Advanced Search
Volume 40 Issue 2
Apr.  2022
Turn off MathJax
Article Contents

BAI YaZhi, QIAO ShuQing, WU Bin, HU LiMin, WANG Nan, FAN DeJiang, YANG Gang, SHI XueFa. Geochemistry Features and Environmental Responses of Organic Carbon Burial in the Gulf of Thailand over the Past Century[J]. Acta Sedimentologica Sinica, 2022, 40(2): 484-493. doi: 10.14027/j.issn.1000-0550.2021.033
Citation: BAI YaZhi, QIAO ShuQing, WU Bin, HU LiMin, WANG Nan, FAN DeJiang, YANG Gang, SHI XueFa. Geochemistry Features and Environmental Responses of Organic Carbon Burial in the Gulf of Thailand over the Past Century[J]. Acta Sedimentologica Sinica, 2022, 40(2): 484-493. doi: 10.14027/j.issn.1000-0550.2021.033

Geochemistry Features and Environmental Responses of Organic Carbon Burial in the Gulf of Thailand over the Past Century

doi: 10.14027/j.issn.1000-0550.2021.033
Funds:

National Natural Science Foundation of China 41722603

National Programme on Global Change and Air-Sea Interaction GASI-GEOGE-03

Taishan Scholar Program of Shandong Province TSQN20182117

  • Received Date: 2020-12-31
  • Rev Recd Date: 2021-02-04
  • Publish Date: 2022-04-10
  • Affected by the tropical monsoon climate and the land inputs, the Gulf of Thailand (GOT) is characterized by extensive land-ocean interaction, making it an ideal region for studying the relationship between organic carbon burial in sediments and the land-based input, marine primary productivity, and variation of the marine environment. Based on the highly resolution chronology constrained by the excess of lead isotopes (210Pb, 210Pbex), the geochemical characteristics of organic carbon and its burial records during the past century were reconstructed by analyzing the total organic carbon (TOC), total nitrogen (TN), stable carbon isotope (δ13C), and sediment grain size of core sediments (T43) in the GOT. The results showed that the sedimentary organic matter originated from mixed terrestrial and marine origins and mainly from marine organic matter (OM) contributions. TOC showed a coupled variation with that of TN and δ13C, indicating a consistency of provenance towards organic carbon and nitrogen. Both C/N and δ13C showed that the OM at the lower sections was mainly derived from marine primary productivity, followed by a gradual increase in terrestrial OM. The mass accumulation rate and the burial flux of TOC in the core showed a general decrease after the 1960s, which may be related to the decline of sediment transport caused by the dam construction in the drainage basin. However, since the 1980s, δ13C has shown an obvious depletion with increased terrestrial OM, which may be related to the enhanced heavy rainfall and coastal erosion associated with tropical cyclones over the last 30 years.
  • [1] Hedges J I, Keil R G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81-115.
    [2] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138-155.
    [3] Goni M A, Monacci N, Gisewhite R, et al. Distribution and sources of particulate organic matter in the water column and sediments of the Fly River Delta, Gulf of Papua (Papua New Guinea)[J]. Estuarine, Coastal and Shelf Science, 2006, 69(1/2): 225-245.
    [4] Tesi T, Miserocchi S, Goñi M A, et al. Source, transport and fate of terrestrial organic carbon on the western Mediterranean Sea, Gulf of Lions, France[J]. Marine Chemistry, 2007, 105(1/2): 101-117.
    [5] Zonneveld K A F, Versteegh G J M, Kasten S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2): 483-511.
    [6] Bianchi T S, Allison M A. Large-river delta-front estuaries as natural “recorders” of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8085-8092.
    [7] Sampere T P, Bianchi T S, Wakeham S G, et al. Sources of organic matter in surface sediments of the Louisiana Continental margin: Effects of major depositional/transport pathways and Hurricane Ivan[J]. Continental Shelf Research, 2008, 28(17): 2472-2487.
    [8] Nittrouer C A, Brunskill G J, Figueiredo A G. Importance of tropical coastal environments[J]. Geo-Marine Letters, 1995, 15(3): 121-126.
    [9] Meybeck M. How to establish and use world budgets of riverine materials[M]//Lerman A, Meybeck M. Physical and chemical weathering in geochemical cycles. The Hague: Kluwer Academic, 1988: 247-272.
    [10] DeMaster D J, McKee B A, Moore W S, et al. Geochemical processes occurring in the waters at the Amazon River/ocean boundary[J]. Oceanography, 1991, 4(1): 15-20.
    [11] Ericson J P, Vörösmarty C J, Dingman S L, et al. Effective sea-level rise and deltas: Causes of change and human dimension implications[J]. Global and Planetary Change, 2006, 50(1/2): 63-82.
    [12] Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities[J]. Nature Geoscience, 2009, 2(10): 681-686.
    [13] Walling D E, Fang D. Recent trends in the suspended sediment loads of the world’s rivers[J]. Global and Planetary Change, 2003, 39(1/2): 111-126.
    [14] Penland S, Boyd R, Suter J R. Transgressive depositional systems of the Mississippi delta plain: A model for barrier shoreline and shelf sand development[J]. Journal of sedimentary Research, 1988, 58(6): 932-949.
    [15] Törnqvist T E, Wallace D J, Storms J E A, et al. Mississippi Delta subsidence primarily caused by compaction of Holocene strata[J]. Nature Geoscience, 2008, 1(3): 173-176.
    [16] Hilton R G, Galy A, Hovius N, et al. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains[J]. Nature Geoscience, 2008, 1(11): 759-762.
    [17] Darby S E, Hackney C R, Leyland J, et al. Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity[J]. Nature, 2016, 539(7628): 276-279.
    [18] Meksumpun S, Meksumpun C, Hoshika A, et al. Stable carbon and nitrogen isotope ratios of sediment in the gulf of Thailand: Evidence for understanding of marine environment[J]. Continental Shelf Research, 2005, 25(15): 1905-1915.
    [19] Alongi D M, Wattayakorn G, Pfitzner J, et al. Organic carbon accumulation and metabolic pathways in sediments of mangrove forests in southern Thailand[J]. Marine Geology, 2001, 179(1/2): 85-103.
    [20] Boonyatumanond R, Wattayakorn G, Amano A, et al. Reconstruction of pollution history of organic contaminants in the Upper Gulf of Thailand by using sediment cores: First report from Tropical Asia Core (TACO) project[J]. Marine Pollution Bulletin, 2007, 54(5): 554-565.
    [21] Wu B, Wu X D, Shi X F, et al. Influences of tropical monsoon climatology on the delivery and dispersal of organic carbon over the Upper Gulf of Thailand[J]. Marine Geology, 2020, 426: 10629.
    [22] Thampanya U, Vermaat J E, Sinsakul S, et al. Coastal erosion and mangrove progradation of southern Thailand[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 75-85.
    [23] Wattayakorn G, King B, Wolanski E, et al. Seasonal dispersion of petroleum contaminants in the Gulf of Thailand[J]. Continental Shelf Research, 1998, 18(6): 641-659.
    [24] Cheevaporn V, Menasveta P. Water pollution and habitat degradation in the Gulf of Thailand[J]. Marine Pollution Bulletin, 2003, 47(1/2/3/4/5/6): 43-51.
    [25] Wattayakorn G. Petroleum pollution in the Gulf of Thailand: A historical review[J]. Coastal Marine Science, 2012, 35(1): 234-245.
    [26] Srisuksawad K, Porntepkasemsan B, Nouchpramool S, et al. Radionuclide activities, geochemistry, and accumulation rates of sediments in the Gulf of Thailand[J]. Continental Shelf Research, 1997, 17(8): 925-965.
    [27] Hungspreugs M, Utoomprurkporn W, Sompongchaiyakul P, et al. Possible impact of dam reservoirs and river diversions on material fluxes to the Gulf of Thailand[J]. Marine Chemistry, 2002, 79(3/4): 185-191.
    [28] Liu S F, Zhang H, Zhu A M, et al. Distribution of rare earth elements in surface sediments of the western Gulf of Thailand: Constraints from sedimentology and mineralogy[J]. Quaternary International, 2019, 527: 52-63.
    [29] Shi X F, Liu S F, Fang X S, et al. Distribution of clay minerals in surface sediments of the western Gulf of Thailand: Sources and transport patterns[J]. Journal of Asian Earth Sciences, 2015, 105: 390-398.
    [30] Hu L M, Shi X F, Qiao S Q, et al. Sources and mass inventory of sedimentary polycyclic aromatic hydrocarbons in the Gulf of Thailand: Implications for pathways and energy structure in SE Asia[J]. Science of the Total Environment, 2017, 575: 982-995.
    [31] Williams H, Choowong M, Phantuwongraj S, et al. Geologic records of Holocene typhoon strikes on the Gulf of Thailand coast[J]. Marine Geology, 2016, 372: 66-78.
    [32] Hu L M, Shi X F, Guo Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodynamic forcing[J]. Marine Geology, 2013, 335: 52-63.
    [33] 周亮,高抒,杨阳,等. 海南岛东南部海湾潟湖沉积和碳埋藏变化研究[J]. 第四纪研究,2016,36(1):66-77.

    Zhou Liang, Gao Shu, Yang Yang, et al. Sediment accumulation and carbon burial in two tropical lagoons, southeastern Hainan island[J]. Quaternary Science, 2016, 36(1): 66-77.
    [34] 赵宁,杨旸,高建华,等. 自然和人类活动作用下月湖沉积物有机质来源及其演变[J]. 地球化学,2014,43(4):365-374.

    Zhao Ning, Yang Yang, Gao Jianhua, et al. The influences of natural and human activities on sources and evolution of organic matter in the Yuehu Lagoon sediments[J]. Geochimica, 2014, 43(4): 365-375.
    [35] Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284.
    [36] Nutalaya P. Coastal erosion in the Gulf of Thailand[J]. GeoJournal, 1996, 38(3): 283-300.
    [37] Schefuß E, Versteegh G J M, Jansen J H F, et al. Lipid biomarkers as major source and preservation indicators in SE Atlantic surface sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2004, 51(9): 1199-1228.
    [38] Yoneyama T, Okada H, Chongpraditnum P, et al. Effects of vegetation and cultivation on δ13C values of soil organic carbon and estimation of its turnover in Asian tropics: A case study in Thailand[J]. Soil Science and Plant Nutrition, 2006, 52(1): 95-102.
    [39] Ruttenberg K C, Goñi M A. Phosphorus distribution, C:N:P ratios, and δ 13C OC in arctic, temperate, and tropical coastal sediments: Tools for characterizing bulk sedimentary organic matter[J]. Marine Geology, 1997, 139(1/2/3/4): 123-145.
    [40] Ramaswamy V, Gaye B, Shirodkar P V, et al. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea[J]. Marine Chemistry, 2008, 111(3/4): 137-150.
    [41] Goñi M A, Ruttenberg K C, Eglinton T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1998, 62(18): 3055-3075.
    [42] Galy V, Peucker-Ehrenbrink B, Eglinton T. Global carbon export from the terrestrial biosphere controlled by erosion[J]. Nature, 2015, 521(7551): 204-207.
    [43] Redfield A C, Ketchum B H, Richards F A. The influence of organisms on the composition of sea-water[M]//Hill M N. The composition of seawater: Comparative and descriptive oceanography. The sea: Ideas and observations on progress in the study of the seas. New York: Wiley, 1963: 26-77.
    [44] Fry B, Sherr E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J]. Contributions to Marine Science, 1984, 27: 13-47.
    [45] Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92(1/2/3/4): 239-261.
    [46] Kennedy H, Gacia E, Kennedy D P, et al. Organic carbon sources to SE Asian coastal sediments[J]. Estuarine, Coastal and Shelf Science, 2004, 60(1): 59-68.
    [47] Boonphakdee T, Fujiwara T. Temporal variability of nutrient budgets in a tropical river estuary: The bangpakong river estuary, Thailand[J]. EnvironmentAsia, 2008, 1(1): 7-21.
    [48] Boonphakdee T, Kasai A, Fujiwara T, et al. Combined stable carbon isotope and C/N ratios as indicators of source and fate of organic matter in the bangpakong river estuary, Thailand[J]. Environment Asia, 2008, 1(1): 28-36.
    [49] Rau G H, Takahashi T, Des Marais D J. Latitudinal variations in plankton δ13C: Implications for CO2 and productivity in past oceans[J]. Nature, 1989, 341(6242): 516-518.
    [50] Goericke R, Fry B. Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean[J]. Global Biogeochemical Cycles, 1994, 8(1): 85-90.
    [51] Walling D E. The impact of global change on erosion and sediment transport by rivers: Current progress and future challenges[M]. Paris, Franc: United Nations Educational, Scientific and Cultural Organization, 2009: 1-30.
    [52] Rangsiwanichpong P, Kazama S, Ekkawatpanit C, et al. Evaluation of cost and benefit of sediment based on landslide and erosion models[J]. CATENA, 2019, 173: 194-206.
    [53] Gonneea M E, Paytan A, Herrera-Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J]. Estuarine, Coastal and Shelf Science, 2004, 61(2): 211-227.
    [54] Valiela I, Cole M L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads[J]. Ecosystems, 2002, 5: 92-102.
    [55] Liu K B, Fan D D. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology [J]. Chinese Science Bulletin, 2008, 53(19): 2907-2922.
    [56] Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465-468.
    [57] Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/southern Oscillation activity at millennial timescales during the Holocene Epoch[J]. Nature, 2002, 420(6912): 162-165.
    [58] 王承涛. 泰国湾尖竹汶海岸沉积物组成和分布特征及其环境意义[D]. 厦门:自然资源部第三海洋研究所,2020.

    Wang Chengtao. Grain-Size composition and distribution characteristics of sediments in the Chanthaburi coast, Gulf of Thailand and its environmental significance[D]. Xiamen: The Third Institute of Oceanography, Ministry of Natural Resources, 2020.
    [59] Promchote P, Wang S Y S, Johnson P G. The 2011 great flood in Thailand: Climate diagnostics and implications from climate change[J]. Journal of Climate, 2016, 29(1): 367-379.
    [60] Herbeck L S, Unger D, Krumme U, et al. Typhoon-induced precipitation impact on nutrient and suspended matter dynamics of a tropical estuary affected by human activities in Hainan, China[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 375-388.
    [61] Herbeck L S, Unger D, Wu Y, et al. Effluent, nutrient and organic matter export from shrimp and fish ponds causing eutrophication in coastal and back-reef waters of NE Hainan, tropical China[J]. Continental Shelf Research, 2013, 57: 92-104.
    [62] 薛健宏,杨逸萍,郭卫东,等. 9810号台风过程厦门近岸海域POC的变化特征[J]. 台湾海峡,2000,19(3):269-275.

    Xue Jianhong, Yang Yiping, Guo Weidong, et al. Variation characteristics of POC in Xiamen coastal area during Typhoon 9810 process[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(3): 269-275.
    [63] Allison M A, Dellapenna T M, Gordon E S, et al. Impact of Hurricane Katrina (2005) on shelf organic carbon burial and deltaic evolution[J]. Geophysical Research Letters, 2010, 37(21): L21605.
    [64] Turner R E, Baustian J J, Swenson E M, et al. Wetland sedimentation from Hurricanes Katrina and Rita[J]. Science, 2006, 314(5798): 449-452.
    [65] Sinsakul S. Late Quaternary geology of the Lower Central Plain, Thailand[J]. Journal of Asian Earth Sciences, 2000, 18(4): 415-426.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(331) PDF downloads(135) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-31
  • Revised:  2021-02-04
  • Published:  2022-04-10

Geochemistry Features and Environmental Responses of Organic Carbon Burial in the Gulf of Thailand over the Past Century

doi: 10.14027/j.issn.1000-0550.2021.033
Funds:

National Natural Science Foundation of China 41722603

National Programme on Global Change and Air-Sea Interaction GASI-GEOGE-03

Taishan Scholar Program of Shandong Province TSQN20182117

Abstract: Affected by the tropical monsoon climate and the land inputs, the Gulf of Thailand (GOT) is characterized by extensive land-ocean interaction, making it an ideal region for studying the relationship between organic carbon burial in sediments and the land-based input, marine primary productivity, and variation of the marine environment. Based on the highly resolution chronology constrained by the excess of lead isotopes (210Pb, 210Pbex), the geochemical characteristics of organic carbon and its burial records during the past century were reconstructed by analyzing the total organic carbon (TOC), total nitrogen (TN), stable carbon isotope (δ13C), and sediment grain size of core sediments (T43) in the GOT. The results showed that the sedimentary organic matter originated from mixed terrestrial and marine origins and mainly from marine organic matter (OM) contributions. TOC showed a coupled variation with that of TN and δ13C, indicating a consistency of provenance towards organic carbon and nitrogen. Both C/N and δ13C showed that the OM at the lower sections was mainly derived from marine primary productivity, followed by a gradual increase in terrestrial OM. The mass accumulation rate and the burial flux of TOC in the core showed a general decrease after the 1960s, which may be related to the decline of sediment transport caused by the dam construction in the drainage basin. However, since the 1980s, δ13C has shown an obvious depletion with increased terrestrial OM, which may be related to the enhanced heavy rainfall and coastal erosion associated with tropical cyclones over the last 30 years.

BAI YaZhi, QIAO ShuQing, WU Bin, HU LiMin, WANG Nan, FAN DeJiang, YANG Gang, SHI XueFa. Geochemistry Features and Environmental Responses of Organic Carbon Burial in the Gulf of Thailand over the Past Century[J]. Acta Sedimentologica Sinica, 2022, 40(2): 484-493. doi: 10.14027/j.issn.1000-0550.2021.033
Citation: BAI YaZhi, QIAO ShuQing, WU Bin, HU LiMin, WANG Nan, FAN DeJiang, YANG Gang, SHI XueFa. Geochemistry Features and Environmental Responses of Organic Carbon Burial in the Gulf of Thailand over the Past Century[J]. Acta Sedimentologica Sinica, 2022, 40(2): 484-493. doi: 10.14027/j.issn.1000-0550.2021.033
  • 全球约90%的沉积有机碳埋藏主要发生在河口—大陆架地区,这里是有机碳的重要“沉积汇”,对全球碳循环有重要影响[1-2]。陆架沉积有机质主要来源于海洋初级生产力和河流带来的土壤碳、岩石碳及植被等贡献[3-4];沉积有机碳的埋藏除了受来源的影响外,也受陆架沉积动力环境的影响[5]。因此,系统认识该沉积区有机碳的分布特征与埋藏演化记录对于更好地理解陆架—边缘海在全球碳循环中的作用具有重要科学意义[6-7]

    低纬热带海区具有太阳辐射强、温度高、季风作用强、径流冲刷剧烈、风化作用强等特点,大量的陆源有机质可通过河流,大气等途径输入近海[8]。据统计,低纬地区河流每年携带超过全球60%的颗粒物入海[9]。并且,稳定的光照和营养盐输入使热带河流及其邻近的陆架初级生产力相对较高[10]。近百年来,一方面由于频繁的流域人类活动(如建坝、土地利用方式转变等),导致热带边缘海地区入海沉积物的通量显著减少[11-13];另一方面,全球变暖背景下频发的极端天气/气候事件也对近海环境造成了深刻的影响[14-15]。研究显示,极端天气事件导致的降水可比平时一般降雨量增加多达5倍以上[16],显著改变了沉积物入海的方式和通量[12,17]。综上,在全球气候变化的背景下,热带边缘海接受了来自于陆地和海洋大量的有机质输入,这可能对低纬近海的环境和生态系统演化有重要影响[8]

    当前,泰国湾沉积有机质的研究主要聚焦于来源、分布及其对人类活动的响应[18-20]。如基于有机碳同位素的分析表明初级生产力是泰国湾现代沉积有机质的主要来源[18],且泰国湾近岸区具有较高的沉积速率(~1.1 cm/a),可促进近海有机碳的埋藏[21];此外,该区流域人类活动(如大坝的建设)也影响着近海沉积物的输入和生态环境[22]。由于水深较浅,有限的水体交换能力使泰国湾的环境易受到人为活动的影响[23]。20世纪60年代以来,随着周边人口和环境的压力日益增大,泰国湾的生态环境也发生了较大的变化,富营养化和污染日益严重[24-25]。近年来由于过度森林砍伐、土地利用方式的转变、大坝的建设以及季风气候的波动对该区的物质来源和沉积环境都造成了直接的影响[26]。已有研究表明,在全球变暖背景下,泰国湾有机碳的输送、扩散和埋藏与季风气候控制下的降水密切相关,这可能是影响该区有机碳“源—汇”过程的重要因素[8,21,27]。综上可知,前人有关该区沉积有机质的研究多集中于现代有机碳的源汇格局等方面,而从较长时间序列(如近百年)探讨全球变暖背景下海洋沉积有机质的埋藏变化及其对气候环境变化的沉积响应等方面还鲜有报道。

    据此,本文基于泰国湾东北部现代泥质沉积中心采集的箱式柱样,探讨了近百年来沉积有机碳的地球化学特征、沉积记录及其环境响应,这对于认识近百年东南亚热带近海沉积物中有机质的输入来源、埋藏记录及其影响因素等方面具有重要的意义,也可为评价人类活动对低纬近海生态环境的影响提供科学依据。

  • 泰国湾位于巽他陆架北部,是低纬度热带典型的半封闭陆架海,平均水深约45 m,主要可分为内湾和外湾两部分(图1)。受季风的显著影响,泰国湾夏季盛行西南季风,环流基本呈顺时针方向,外湾东北部和苏梅岛附近呈逆时针方向;冬季盛行东北季风,北部环流转变为逆时针方向。泰国湾周边河流每年携带大约6.32 Mt泥沙入海,其中泥沙载荷最高的为北部的湄南河[26]。泰国湾现代沉积物主要受北部河流的输入,东西两侧山地的风化侵蚀贡献以及外海物质的输入[18,29]。其中,细颗粒沉积物主要堆积在内湾河口,外湾中部区域[19,29],受沉积动力条件的控制,在外湾东北部以及苏梅岛附近区域为该区的现代泥质沉积中心[28,30]。研究表明,泰国湾靠近海岸一带具有较高的沉积速率和物质累积通量(图1b),一般都在0.4 cm/a或300 mg/cm2/a以上,尤其在湄南河口沉积速率可达0.78 cm/a[26]或1.0 cm/a[20]。此外,泰国湾是东南亚典型的半封闭海,热带气旋的影响尤为频繁。据中国气象网台风网的数据,1950—2010年影响泰国内陆和泰国湾的台风频次共50次,并呈逐渐减少趋势。图1a展示了影响泰国湾的部分台风路径。Williams et al.[31]在泰国湾西海岸发现了受热带气旋影响的异常砂层沉积,表明在全球气候变暖背景下,强热带气旋对于近海陆海之间物质的交换及沉积记录响应等方面具有重要的影响。

    Figure 1.  Modern sedimentary environment and sampling station in the Gulf of Thailand (GOT)

  • 本研究的沉积短柱T43于2011年在泰国湾东北部利用箱式取样器采集获得,该站位于海区东北部的细粒沉积中心,水深61 m(图1a)。沉积柱采集后带回实验室用不锈钢刀以1 cm间隔进行分样,样品用铝箔包好置于冰柜-20 ℃保存直至分析。

  • 沉积物有机碳氮的分析按文献[32]在自然资源部海洋地质与成矿作用重点实验室进行。样品冷冻干燥后磨至200目,称取1 g左右的沉积物置于50 mL离心管中,滴加1 mol/L的盐酸直至样品不冒泡为止,反应12 h后用Milli-Q纯水清洗至中性。然后60 ℃烘干,干燥器中平衡至恒重。称取10~20 mg原始样品用锡舟包裹好在元素分析仪(德国Vario EL Ⅲ元素分析仪)上测得总碳和总氮(TC、TN)的百分含量;称取10~20 mg去除碳酸盐后的样品上元素分析仪测得碳的百分含量,然后由酸洗前与酸洗后重量之差校正计算可得原始样品中有机碳(TOC)的百分含量。

  • 称取4~6 mg去除碳酸盐后的样品用锡舟包好置于稳定同位素质谱仪上进行测试(质谱仪型号:Thermo Fisher 253 plus,元素分析仪型号:Thermo Fisher EA-Isolink)。其中,反应管燃烧温度:960 ℃,色谱柱温度:70 ℃,载气流速:180 mL/min,参考气流速:70 mL/min,氧气流速:175 mL/min。δ 13C值以PDB(Pee Dee Belemnite)国际标准物质作为参考标准,δ 13C值按照以下公式计算获得:

    δ C 13 ( ) = R 13 C / C 12 C s a m p l e R 13 C / C 12 C V P D B - 1 × 1000 (1)

    式中:R13 C/12 C VPDB)为标准物质的碳同位素比值,分析精度为≦0.3‰。

  • 采用激光粒度分析方法,取0.2 g样品置于离心管中,加入15 mL浓度为15%的H2O2静置12 h(去除有机质),再加入5 mL浓度为10%的稀盐酸静置12 h(去除碳酸钙),清洗多余的盐酸3~4次至pH=7。处理后的样品在英国Malvern 3000型号激光粒度仪上测试,测量范围在0.02~2 000 μm,粒级分辨率为0.01 ϕ。粒度参数采用矩法进行计算,沉积物分类和命名采用谢帕德分类命名法。

  • 沉积柱210Pb测年分析在华东师范大学河口海岸学国家重点实验室完成。分析仪器采用EG&G Ortec 公司生产超低本底高纯锗(HPGe)γ能谱仪分析系统(Canberra Be3830)。方法检测了沉积物样品中210Pb、226Ra和137Cs的放射性。该仪器采用多层屏蔽(超低本底,777铅屏蔽),在高能量(1 332 keV)下有良好的分辨率(1.8 keV)。每个样品的计数时间从12到24小时不等。沉积物中过量210Pb活性通过210Pb总活性减去226Ra得到。

  • 根据以下公式计算[33-34]

    ρ d r y = ρ p ρ w θ ρ p + ρ w (2)
    F S = ρ d r y S (3)
    F O = ρ d r y S C O (4)

    式中:ρdry 为单位体积沉积物内干燥沉积物的质量(kg/m);ρp 为沉积物颗粒的密度(2.6×103 kg/m3);ρw 为孔隙水密度(1.0×103 kg/m3);θ为含水率;Fs 为沉积质量埋藏速率;FO 为有机碳埋藏通量(g/(m2·a));S为沉积速率(m/a);CO 为有机碳的含量(g/kg)

  • 总体而言,除0~5 cm呈现出生物混合作用特征外,T43柱样的总210Pb活度(210Pbtot)和过剩210Pb(210Pbex)活度两者的垂向变化趋势基本相同,即随深度的增加,数值呈指数衰减(图2)。本文依据常量初始浓度(constant initial concentration,简称CIC)模式,得到柱样的平均沉积速率约为0.54 cm/a。不同层位210Pbex活度对数与深度之间具有较好的相关性(R 2=0.91,N=15),反映了相对稳定的现代沉积环境。基于210Pbex获得的表观沉积速率可获得研究区近百年的连续沉积序列。

    Figure 2.  The 210Pb vertical distribution of the T43 core

  • 沉积柱T43位于细颗粒的现代沉积中心[30],粒度相对偏细。如图3a所示,沉积物主要为粉砂和砂质粉砂。粉砂组分含量较高,约74%~85%,平均值为79%,砂和黏土组分含量变化范围分别为8%~18%和5%~11%,平均值为13%和8%。细粒沉积物含量(黏土+粉砂)平均值为87%。平均粒径(Md)在5.60~6.14 μm范围内变化,平均值为5.83 μm(图3b)。垂向上,柱样不同粒径组分随深度基本保持不变,整体上反映了相对稳定的沉积环境(图3a)。

    Figure 3.  The vertical distribution of particle size composition (a), mean Grain size (b), total nitrogen (TN) (c), total organic carbon (TOC) (d), carbon to nitrogen ratio (TOC/TN) (e), and organic carbon isotopic composition (δ 13C) (f)

  • TOC的含量介于1.88%~2.31%,平均值为(2.02±0.10)%;TN含量变化范围在0.27%~0.36%,平均值为(0.31±0.02)%,波动相对较大(图3c,d);TOC、TN从下到上呈现逐渐增加的趋势。TOC/TN的变化范围为6.03~7.64,平均值为6.53±0.31(图3e);δ 13C的变化范围在-23.40‰~-21.35‰,平均值为(-21.82±0.44)‰(图3f)。根据δ 13C垂向上的显著变化,可大体将该区有机质的沉积记录分为两个阶段:1)1980年之前,TOC含量介于1.88%~2.06%,平均值为(1.97±0.05)%;TN含量范围在0.27%~0.32%,平均值为(0.30±0.01)%;δ 13C值变化范围为-22.6‰~21.4‰,其中在24~25 cm的层位有一极值(-22.3‰);TOC/TN值介于6.1~7.1,δ 13C和TOC/TN的变化范围较小。2)1980年之后,TOC含量介于2.01%~2.31%,平均值为(2.12±0.08)%;TN含量介于0.30%~0.36%,平均值为(0.33±0.01)%;δ 13C显著偏负,变化范围介于-23.4‰~-21.6‰。

  • T43柱样TOC和TN含量较高(TOC>1.8%,TN:0.31±0.02%),较周边非泥质沉积区高[18](TOC<1.0%),与泥质区的结果相当(TOC:~1.7%,TN:0.21%)[18],可能是有机质易在细颗粒沉积物中富集[35];同时受季风驱动下的水动力条件影响,陆源有机质与细粒物质也可被海流搬运至该沉积中心。

    垂向上,T43沉积柱TOC、TN含量从下向上表现出不断增加的趋势,并且TOC与TN呈显著正相关(图4a),表明沉积柱样中的有机碳和氮来源较一致。TOC和δ 13C显著负相关(图4b),TOC随陆源有机质含量的增加而增加,表明有机碳来源可能是TOC埋藏的重要控制因素之一。图5显示,20世纪80年代之后TOC含量增加显著,可能跟周边人口和经济的快速增长有关,反映有机质输入方式和物源可能发生了改变。沉积有机质的垂向变化,大体可分为两个阶段,第一阶段(1919—1980年)表现为TOC、TN在1960年之前有较高的埋藏通量和海洋源有机质的贡献,这可能跟海洋初级生产力较高有关[23,37]。此外,1960—1980年之间,泰国湾周边流域内土地类型的转换(如森林转化为耕地)导致大量的土壤有机质及上覆植被碎屑等物质向海排放[23,26]。研究表明,农业土壤中的TOC含量一般高于森林土壤中TOC的含量[38]。第二阶段(1980—2010年),这个阶段TOC含量增加,δ 13C明显偏负;这可能跟该时期降雨量增加有关[8,26]。研究显示,降雨量的增加会提升流域植被与土壤碳的入海通量,增加沉积物中有机碳的输入[8],因此近些年增强的降雨可能导致陆源物质的输入加强,是影响TOC变化的重要因素之一。

    Figure 4.  The correlation between TN/δ 13C and TOC

    Figure 5.  The vertical distribution of burial flux, the contribution of terrestrial source in the T43 core, and climate environmental index during the past century

  • 总体来看,T43柱样样品中的C/N比值偏小(均值为6.53),指示有机质来源以海源为主[18]。陆源土壤有机质、无机氮吸附以及微生物作用对近海—陆架沉积物中较低的 C/N 值也有贡献[39-40]。近年来泰国北部大面积森林转换为农田,土壤中的无机氮含量增加,这一部分氮会随着降雨冲刷经过河流搬运进入海洋[41]。通过无机氮截距校正方法[42],得到该区校正后的TOC/TON范围大致介于7.3~9.5,反映沉积有机质为混合来源,这与δ 13C值的来源指示一致。研究表明,海洋水生藻类C/N一般低于7[43]δ 13C一般在-19‰~-22‰之间,平均值为-20‰[44];陆源植物有机质的C/N值一般在15以上,δ 13C值约为-27‰[45]。基于δ 13C在中低纬海区的端元特征,发现东南亚沿岸红树林δ 13C=(-26.59±0.39)‰对该区有机质的埋藏有一定影响[46]。热带近海地区强降雨引发的土壤侵蚀以及岩石风化也是近海沉积有机质的重要来源[8,16,47]。依据前人报道,泰国湾陆地高等植物的δ 13C范围介于-31‰~-26‰,平均值为-29‰[38,48];土壤中δ 13C介于-27.9‰~-26.2‰[38]。海洋浮游生物的δ 13C值介于-19‰~-25‰[49-50]。据此,本文选用-27‰和-20‰分别做陆源和海源有机质的δ 13C端元值,应用二端元法进行有机质来源的初步估算,得到陆源有机碳贡献为19%~48%,平均值为(26±6)%;海源有机碳贡献为51%~81%,平均值为(74±6)%。总体而言,沉积柱中有机质组成为混合来源,并以海洋来源占优势,这与前人的报道相一致[18]

  • 基于CIC模式和CRS模式分别计算了T43柱中各层位的沉积通量(图5b),本站表层沉积物中沉积通量为187 mg/(cm2 a),与前人的研究结果相比较高(64 mg/(cm2 a))[26],平均沉积通量(232 mg/(cm2 a))与内湾相比较低(460 mg/(cm2 a))[20]。进一步对沉积柱状样百年来的有机碳埋藏通量进行估算,得到有机碳埋藏通量为4.0~5.2 mg/(cm2 a),平均值为4.7±0.4 mg/(cm2 a)。

    垂向上,CIC模式与CRS模式计算的沉积通量以及相对变化趋势总体较为一致,但1970—1980年以及2010年期间沉积通量(CRS模式)显著增大,可能与这期间较高的降雨量有关(图5f)。沉积通量和有机碳埋藏通量在1960年之前的变化相对较小,之后总体表现为降低的趋势(除部分波动层位外)(图5b,c),这可能与20世纪60年代以来沉积物入海通量的变化有关。研究表明,1960年以来泰国湾周边流域大坝建设逐年增加,阻止了大量的泥沙入海[27],湄南河上游1965年和1972年分别建设了两座大坝,导致湄南河的入海通量逐年减少[51];此外,一些沿海地区砂矿的开采和人工设施的建设(如防风堤)也影响了沿岸沉积物向海输送[22,51]图5a)。然而,1980年之后陆源有机碳的贡献又表现出增加的趋势(图5d),这可能反映了这期间陆源有机碳的来源或输入方式发生变化。研究指出,近几十年来泰国本土降雨量增加导致径流冲刷携带的土壤以及植被等高含量陆源碳的输入增加[52]。另一方面,由于人类活动的强烈扰动(如大坝建设、沿岸养虾池和旅游业的发展等),使近海红树林不断退化[22]。研究表明,红树林不仅是近岸沉积物中有机质的主要来源[53],也是陆源物质的拦截者[54],随着红树林不断退化,沿岸侵蚀作用不断加剧,并且泰国湾东岸的海岸侵蚀比西岸更严重[22],这也可能是研究区陆源有机质输入增强的重要影响因素。

  • 本文系统搜集了近百年来泰国湾地区的气温、降雨量及发生的台风频次和厄尔尼诺—南方涛动(El Nino-Southern Oscillation, ENSO)等区域气候变化的历史资料(图5e~h)。研究表明,受多种因素影响,海温和拉尼娜现象与热带气旋呈正相关关系,而太阳黑子和厄尔尼诺现象与热带气旋呈反相关[55-57]。通过综合对比,发现在1980年之后,随着区域气候模态(如ENSO和热带气旋)的转变,该区的气温和降水量总体呈现升高的特征,同期的δ 13C则较为亏损(图3g),指示这期间的陆源有机碳贡献显著升高(图5d)。泰国湾尖竹汶海岸粒度数据表明,夏季风近百年来逐渐增强[58]。除了气候的长期变化,近年来也发生了一些异常的气候现象,如2011年泰国洪水,与以往洪水的原因不同,此次洪水是由于拉尼娜现象增强了季风前的强降雨,再加上泰国湾海平面上升的综合影响所导致[59]。研究表明,无论气候的长期变化还是极端异常事件,热带气旋—强降雨可引起较强的地表径流冲刷作用并导致物质入海通量发生显著变化[33,60-61],这对于近海沉积源汇过程有直接的影响[16,62]。例如,研究发现,热带气旋可引起湿地、河口和近海地区之间沉积物和颗粒有机碳的交换,并导致有机碳含量、类型和年龄的改变[63-65]

    如前所述,尽管自20世纪60年代以来,由于流域建坝等因素,引起该区河流搬运泥沙的入海通量和陆架沉积物埋藏量同步性降低[27]图5b,c);不过,由于受到区域气候模态的转变(如厄尔尼诺增强),台风频次和强度也发生变化[55],造成近些年来(1980s~)泰国湾周边的气温和降雨量不断升高,地表径流对周边陆地植被和土壤的冲刷作用不断加强[26,64],这可能导致更多比例的陆源有机质的输入和埋藏。另一方面,研究也表明,受海平面上升影响,近二三十年以来,东南亚近海地区的海岸侵蚀日益严重[65],也可能造成了较多的陆源有机质的向海搬运和沉积埋藏。由此可见,近几十年来,由于流域过程和区域气候环境变化的不同驱动,热带近海地区沉积物和有机碳的通量、输入方式等发生了显著的改变,并在陆架沉积中心地区产生了阶段性的记录响应。综上,在全球变化背景下,系统认识热带近海地区有机质的来源、输入及其沉积响应对全面理解该区的陆海相互作用过程及其环境效应等方面具有重要意义。

  • 泰国湾陆架泥质沉积中心T43柱样TOC的含量范围为1.88%~2.31%,整体表现为向顶部逐渐增加的趋势;该区有机碳的δ 13C的范围介于-23.40‰ ~-21.35‰,指示主要为海陆混合源贡献。自1960s以后,研究区沉积通量和有机碳埋藏通量整体表现为减小的趋势,可能与周边流域大坝的建设导致的河流输沙量的减少有关;另一方面,近三十年以来,泰国湾陆架陆源沉积有机碳的贡献则明显升高(从1980年的23%升至2010年的48%),这可能与近年来热带气旋造成的降雨增强和海岸侵蚀作用加剧有关。通过高分辨率的有机碳埋藏记录重建,发现受流域过程和区域气候变化的特征性驱动,该区近海沉积有机碳的通量、来源和输入方式等会发生改变,并可在陆架形成阶段性的沉积记录响应,值得进一步深入研究。

Reference (65)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return