氨基酸优先降解,导致有机质中13C的贫化[73]。但细菌生长会优先吸收13C,因此高δ13C的细菌成因有机质的加入,会提高残留有机质中的δ13C值[74]

    残留有机质中氮元素在早期成岩过程中分馏的主要原因有:1)不同同位素组成的有机质的差异分解;2)含氮化合物水解过程中的氮分馏;3)细菌有机质的加入[75]。其中含氮化合物主要是蛋白质,蛋白质水解时14N先被释放。这部分14N被细菌合成有机质时优先利用,导致细菌成因有机质中δ15N偏低[76]。沉积物有机质中易分解的成分多富集15N,所以随着有机质的降解,沉积物中δ15N也会逐渐减小[76]。但也有学者发现沉积物中δ15N随着有机质降解逐渐增加[77]。如亚热带大西洋的研究表明早期成岩过程中有机质的消耗是导致沉积物中δ15N随深度增大的原因[78]。不过也有学者观察到沉积物中的δ15N变化极小[79]。因此,有机质分解转化中氮分馏的研究还有待进一步深入。

    对于硫元素,在早期成岩过程中,硫元素的循环始于H2S的形成。活性Fe(III)氧化物会与部分H2S形成FeS,另一部分H2S则与O2、NO3-、铁锰氧化物等氧化剂反应形成一系列中间态硫(Sn2-、S0、S2O3-、SO32-等)和硫酸盐,之后中间态硫发生氧化还原反应或歧化反应,最终以黄铁矿(FeS2)或有机硫的形式保存下来[80-81]

    在硫酸盐还原反应中,硫还原细菌优先还原32S,使之固定于金属硫化物中,导致剩余海水中硫酸盐相对富集34S。最近研究发现,在部分沉积物中草莓状黄铁矿的δ34S均为很大的负值(-40‰~-20‰),说明这类黄铁矿中的硫元素的来源可能与细菌成因的32S2-有关[82-83]。而Lin et al.[84]则认为34S亏损的黄铁矿代表早期成岩产物(有机质硫酸盐还原),因为后期成矿利用的是水体中富含34S的硫酸盐,所以富34S黄铁矿代表后期成岩产物(甲烷厌氧氧化)(图5)。

    Figure 5.  Effect of sulfate⁃driven methane anaerobic oxidation (SO4⁃AOM) on pyrite in methane leakage zone (modified from reference [84])

    近年来对南海冷泉沉积物和碳酸盐岩中含硫矿物同位素组成的研究,增加了对海底冷泉环境中生物地球化学硫循环的认识[65]。学者们分析了南海不同区域冷泉碳酸盐中的可还原铬硫化物的硫同位素组成[84-87],结果显示δ34S值在-51.3‰~114.8‰之间大幅度变化。而-50‰至-40‰的下限值接近无甲烷海洋沉积物中黄铁矿的δ34S值[84,86,88]。过去,这种低的δ34S值归因于微生物硫歧化[89]。然而,最新研究表明,与细菌硫酸盐还原相关的硫分馏程度可高达72‰[31,90-92],而在富甲烷环境中,硫酸盐驱动的甲烷厌氧氧化作用(SD-AOM)的34S-32S分馏通常小于40‰[29,93-94]。在典型的硫酸盐—甲烷过渡带(SMTZ)中,用于SD-AOM的硫酸盐以34SO42-为主,这导致SD-AOM衍生黄铁矿的δ34S值非常偏正,通常高于21‰[65]图5)。因此,甲烷渗漏环境中黄铁矿的平均δ34S值总是高于南海和其他地区非甲烷成因黄铁矿的平均值[95]

    相比之下,微生物硫酸盐还原过程中的δ18OSO4倾向于与孔隙水达到氧同位素平衡[96-98]。尽管硫酸盐不容易与水交换氧原子,但已证明微生物硫酸盐还原过程中形成的中间价态的硫可与水交换氧原子[99-100]

  • 上文提到,硫酸盐还原会产生硫离子,铁离子在成岩过程中的行为之一就是通过和硫离子结合形成自生矿物(如黄铁矿)来影响硫的循环。另外对于磷,铁的行为也会影响其在海水中的循环。由于Fe(III)氧化物会通过吸附作用捕获有机质分解过程中产生的磷,因此铁氧化物的减少利于磷的输入,从而提高初级生产力[101-102]

    海洋中的Fe(III)氧化物是很重要的电子受体,在海洋表层沉积物中有多种赋存形式:无定形或弱晶形的铁氧化物是参与微生物还原的最重要铁相,占铁氧化物相的一半左右[20]。铁的无机还原过程中,Fe(III)氧化物被还原并与硫酸根还原产生的硫离子结合形成硫化物沉淀;在铁的异化还原中,被细菌还原的铁则以离子形式进入溶液。海洋中的Fe(II)主要以FeS和FeS2为主要固相形态。

    对于铁同位素,研究表明铁的异化还原会产生具有较轻同位素组成的Fe2+(-3‰~-1‰),但硫化物的存在会优先将轻铁同位素沉淀出去,因此孔隙水中的Fe2+同位素组成较重[102-104]

    在海洋沉积环境中,C、S、Fe之间存在着相互制约的关系。首先,在早期成岩作用过程中,硫酸盐还原和铁锰氧化物还原的相对贡献程度取决于有机质的活性和含量[10,16]。其次,硫酸盐还原产生的S2-影响着铁氧化物的异化还原和黄铁矿等铁硫化物的生成[16]。最后,铁氧化物的活性和含量也会影响硫的反应进程,比如在海底厌氧环境中,如果Fe含量不足,硫元素可能会以有机硫作为最终形态储存在沉积物中[80-81]

    锰在海水中主要以Mn2+和MnCl+存在,但Mn2+易被氧化成锰(IV)固相(主要为MnO2和MnOOH)[105-106]。在氧化—缺氧界面下方,锰(IV)固相被还原溶解释放出的可溶性Mn2+可在沉积物中向上或向下扩散[107]。向下扩散可形成菱锰矿(MnCO3[108-109],向上扩散会回到水体,但如果遇到富氧孔隙水可重新被氧化为锰(IV)固相[110-111]。其循环模式可以总结为“沉积—扩散—沉积”[112]图6)。

    Figure 6.  (a) Manganese cycle and (b) redox profile of sedimentary pore water (modified from reference [113])

    海洋沉积物中,Fe2+、Mn2+主要来源于沉积物Fe3+、Mn4+的还原,其扩散取决于孔隙水和上覆水的浓度差,但Mn2+与Fe2+不同之处在于,Mn2+向上覆水扩散的量与上覆水盐度呈正相关,而Fe2+向上覆水扩散的量则与有机碳呈负相关,与上覆水盐度无关。因此相对于Fe2+,Mn2+随着沉积物厚度的增加会逐渐减少,而且上覆水盐度越高,Mn2+随着沉积物厚度增加而减少的幅度就越大。但在金属还原过程中,会发生多种反应,如锰还原可以通过微生物和化学途径直接发生,因此目前还很难评估不同反应及其相关速率[19]

  • 根据上文所述,早期成岩过程中,随着沉积物深度的增加,反应条件逐渐从有氧过渡到贫氧最终成为缺氧环境。对于氧化还原环境的定义,目前应用最广泛的一个版本是四种氧化还原相:氧化(富氧)(>2 mL/L)、亚氧化(贫氧)(2~0.2 mL/L)、缺氧(0.2~0 mL/L)、硫化(0 mL/L)[114-116]。而氧化还原环境的识别通常无法直接观测,更多的是通过一些代用指标,根据其溶解度或元素和矿物组成随氧化还原环境改变的性质,来反演古氧化还原条件。目前常用于氧化还原环境重建的代用指标有以下几个:1)Fe组分;2)Corg/P比值;3)氧化还原敏感微量元素;4)Mo、U同位素。

  • Fe的各种形态被广泛使用于评估古沉积体系中的氧化还原条件[117-119]。最初采用的指标是黄铁矿矿化度(DOP)[49,120-121],具体表达式:

    DOP=Fepyrite/(Fepyrite+Feacid-solube ((1))

    式中:Fepyrite代表黄铁矿中的铁,Feacid-solube代表1M盐酸提取出的沉积物中的铁。由于黄铁矿在富含溶解氧的环境中容易被氧化,所以黄铁矿的富集成矿与溶解氧的含量呈负相关。Raiswell et al.[122]曾提出以DOP为标准,将沉积物的原始环境划分为三类:富氧环境(DOP<0.46);贫氧环境(0.46<DOP<0.75);缺氧环境(0.75<DOP<1)。然而DOP分析是在泥盆纪、侏罗纪和白垩纪的少量古海洋单元上进行的,没有与现代系统进行任何比较,因此存在局限性。最近的铁形态研究经常使用(Fepy/FeHR)与(FeHR/FeT)的交会图(图7)(Fepy为黄铁矿中的铁,FeHR为总活性铁,FeT为总铁),以便对氧化还原相进行更详细的分类[118,123]。FeHR/FeT用于区分富氧相(<0.22)、可能缺氧(0.22~0.38)和缺氧相(>0.38),而Fepy/FeHR用于区分含铁边缘海相(<0.7)和硫化相(>0.8)。正如Poulton et al.[118]所总结,富氧海相产生的FeHR/FeT平均值为0.14±0.08[124],但不超过0.38[122],而缺氧相的FeHR/FeT比值大多大于0.38,但偶尔会出现较低的值(可能是由于快速沉积导致的FeHR稀释,或由于深埋藏环境中未发生硫化反应的铁矿物部分转化为活性较低的片状硅酸盐矿物而耗尽FeHR[124-125]

    Figure 7.  Fepy/FeHRvs. FeHR/FeT (modified from reference [119])

  • Corg/P即沉积物有机碳含量和磷元素含量的比值,比值以摩尔为单位计算,以便于与浮游藻类来源进行比较:Corg/P=(TOC/12)/(P/30.97),其中12和30.97分别是TOC和P的摩尔重量。海藻的碳/磷摩尔比为106(Redfield比)[126]。含磷化合物在沉积物/水界面或附近分解后,磷的去向取决于底层水的氧化还原条件:在缺氧条件下,供磷吸附的铁氧化物和氢氧化物较少,所以磷会重回水柱,同时缺氧条件下有机碳含量升高,最终使沉积物的Corg/P大于Redfield比;在富氧条件下,有机质多被分解,释放出的磷吸附在氧化铁或铁氢氧化物表面而保留在沉积物中,导致沉积Corg/P小于Redfield比[127-129]。需要指出的是,即使是在氧化还原条件相当稳定的沉积环境,Corg/P也会因样本不同而产生较大的波动[127]。因此,单一样本Corg/P的古氧化还原估算是不可靠的,而不同样品的平均Corg/P可以进行较准确的古氧化还原评估[130]

  • 不同的痕量金属在不同的氧化还原条件下会产生不同的地球化学行为,比如在具有相对简单氧化还原历史的沉积物中,Cr、U和V在反硝化条件下会被还原并富集,而Ni、Co、Cu、Zn、Cd和Mo主要在硫酸盐还原条件下富集[111]。因此我们可以利用不同元素的行为对比,来识别某些沉积体系中的氧化还原程度。但使用痕量金属元素进行氧化还原重建时需考虑锰的地球化学行为对其富集程度的影响[105-106,111],尤其在亚氧化—缺氧环境中[131]

    对于如何评估痕量金属的富集程度,早期研究使用单元素含量或双金属元素含量比值,如V/Cr、V/(V+Ni)和Ni/Co[132],而最近的研究倾向于将铝标准化富集因子(EF)作为评估痕量金属富集的最佳方法[111,133-135]

    XEF=(X/Al)sample/(X/Al)standard ((2))

    式中:X是待用痕量金属,标样通常是后太古代澳大利亚页岩(PAAS)[136]或上陆壳(UCC)[137]。富集因子表示的是样品中目标元素相对于标样中目标元素平均值的富集程度[116,133]。XEF<1表示亏损,XEF>3表示明显富集,XEF>10表示中—强烈富集[116,133]。如U和Mo,U富集始于Fe还原带,被活化后进入沉积物,而Mo在有H2S的环境中才开始富集,因而二者富集程度差异可用来判断水体处于缺氧还是硫化条件,即缺氧条件下UEF>MoEF,硫化条件下UEF<MoEF[116,138]

    Algeo et al.[130]总结了Re、U和Mo的富集对应于氧化还原阶梯(图8)上的三个不同阈值(T1到T3),其中Re富集开始于亚氧化/亚还原阈值,U富集在亚还原区的中间,Mo富集在硫化/缺氧阈值附近(图8)。

    Figure 8.  Redox step and threshold at pH=7 (modified from reference [130])

    但是这些代用指标不能统一代入,在标定时必须参考所研究的地层数据,针对所调查的每个沉积体系,分别按照沉积环境的氧化还原程度进行标定。Algeo et al.[130]给出的方法是首先使用ReEF、UEF和MoEF来确定关键的氧化还原阈值,然后根据这些氧化还原阈值校准额外的代用指标(如Fe、Corg/P和其他痕量金属富集因子)。具体是用ReEF、UEF和MoEF分别与其他代用指标做相关图,观察二者富集开始的先后,即可知该代用指标的富集是在T1-T3阈值之前或之后[130]

  • Mo、U在海水中停留时间均较长(Mo:0.8 Ma;U:200~400 ka)[139],且其在沉积物中的同位素值与氧化还原条件变化具有较好的相关性,因此可被用来指示海水氧化还原条件[138]

    对于Mo同位素,在氧化环境下,沉积物中锰的氧化物会优先吸附轻的Mo同位素,所以δ98Mo偏负,而在缺氧—硫化环境中,Mo大量富集在沉积物中导致δ98Mo偏正[140-141],具体分馏情况如图9。对于U同位素,因为在缺氧—硫化环境中U会被还原成正四价并在沉积物中富集,所以δ238U偏正;相反,在氧化环境中U以易溶的正六价形式存在,所以δ238U偏负[143-144],具体分馏情况如图10

    Figure 9.  Fractionation of 98Mo in different sedimentary environments (modified from references [138,142])

    Figure 10.  Fractionation of 238U in different sedimentary environments (modified from references [138,145])

  • 海洋沉积物的早期成岩作用对于古沉积环境重建和古气候还原具有重要作用,伴随着早期成岩过程中的有机质降解,沉积物中形成众多自生矿物,同时发生着元素的迁移和同位素分馏,改变了沉积物中的原始地球化学记录,产生新的地质信息。与此同时,随着早期成岩作用研究的深入,研究手段和技术均获得了重要突破,对于地球化学信息的解读更加详细和深入,为人们探索地质过程和机理做出了重要贡献。虽然目前对于早期成岩作用的研究成果卓越,但仍然在部分领域存在着尚未突破的理论或技术问题。

    (1) 在有机质降解过程中的氧化还原反应序列随深度的分布目前已经逐渐明了,并且每个氧化还原反应带所对应的生物地球化学进程研究也取得一系列成果,各个反应带之间的联系也获得一定认识。相对于硫酸盐还原,铁锰还原的研究还稍显薄弱,它们在海洋沉积物早期成岩过程中的作用需要进一步评估。

    (2) 以黄铁矿和碳酸盐矿物等为代表的自生矿物的形成过程与海洋的氧化还原状态有关,并且受到全球或者局部C-S-Fe生物地球化学过程的控制,并能在地质记录中很好地保存。因此理解海洋沉积物早期成岩过程中自生矿物的形成机理对解读地质历史记录信号具有重要意义,需要进一步研究。

    (3) 稳定同位素的分馏是地球化学研究的重要方法之一,通过研究同位素分馏可以还原沉积物来源以及古环境变化,因此对于稳定同位素的分馏也是不容忽视的研究内容。但部分元素如氮的分馏机制尚不完全明确,今后可以开展高维同位素、原位测试及数值模拟等方向的研究,进而更深入地理解其过程和影响因素。

Reference (145)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return