Advanced Search
Volume 40 Issue 5
Oct.  2022
Turn off MathJax
Article Contents

WU JinXuan, XIA GuoQing, CHEN Yun, XU WeiPeng, YI HaiSheng. Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032
Citation: WU JinXuan, XIA GuoQing, CHEN Yun, XU WeiPeng, YI HaiSheng. Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032

Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet

doi: 10.14027/j.issn.1000-0550.2021.032
Funds:

National Natural Science Foundation of China 41972115

  • Received Date: 2020-12-22
  • Publish Date: 2022-10-10
  • Paleoclimatic investigations based on clay minerals analysis of samples from the Oligocene-Miocene boundary in the Lunpola Basin were conducted to explore the relationship between the Tibetan Plateau uplift and global climate response. Modern techniques of X-ray diffraction(XRD)and X-ray fluorescence(XRF)spectrometry were implemented to examine major clay minerals characteristics from the Jiangriacuo section. Results show that the majority of samples in the study area are dominated by illite/montmorillonite mixed-layer minerals, followed by illite with minor contents of chlorite and montmorillonite. The stratigraphic vertical composition of clay minerals shows that the illite and chlorite content is low in the lower part of the studied section compared to higher composition at the upper part, whereas the mixed-layer illite/montmorillonites show an overall converse trend to the illite and chlorite. At the middle part of the section, the illite/montmorillonite interlayer and illite content exhibit significant fluctuations. The montmorillonite that originates from the alteration of the volcanic eruption products under alkaline conditions only appears in the middle and lower intervals of the profile. The crystallinity of illite ranges from 0.24° to 0.48° with an average of 0.41°, indicating no significant diagenetic overprint of the studied samples, and the major/trace-elemental data also show that the provenance source for the Jiangriacuo section is not significantly changed. This indicates that the characteristics of clay minerals in the Jiangriacuo profile are related to the paleoclimatic evolution of the Lunpola Basin. Based on geochemical and clay mineral characteristics, an obvious cooling event in the Lunpola Basin at ca. 23 Ma is documented, which is a widespread event that impacted the inner and peripheral areas of the Tibetan Plateau. However, the fundamental factor that triggered this cooling event at times of the Oligocene-Miocene transition is still worthy of further discussion.
  • [1] Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
    [2] Zachos J C, Flower B P, Paul H. Orbitally paced climate oscillations across the Oligocene/Miocene boundary[J]. Nature, 1997, 388(6642): 567-570.
    [3] Woodruff F, Savin S M. Miocene deepwater oceanography[J]. Paleoceanography, 1989, 4(1): 87-140.
    [4] Miller K G, Wright J D, Fairbanks R G. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion[J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B4): 6829-6848.
    [5] Guo Z T, Sun B, Zhang Z S, et al. A major reorganization of Asian climate by the Early Miocene[J]. Climate of the Past, 2008, 4(3): 153-174.
    [6] 李吉均,周尚哲,赵志军,等. 论青藏运动主幕[J]. 中国科学(D辑):地球科学,2015,45(10):1597-1608.

    Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau[J]. Science China (Seri. D): Earth Sciences, 2015, 45(10): 1597-1608.
    [7] Le Fort P, Cuney M, Deniel C, et al. Crustal generation of the Himalayan leucogranites[J]. Tectonophysics, 1987, 134(1/2/3): 39-57.
    [8] 李炳元,潘保田,高红山. 可可西里东部地区的夷平面与火山年代[J]. 第四纪研究,2002,22(5):397-405.

    Li Bingyuan, Pan Baotian, Gao Hongshan. A planation surface and ages of volcanic rocks in eastern Hoh Xil, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2002, 22(5): 397-405.
    [9] 邓涛,吴飞翔,王世骐,等. 古近纪/新近纪之交青藏高原陆地生态系统的重大转折[J]. 科学通报,2019,64(27):2894-2906.

    Deng Tao, Wu Feixiang, Wang Shiqi, et al. Significant shift in the terrestrial ecosystem at the Paleogene/Neogene boundary in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27): 2894-2906.
    [10] Wu F X, Miao D S, Chang M M, et al. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the Late Oligocene[J]. Scientific Reports, 2017, 7(1): 878.
    [11] Su T, Farnsworth A, Spicer R A, et al. No high Tibetan Plateau until the Neogene[J]. Science Advances, 2019, 5(3): eaav2189.
    [12] Miao Y F, Fang X M, Song C Het al. Pollen and fossil wood's linkage with Mi-1 Glaciation in northeastern Tibetan Plateau, China[J]. Palaeoworld, 2013, 22(3/4): 101-108.
    [13] Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4987-4992.
    [14] 陈涛,王欢,张祖青,等. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志,2003,22(4):416-420.

    Chen Tao, Wang Huan, Zhang Zuqing, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4): 416-420.
    [15] Robert C, Kennett J P. Antarctic continental weathering changes during Eocene-Oligocene cryosphere expansion: Clay mineral and oxygen isotope evidence[J]. Geology, 1997, 25(7): 587-590.
    [16] Devleeschouwer X, Herbosch A, Préat A. Microfacies, sequence stratigraphy and clay mineralogy of a condensed deep-water section around the Frasnian/Famennian boundary (Steinbruch Schmidt, Germany)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 181(1/2/3): 171-193.
    [17]
    [18]
    [19]
    [20] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, Basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7/8): 865-878.
    [21] 马鹏飞,王立成,冉波. 青藏高原中部新生代伦坡拉盆地沉降史分析[J]. 岩石学报,2013,29(3):990-1002.

    Ma Pengfei, Wang Licheng, Ran Bo. Subsidence analysis of the Cenozoic Lunpola Basin, central Qinghai-Tibetan Plateau[J]. Acta Petrologica Sinica, 2013, 29(3): 990-1002.
    [22] 曾胜强,王剑,陈文彬,等. 伦坡拉盆地西部丁青湖组新发现凝灰岩锆石U-Pb年龄及其地层学意义[J]. 地质学报,2020,94(8):2354-2366.

    Zeng Shengqiang, Wang Jian, Chen Wenbing, et al. Zircon U-Pb age and stratigraphic significance of the newly discovered tuff layers in the Dingqinghu Formation, west Lunpola Basin[J]. Acta Geologica Sinica, 2020, 94(8): 2354-2366.
    [23] Fang X M, Dupont-Nivet G, Wang C S, et al. Revised chronology of central Tibet uplift (Lunpola Basin)[J]. Science Advances, 2020, 6(50): eaba7298.
    [24] Mao Z Q, Meng Q Q, Fang X M, et al. Recognition of tuffs in the Middle-Upper Dingqinghu Fm., Lunpola Basin, central Tibetan Plateau: Constraints on stratigraphic age and implications for paleoclimate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 525: 44-56.
    [25] Deng T, Wang S Q, Xie G P, et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry[J]. Chinese Science Bulletin, 2012, 57(2/3): 261-269.
    [26] Sun J M, Xu Q H, Liu W M, et al. Palynological evidence for the Latest Oligocene-Early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 21-30.
    [27] He H Y, Sun J M, Li Q L, et al. New age determination of the Cenozoic Lunpola Basin, central Tibet[J]. Geological Magazine, 2012, 149(1): 141-145.
    [28] 杜佰伟,谢尚克,董宇,等. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版),2016,46(3):671-680.

    Du Baiwei, Xie Shangke, Dong Yu, et al. Characteristics of oil shale of Oligocene Dingqinghu Formation and its geological significance, Lunpola Basin[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3): 671-680.
    [29] Grim R E. Crystal structures of clay minerals and their X-ray identification G.W. Brindley and G. Brown (Editors), 1980. Mineralogical Society, London, 495 pp., £stg. 28.00, US$ 70.00 (incl. of postage)[J]. Earth-Science Reviews, 1982, 18(1): 84-85.
    [30] Johns W D, Grim R E, Bradley W F. Quantitative estimations of clay minerals by diffraction methods[J]. Journal of Sedimentary Research, 1954, 24(4): 242-251.
    [31] Biscaye P E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and Adjacent Seas and Oceans[J]. Geological Society of America Bulletin, 1965, 76(7): 803-832.
    [32] Kübler B. Les argiles, indicateurs de métamorphisme[J]. Revue de L′Institut Francais du Pétrole, 1964, 19: 1093-1112.
    [33] 王河锦,周健. 关于伊利石结晶度诸指数的评价[J]. 岩石学报,1998,14(3):395-405.

    Wang Hejin, Zhou Jian. On the indices of illite crystallinity[J]. Acta Petrologica Sinica, 1998, 14(3): 395-405.
    [34] 詹秀春,罗立强. 偏振激发—能量色散X-射线荧光光谱法快速分析地质样品中34种元素[J]. 光谱学与光谱分析,2003,23(4):804-807.

    Zhan Xiuchun, Luo Liqiang. Rapid multi-element analysis of geological sample by polarized energy dispersive X-Ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2003, 23(4): 804-807.
    [35] Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1387.
    [36] 刘志飞,李夏晶. 南海沉积物中蒙脱石的成因探讨[J]. 第四纪研究,2011,31(2):199-206.

    Liu Zhifei, Li Xiajing. Discussion on smectite formation in South China Sea sediments[J]. Quaternary Sciences, 2011, 31(2): 199-206.
    [37] Chamley H. Clay sedimentology[M]. Berlin Heidelberg: Springer, 1989.
    [38] Singer A. The paleoclimatic interpretation of clay minerals in sediments—a review[J]. Earth-Science Reviews, 1984, 21(4): 251-293.
    [39] 刘志飞. 南海沉积物中的黏土矿物:指示东亚季风演化历史?[J]. 沉积学报,2010,28(5):1012-1019.

    Liu Zhifei. Clay mineral assemblages in sediments of the South China Sea: East Asian monsoon evolution proxies[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1012-1019.
    [40] 王开发,杨蕉文,李哲,等. 根据孢粉组合推论西藏伦坡拉盆地第三纪地层时代及其古地理[J]. 地质科学,1975,10(4):366-374.

    Wang Kaifa, Yang Jiaowen, Li Zhe, et al. On the Tertiary sporo-pollen assemblages from Lunpola Basin of Xizang, China and their palaeogeographic significance[J]. Scientia Geologica Sinica, 1975, 10(4): 366-374.
    [41] 徐正余. 西藏伦坡拉盆地第三系及其含油性[J]. 石油与天然气地质,1980,1(2):153-158.

    Xu Zhengyu. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet[J]. Oil & Gas Geology, 1980, 1(2): 153-158.
    [42] 夏金宝. 藏北班戈县及其邻近地区的新生界[J]. 青藏高原地质文集,1983(6):243-254.

    Xia Jinbao. Cenozoic of Baingoin and it’s bordering, Xizang (Tibet)[J]. Geological Collection of Qinghai-Tibet Plateau, 1983(6): 243-254.
    [43]
    [44] Gingele F X, Deckker P D, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents[J]. Marine Geology, 2001, 179(3/4): 135-146.
    [45] Winkler A, Wolf-Welling T, Stattegger K, et al. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG)[J]. International Journal of Earth Sciences, 2002, 91(1): 133-148.
    [46] 郑庆福,刘艇,赵兰坡,等. 东北黑土耕层土壤黏粒矿物组成的区域差异及其演化[J]. 土壤学报,2010,47(4):734-746.

    Zheng Qingfu, Liu Ting, Zhao Lanpo, et al. Spatial variation and evolution mechanism of clay mineral composition in agric horizon of black soil in Northeast China[J]. Acta Pedologica Sinica, 2010, 47(4): 734-746.
    [47] 师育新,戴雪荣,宋之光,等. 我国不同气候带黄土中粘土矿物组合特征分析[J]. 沉积学报,2005,23(4):690-695.

    Shi Yuxin, Dai Xuerong, Song Zhiguang, et al. Characteristics of clay mineral assemblages and their spatial distribution of chinese loess in different climatic zones[J]. Acta Sedimentologica Sinica, 2005, 23(4): 690-695.
    [48] 蒋梅茵,杨德涌,熊毅. 中国土壤胶体研究:ⅥⅡ. 五种主要土壤的粘粒矿物组成[J]. 土壤学报,1982,19(1):62-70.

    Jiang Meiyin, Yang Deyong, Xiong Yi. Soil colloid researches ⅥⅡ. the mineralogical composition of the colloids of five important soils in China[J]. Acta Pedologica Sinica, 1982, 19(1): 62-70.
    [49] Fang X M, Galy A, Yang Y B, et al. Paleogene global cooling-induced temperature feedback on chemical weathering, as recorded in the northern Tibetan Plateau[J]. Geology, 2019, 47(10): 992-996.
    [50] 张志春,潘根兴,孔尚成,等. 青藏高原三江源南部下拉秀剖面粘土矿物组合特征及其环境意义[J]. 水土保持学报,2015,29(5):181-186,308.

    Zhang Zhichun, Pan Genxing, Kong Shangcheng, et al. Characteristics and environmental significance of clay minerals composition of Xialaxiu profile in Three Rivers Source southern, Qinghai-Tibet Plateau[J]. Journal of Soil and Water Conservation, 2015, 29(5): 181-186, 308.
    [51]
    [52] 王朝文,洪汉烈,向树元,等. 东昆仑阿拉克湖早更新世沉积物黏土矿物特征及其古气候环境意义[J]. 地质科技情报,2008,27(5):37-42.

    Wang Chaowen, Hong Hanlie, Xiang Shuyuan, et al. Characteristics of clay minerals and their paleoclimatic indicator of Early Pleistocene sediments from Alag Lake, East Kunlun[J]. Geological Science and Technology Information, 2008, 27(5): 37-42.
    [53] Bronger A, Winter R, Sedov S. Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: Towards a Quaternary paleoclimatic record in Central Asia[J]. CATENA, 1998, 34(1/2): 19-34.
    [54] Yang S Y, Li C X, Cai J G. Geochemical compositions of core sediments in eastern China: Implication for Late Cenozoic palaeoenvironmental changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 229(4): 287-302.
    [55] Nesbitt H W, Markovics G. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments[J]. Geochimica et Cosmochimica Acta, 1997, 61(8): 1653-1670.
    [56] Wei G J, Liu Y, Li X H, et al. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 212(3/4): 331-342.
    [57] Roddaz M, Viers J, Brusset S, et al. Controls on weathering and provenance in the Amazonian foreland Basin: Insights from major and trace element geochemistry of Neogene Amazonian sediments[J]. Chemical Geology, 2006, 226(1/2): 31-65.
    [58] McLennan S M, Nance W B, Taylor S R, et al. Rare earth element-thorium correlations in sedimentary rocks, and the composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 1980, 44(11): 1833-1839.
    [59] 李蒙,赵红格,李文厚,等. 贺兰山地区晚三叠世沉积主微量元素物源分析及方法探讨[J]. 高校地质学报,2018,24(6):841-555.

    Li Meng, Zhao Hongge, Li Wenhou, et al. Major and trace elements of the Late Triassic strata in the Helan Mountain: Constraints on the provenance and discussions on different methods[J]. Geological Journal of China Universities, 2018, 24(6): 841-555.
    [60] 伊海生,林金辉,周恳恳,等. 青藏高原北部新生代湖相碳酸盐岩碳氧同位素特征及古环境意义[J]. 古地理学报,2007,9(3):303-312.

    Yi Haisheng, Lin Jinhui, Zhou Kenken, et al. Carbon and oxygen isotope characteristics and palaeoenvironmental implication of the Cenozoic lacustrine carbonate rocks in northern Qinghai-Tibetan Plateau[J]. Journal of Palaeogeography, 2007, 9(3): 303-312.
    [61] 吴珍汉,吴中海,胡道功,等. 青藏高原北部中新统五道梁群湖相沉积碳氧同位素变化及古气候旋回[J]. 中国地质,2009,36(5):966-975.

    Wu Zhenhan, Wu Zhonghai, Hu Daogong, et al. Carbon and oxygen isotope changes and palaeoclimate cycles recorded by lacustrine deposits of Miocene Wudaoliang Group in northern Tibetan Plateau[J]. Geology in China, 2009, 36(5): 966-975.
    [62] 伊海生,林金辉,王成善,等. 藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常[J]. 成都理工学院学报,2002,29(5):473-480.

    Yi Haisheng, Lin Jinhui, Wang Chengshan, et al. Biomarkers and carbon isotopic anomaly from the Miocene lacustrine oil shales in Hoh Xil Basin of northern Tibetan Plateau[J]. Journal of Chengdu University of Technology, 2002, 29(5): 473-480.
    [63] 张以茀,郑健康. 青海可可西里及邻区地质概论[M]. 北京:地震出版社,1994.[

    Zhang Yifu, Zheng Jiankang. Geological overview in Kokshili, Qinghai and adjacent areas.[M]. Beijing: Seismological Press, 1994.
    [64] Qiu Z D, Li C K. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau[J]. Science in China (Seri. D): Earth Sciences, 2005, 48(8): 1246-1258.
    [65] Wu C H, Xia G Q, Wagreich M, et al. Early Miocene expansion of C4 vegetation on the northern Tibetan Plateau[J]. Global and Planetary Change, 2019, 177: 173-185.
    [66] 吴珍汉,吴中海,叶培盛,等. 青藏高原晚新生代孢粉组合与古环境演化[J]. 中国地质,2006,33(5):966-979.

    Wu Zhenhan, Wu Zhonghai, Ye Peisheng, et al. Late Cenozoic environmental evolution of the Qinghai-Tibet Plateau as indicated by the evolution of sporopollen assemblages[J]. Geology in China, 2006, 33(5): 966-979.
    [67]
    [68] 颜其德. 南极:全球气候变暖的敏感区[J]. 科学,1996,48(1):19-22.

    Yan Qide. Antarctica-The sensitive region of global climate warming [J]. Science, 1996, 48(1): 19-22.
    [69] Sellwood B W, Price G D, Valdest P J. Cooler estimates of Cretaceous temperatures[J]. Nature, 1994, 370(6489): 453-455.
    [70] Kidder D L, Worsley T R. A human-induced hothouse climate?[J]. GSA Today, 2012, 22(2): 4-11.
    [71] Johnson N M, Stix J, Tauxe L, et al. Paleomagnetic chronology, fluvial processes, and tectonic implications of the Siwalik deposits near Chinji Village, Pakistan[J]. The Journal of Geology, 1985, 93(1): 27-40.
    [72] Hough B G, Garzione C N, Wang Z C, et al. Timing and spatial patterns of Basin segmentation and climate change in Northeastern Tibet[M]//Nie J S, Horton B K, Hoke G D. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorado: The Geological Society of America, 2014: 129-153.
    [73] Lease R O. Cenozoic mountain building on the northeastern Tibetan Plateau[M]//Nie J S, HortoN B K, Hoke G D. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Colorda: The Geological Society of America, 2014: 115-127.
    [74]
    [75] Wang P X. Progress in Late Cenozoic palaeoclimatology of China: A brief review[M]//Whyte R O. The Evolution of the East Asian Environment. Hong Kong: Centre of Asian Studies, University of Hong Kong, 1984: 165-187.
    [76] 刘东生,郑绵平,郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究,1998,18(3):194-204.

    Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, 18(3): 194-204.
    [77] Sun X J, Wang P X. How old is the Asian monsoon system?: Palaeobotanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222(3/4): 181-222.
    [78] 张仲石,郭正堂. 根据地质记录恢复渐新世和中新世不同时期环境空间特征及其意义[J]. 第四纪研究,2005,25(4):523-530.

    Zhang Zhongshi, Guo Zhengtang. Spatial character reconstruction of different periods in Oligocene and Miocene[J]. Quaternary Sciences, 2005, 25(4): 523-530.
    [79] 祝淑雅,吴海斌,李琴,等. 晚新生代以来中国西北植被演化及反映的干旱化过程[J]. 第四纪研究,2016,36(4):820-831.

    Zhu Shuya, Wu Haibin, Li Qin, et al. Aridification in northwestern China since the Late Cenozoic evidenced by the vegetation change[J]. Quaternary Sciences, 2016, 36(4): 820-831.
    [80] Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years[J]. Nature, 1997, 386(6627): 788-795.
    [81] Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052): 1663-1670.
    [82] 张林源. 青藏高原上升对我国第四纪环境演变的影响[J]. 兰州大学学报,1981(3):142-155.

    Zhang Linyuan. The influence of the uplift of Qinghai-Xizang Plateau on the Quaternary environmental evolution in China[J]. Journal of Lanzhou University, 1981(3): 142-155.
    [83] Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of climate to Late Cenozoic uplift in southern Asia and the American West: Numerical experiments[J]. Journal of Geophysical Research: Atmospheres, 1989, 94(D15): 18393-18407.
    [84] Li J J, Fang X M. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Science Bulletin, 1999, 44(23): 2117-2124.
    [85] An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66.
    [86] Liu X D, Kutzbach J, Liu Z Y, et al. The Tibetan Plateau as amplifier of orbital-scale variability of the East Asian monsoon[J]. Geophysical Research Letters, 2003, 30(16): 1839.
    [87] Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai province, China and its implication on tectonic uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258(1/2): 293-306.
    [88] Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet[J]. Nature, 2006, 439(7077): 677-681.
    [89] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to Middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680.
    [90] Polissar P J, Freeman K H, Rowley D B, et al. Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 64-76.
    [91] Quade J, Breecker D O, Daëron M, et al. The paleoaltimetry of Tibet: An isotopic perspective[J]. American Journal of Science, 2011, 311(2): 77-115.
    [92] Wang H, Dutta S, Kelly R S, et al. Amber fossils reveal the Early Cenozoic dipterocarp rainforest in central Tibet[J]. Palaeoworld, 2018, 27(4): 506-513.
    [93] Ma P F, Wang C S, Meng J, et al. Late Oligocene-Early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records[J]. Gondwana Research, 2017, 48: 224-236.
    [94] Botsyun S, Sepulchre P, Donnadieu Y, et al. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene[J]. Science, 2019, 363(6430): eaaq1436.
    [95] Valdes P J, Lin D, Farnsworth A, et al. Comment on “Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene”[J]. Science, 2019, 365(6459): eaax8474.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)  / Tables(2)

Article Metrics

Article views(200) PDF downloads(159) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-12-22
  • Published:  2022-10-10

Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet

doi: 10.14027/j.issn.1000-0550.2021.032
Funds:

National Natural Science Foundation of China 41972115

Abstract: Paleoclimatic investigations based on clay minerals analysis of samples from the Oligocene-Miocene boundary in the Lunpola Basin were conducted to explore the relationship between the Tibetan Plateau uplift and global climate response. Modern techniques of X-ray diffraction(XRD)and X-ray fluorescence(XRF)spectrometry were implemented to examine major clay minerals characteristics from the Jiangriacuo section. Results show that the majority of samples in the study area are dominated by illite/montmorillonite mixed-layer minerals, followed by illite with minor contents of chlorite and montmorillonite. The stratigraphic vertical composition of clay minerals shows that the illite and chlorite content is low in the lower part of the studied section compared to higher composition at the upper part, whereas the mixed-layer illite/montmorillonites show an overall converse trend to the illite and chlorite. At the middle part of the section, the illite/montmorillonite interlayer and illite content exhibit significant fluctuations. The montmorillonite that originates from the alteration of the volcanic eruption products under alkaline conditions only appears in the middle and lower intervals of the profile. The crystallinity of illite ranges from 0.24° to 0.48° with an average of 0.41°, indicating no significant diagenetic overprint of the studied samples, and the major/trace-elemental data also show that the provenance source for the Jiangriacuo section is not significantly changed. This indicates that the characteristics of clay minerals in the Jiangriacuo profile are related to the paleoclimatic evolution of the Lunpola Basin. Based on geochemical and clay mineral characteristics, an obvious cooling event in the Lunpola Basin at ca. 23 Ma is documented, which is a widespread event that impacted the inner and peripheral areas of the Tibetan Plateau. However, the fundamental factor that triggered this cooling event at times of the Oligocene-Miocene transition is still worthy of further discussion.

WU JinXuan, XIA GuoQing, CHEN Yun, XU WeiPeng, YI HaiSheng. Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032
Citation: WU JinXuan, XIA GuoQing, CHEN Yun, XU WeiPeng, YI HaiSheng. Characteristics of Clay Mineralogy and Its Paleoclimatic Significance Across the Oligocene-Miocene Transition in the Lunpola Basin, Central Tibet[J]. Acta Sedimentologica Sinica, 2022, 40(5): 1265-1279. doi: 10.14027/j.issn.1000-0550.2021.032
  • 新生代以来,全球气候持续变冷并经历了多次冰盖扩张事件,使两极无冰的“温室地球”变为现今两极终年有冰的“冰室地球”[1],其中渐新世与中新世之交(Oligocene-Miocene Boundary,OMB,约23.03 Ma)是新生代全球降温过程中的一个重要的时间节点。该时期深海底栖有孔虫的δ18O值从1.75‰增大至2.74‰,被认为是南极冰盖大规模快速扩张所致[1-4]。同时,渐新世—中新世之交也是亚洲气候发生重大转变的关键时期,气候模式由古近纪的行星风系转变为新近纪的季风风系,并在高原北部形成了巨大的内陆干旱区[5]。更为重要的是,这个时间点也是青藏高原构造活动的频发期,发生了著名的喜马拉雅运动[6],喜马拉雅山发生构造隆起,主中央断裂(MCT)活动,浅色花岗岩侵入[7],藏北钾质玄武岩广泛喷发[8],高原陆地生态系统也发生了重大转折,位于高原中部的伦坡拉—尼玛盆地的鱼类、昆虫类、植物类,甚至哺乳类化石均存在重大演替[9-12]。因此,渐新世—中新世之交是研究全球气候变化和青藏高原构造隆升等重大事件的一个关键过渡期。

    青藏高原腹地是直接感应高原隆升过程、环境变化效应的核心地带,这里的山间盆地不仅能够记录构造演化历史,也为研究高原地形地貌演化过程、环境和气候变迁提供了最直接的证据[13]。伦坡拉盆地地处青藏高原腹地核心部位,盆地内发育齐全的新生代陆相地层,完整记录了渐新世—中新世之交构造、隆升及气候演化历史,是研究全球气候演化在高原腹地的响应及高原隆升过程的理想场所。黏土矿物对气候和环境的变化比较敏感,其类型组合、含量变化和特征参数等能够有效记录物源区气候和环境的信息[14-16]。研究工作以伦坡拉盆地丁青湖组泥质岩中的黏土矿物为对象,利用主微量元素分析判别其物源变化信息,在此基础上通过X射线衍射分析研究黏土矿物特征与伊利石结晶度,探讨研究区渐新世—中新世之交的黏土矿物特征及其蕴含的古气候演化信息,以期为青藏高原中部盆地古气候环境演化研究提供依据。

  • 伦坡拉盆地位于青藏高原中部,羌塘地体与拉萨地体之间(图1),是一个沿班公湖—怒江缝合带呈东西向展布的新生代陆相盆地,其西临尼玛盆地,北接伦北盆地,南壤班戈盆地[20]。东西长约200 km,南北宽约15~20 km,面积约3 600 km2。盆地内构造较为复杂,可进一步细分为3个二级构造单元:北部逆冲推覆,中央凹陷和南部逆冲断陷隆起[21]。新生代地层由牛堡组和丁青湖组组成,不整合于中生代基底之上[22],牛堡组厚约2 000~3 000 m,颜色以深红色为主,由三部分组成:一段以棕红色砾岩、砂岩和粉砂岩为主,沉积环境为冲积扇或扇三角洲;二段为浅红至浅褐色泥岩夹薄层状细砂岩和页岩,盆地边缘还发育有灰白色条带状泥灰岩,为浅湖环境;三段岩性横向变化较大,盆地边缘由棕灰色砾岩、砂岩和棕红色泥岩组成,中间夹有明显的红色古土壤淋滤层,为辫状河或扇三角洲沉积环境,在盆地中心的三段岩性以褐色泥岩夹泥灰岩及细砂岩为特征,沉积环境为浅湖和水下扇三角洲[23-24]图2a)。丁青湖组为一套湖相沉积,岩性以灰色、深灰色泥页岩为主夹油页岩、泥灰岩及细砂岩,沉积厚度可达800~1 000 m,也可细分为三个岩性段:一段为紫红色泥岩,灰—深灰色薄层状页岩、泥岩、油页岩夹粉砂岩、泥灰岩,代表了由河流相向浅湖、半深湖—深湖相转变的过程;二段为灰色薄层状页岩、泥岩及油页岩,夹薄层状粉砂岩、细砂岩、泥灰岩,主要为半深湖—深湖的沉积环境;三段主要为灰色泥岩、页岩、褐红色薄层状泥岩,夹中—薄层状砂岩、多层厚度较小的油页岩,表现为由深变浅的沉积充填的序列[28]

    Figure 1.  Structural location map of the Tibetan Plateau and geological map of the study area

    Figure 2.  Comprehensive histogram and stratigraphic correlation of typical sections in Lunpola Basin

  • 研究剖面位于蒋日阿错(湖)西南侧,处于蒋日阿错向斜南翼(图1b)。剖面起点坐标为89°36'27.90" E,31°58'51.16" N,H=4 591 m;终点坐标为89°36'31.68" E, 31°58'54.79" N,H=4 583 m。地层出露较好,下部(0~41 m)为紫红色砂岩夹泥岩段,底部含一层厚约0.25 m的含砾砂岩,上部(41~105 m)以灰绿色泥岩、黑色泥页岩为主夹灰色泥灰岩(图2),整体代表了滨浅湖相沉积,在剖面上开展了间距约2 m的高精度采样,共采集新鲜泥质岩类样品52件。

    利用X射线衍射分析黏土矿物的类型和相对含量,样品采用沉降法提取,将样品粉碎至<0.2 mm粒径后加蒸馏水浸泡48 h以上,吸取黏土矿物悬浮液,得到的黏土矿物制作成自然定向片(N片)、乙二醇饱和片(EG片)和加热处理(550°/2h)的高温片(T片)用于实验分析。测量工作在成都南达微构质检技术服务有限公司进行,测量仪器为荷兰帕纳科X'pert衍射仪:Cu靶辐射,X光管工作电压为40 kV,电流为40 mA,RS=5.5 mm,扫描角度(2θ)范围为3°~30°,扫描速度为10 °/min。由于不同的黏土矿物都有其特定的层形和层间物,因此导致黏土矿物的基面间距(d)和基面衍射强度各不相同,如绿泥石族d(001)为1.41~1.435 nm,伊利石d(001)为0.995~1.00 nm,蒙脱石族基面间距变化较大(1.2~1.6 nm),只有在乙二醇的处理下可以使蒙脱石的d(001)膨胀至1.7 nm,所以可以根据基面间距(d(001))和基面衍射强度的差异来判断黏土矿物的类型[29]。黏土矿物相对含量的计算是将样品中各黏土矿物的特征衍射峰强度乘以各自的权重系数后,令其总和等于100%,从而即可计算出每种黏土矿物的含量比,目前经常采用的是Johns et al.[30]和Biscaye[31]提出的权重系数,他们采用的重量峰强度标准是:经乙二醇处理的1.7 nm衍射峰的强度乘以1是蒙脱石的重量峰强度;1.0 nm衍射峰的强度乘以4为伊利石的重量峰强度;0.7 nm衍射峰的强度乘以2为高岭石加上绿泥石的重量峰强度。高岭石和绿泥石两者含量比可直接根据0.353 nm衍射峰(绿泥石)强度和0.356~0.358 nm衍射峰(高岭石)强度的比值计算得出。伊利石结晶度采用Kübler指数,利用Jade软件测量伊利石d(001)衍射峰的半高宽来表示[32-33]

    利用X射线荧光光谱测定黏土矿物中的主微量元素含量用于判断其物源变化信息。测试采用岩石粉末样,称取(4.0±0.1) g样品粉末,采用压片法压制成直径为40 mm的圆饼,使用GBW(E)070040(泥岩)和GWB07120(灰岩)国家级标准物质校准,并按上述方法制备成样片作为校准用样品,轻元素采用基本参数法校正基体效应,重元素采用Compton散射内标法校正基体效应[34]。测量工作在四川新先达测控技术有限公司进行,测量仪器为新先达CIT-3000SY石油岩屑X荧光元素录井仪:工作电压为AC220 V;正高压为50 kV;重复性为N±N>65%,N±N>97%(N为计数率);SSD电致冷半导体探测器;分析精度(RSD)为0.05%;能量分辨率优于100 eV(Fe-55),检测时间2 min,实验在真空条件下进行。

  • 蒋日阿错剖面黏土矿物典型X射线衍射图谱如图3所示。根据三种不同衍射图谱识别出伊利石、绿泥石、蒙脱石和伊/蒙混层4种黏土矿物。伊利石的三个衍射峰d(001)(1.0 nm)、d(002)(0.5 nm)、d(003)(0.333 nm)经过乙二醇处理或加热处理后均不发生任何变化,说明样品中存在伊利石。绿泥石的d(002)(0.715 nm)在N片中与高岭石d(001)(0.72 nm)重叠,但可通过EG片识别绿泥石d(004)(0.353 nm)和高岭石d(002)(0.358 nm)将二者区分,研究区图谱仅识别出绿泥石d(004)(0.353 nm)且为单峰形态,说明样品中只含绿泥石,不含高岭石。在N片中,衍射峰d=1.4~1.5 nm可能存在蒙脱石d(001)(1.4~1.5 nm)与绿泥石d(001)(1.42 nm)重叠的情况,但在经过乙二醇饱和处理后,该衍射峰的d值变为1.7 nm,与蒙脱石d(001)经乙二醇处理后的特征一致,证明样品中含有蒙脱石。对比不同的EG片发现,d=1.7 nm衍射峰峰形大多宽而不对称,且向低角度一侧扩散,该衍射特征表明样品中存在较多伊/蒙混层矿物,只有少量样品为蒙脱石[29-31]

    Figure 3.  X⁃ray diffraction patterns of typical samples from the Jiangriacuo section, Lunpola Basin

    蒋日阿错剖面主要黏土矿物的含量及变化如图4表1所示。黏土矿物主要以伊/蒙混层矿物为主,相对含量变化于38%~92%,平均含量为63%;其次为伊利石,相对含量变化于7%~58%,平均值为31%,其结晶度变化于0.24°~0.48°,平均值为0.41;绿泥石和蒙脱石含量较少,绿泥石相对含量变化于1%~8%,平均含量为3%。需要指出的是,蒙脱石只在5个样品中(JR-03,JR12-1,JR-13,JR-17-1,JR-19-1)出现,它们的黏土矿物含量及特征十分特殊,除含少量伊利石(7%~11%)和1%的绿泥石外,蒙脱石相对含量较高(89%~93%),平均含量为90%(表1)。蒙脱石主要存在两种成因[14,36-39]:其一为陆源碎屑的化学风化产物,为淋滤作用较强的环境下陆源碎屑的碱金属阳离子和碱土金属元素流失形成;其二为凝灰质火山喷发产物经水解作用而成。鉴于前人在研究区蒋日阿错向斜北翼的牛堡桥剖面对应层位已经发现有凝灰岩和斑脱岩夹层[22,26-27]图2b),意味着同时期可能存在火山喷发活动,因此认为剖面单独出现的这5层蒙脱石应该为区域火山喷发产物。但在5个样品中,仅JR-13号样品为泥质岩,其全岩X射线分析显示石英含量46.01%,长石含量12.90%,碳酸盐岩矿物含量5.20%,黏土矿物含量35.38%,显示了斑脱岩的特征,而在其余的四个样品中,主要矿物成分为碳酸盐矿物(含量高达68.00%~83.50%),黏土矿物含量较低(表2)。

    Figure 4.  Clay mineral content, characteristic parameters, and global deep sea oxygen isotope variation curve at the Oligocene Miocene intersection of the Jiangricuo section, Lunpola Basin

    编号岩性伊利石蒙脱石绿泥石伊/蒙混层编号岩性伊利石蒙脱石绿泥石伊/蒙混层
    JR-20-1灰岩24372JR-33-2泥岩54541
    JR-19-2泥岩36757JR-33-1灰岩42850
    JR-19-1灰岩7931JR-32-2泥岩53542
    JR-18-2泥岩46450JR-32-1灰岩54640
    JR-18-1灰岩11187JR-31-2泥岩58438
    JR-17-2泥岩47350JR-31-1灰岩30466
    JR-17-1灰岩8921JR-30泥岩35361
    JR-16-2泥岩41456JR-29-2灰岩51544
    JR-16-1灰岩11188JR-29-1泥岩10288
    JR-15-2泥岩27271JR-28-2灰岩47449
    JR-15-1灰岩22177JR-28-1泥岩12286
    JR-13泥岩11891JR-27-2泥岩47449
    JR-12-2泥岩42355JR-27-1灰岩37460
    JR-12-1灰岩9901JR-26-2泥岩41554
    JR-11泥岩27272JR-26-1灰岩28369
    JR-10-2泥岩24175JR-25-2泥岩44452
    JR-10-1灰岩21277JR-25-1灰岩23375
    JR-09-3泥岩25274JR-24-2泥岩39556
    JR-09-2泥岩40159JR-24-1灰岩19378
    JR-09-1灰岩25174JR-23-2泥岩41752
    JR-08泥岩43255JR-23-1灰岩8191
    JR-07灰岩29368JR-22-2泥岩49347
    JR-06泥岩39358JR-22-1灰岩18280
    JR-05灰岩7192JR-21-2泥岩41455
    JR-04泥岩42256JR-21-1灰岩21673
    JR-03灰岩10901JR-20-2泥岩39458
    编号岩性全岩矿物黏土矿物
    石英长石碳酸盐矿物黏土总量蒙脱石伊利石绿泥石
    JR-19-1灰岩6.682.7083.506.5892.816.530.66
    JR-17-1泥灰岩6.772.7077.3012.7491.807.570.63
    JR-13斑脱岩46.0112.905.2035.3888.7710.530.71
    JR-12-1泥灰岩18.082.9068.0010.5189.579.291.13
    JR-03泥灰岩8.475.7073.4012.0589.559.730.72

    蒋日阿错剖面黏土矿物相对含量的垂向变化规律为:剖面下部伊利石和绿泥石含量较低,伊/蒙混层矿物相对含量位于高值区,其中伊利石的相对含量变化于6.84%~42.76%,平均值为26.13%,绿泥石的相对含量变化于0.71%~3.27%,平均值为1.68%,伊/蒙混层含量变化于0~92.15%,平均值为67.90%。剖面中部伊/蒙混层矿物和伊利石的相对含量呈现明显的波动变化,伊利石的相对含量变化于6.53%~49.42%,平均值为29.10%,绿泥石的相对含量变化于0.63%~7.19%,平均值为3.28%,伊/蒙混层含量变化于0~90.52%,平均值为65.47%。剖面上部伊利石和绿泥石含量远高于中下部,而伊/蒙混层的含量相对较低,伊利石相对含量变化于10.16%~57.65%,平均值为41.15%,绿泥石含量变化于2.04%~7.98%,平均值为4.29%,伊蒙混层相对含量变化于38.43%~87.80%,平均值为54.56%(图4d,f)。

  • 对于伦坡拉盆地丁青湖组地层,早期的年龄划分主要基于微体化石,王开发等[40]根据孢粉分析将丁青湖组划为中新世地层;徐正余[41]通过对介形虫化石和孢粉记录的解释提出丁青湖组的沉积时代为中新世—上新世;夏金宝[42]根据介形虫化石和孢粉记录却指出其地层年龄应为晚渐新世—上新世。而在上世纪八十年代西藏地质调查局开展的1∶20万填图工作中,曾将研究区所在的蒋日阿错向斜南北两翼地区划分为牛堡组和丁青湖组界限,其北翼的牛堡桥剖面和南翼蒋日阿错剖面都包含有牛堡组和丁青湖组地层[43],但在随后开展的1∶25万区域地质调查工作中[17-19],该地区又被划为丁青湖组地层出露区。随着近年来Sun et al.[26] 和He et al.[27]在牛堡桥剖面中下部获得的斑脱岩23.6±0.2 Ma锆石U-Pb同位素年龄,并根据磁性地层学的研究将牛堡桥剖面的时代锁定在25.5~19.8 Ma,研究区地层的精确时代才得以较好控制。与此同时,2020年曾胜强等[22]也对该剖面的地层时代展开了详细研究,尽管他们并没有发现斑脱岩,但在剖面中部和上部新发现两套凝灰岩夹层,其LA-ICP-MS锆石U-Pb测年结果为24.05±0.2 Ma和22.64±0.33 Ma,时代对应于晚渐新世和早中新世。研究剖面处于蒋日阿错向斜南翼,剖面第13层同样发育有一套斑脱岩地层(图2c,e,f、表2),可作为标志层与向斜北翼牛堡桥剖面的斑脱岩层进行区域对比,由此说明研究剖面跨越了晚渐新世—早中新世。

  • 黏土矿物形成和转化的影响因素较多,其中气候因素起主要的作用,不同气候条件下所形成的黏土矿物截然不同。当气候干冷时,淋滤作用较弱,源岩在遭受风化的过程中碱金属元素不易滤出,形成伊利石,当气候温暖潮湿时,风化作用和淋滤作用增强,一些碱金属(K+)和碱土金属元素容易被淋滤流失,形成蒙脱石,进一步形成高岭石[36-38];绿泥石形成于碱性、风化作用受抑制的环境,其含量的增加代表逐渐变为干旱的气候条件;而在干湿交替环境下,伊利石晶格混层中的K+会因淋失而导致伊利石向伊/蒙混层矿物转化[44-45]。与此同时,温度和湿度差异使地球表面形成了不同的气候带,各气候带内风化作用的类型程度明显不同,相应的形成的土壤黏土矿物种类及组合类型存在明显差异[14]。例如在我国东北部中温带地区,土壤类型主要为黑土,黏土矿物以绿泥石为主,其次为蒙脱石,含极少量高岭石[46];中部暖温带地区,土壤类型则以黄土为主,黏土矿物为蒙脱石、高岭石、伊利石组合带,三者含量差距不大,还含有极少量绿泥石[47];而在靠南部的亚热带地区,土壤类型以红土为主,黏土矿物主要为高岭石,含极少量伊利石、绿泥石、蒙脱石。从中温带—暖温带—亚热带,随着纬度的降低、温度的升高和风化作用的加强,伊利石和绿泥石相对含量逐渐减少,伊利石被进一步淋滤形成蒙脱石和高岭石,两者相对含量逐渐增大,甚至在热带气候的砖红色土壤中黏土矿物只含高岭石,不含或含极少量其他黏土矿物[48]

    另一方面,在利用黏土矿物恢复古气候时,单纯根据相对含量来分析存在较多干扰因素,且变化特征不明显,因此很多学者在研究黏土矿物古气候特征时更多的采用黏土矿物组合特征及其比值变化来综合分析,例如Fang et al.[49]利用(蒙脱石+伊/蒙混层)/伊利石比值在其研究区范围内追踪风化强度(SWI),提出了第一个近乎完整的古近纪青藏高原北部大陆岩石硅酸盐风化强度记录。张志春等[50]根据高岭石/(伊利石+绿泥石)、(高岭石+蒙脱石+蛭石)/(伊利石+绿泥石)2个比值来判断黏土矿物风化程度,重建了青藏高原三江源南部全新世的古气候环境。张琪[51]认为蒙脱石/(伊利石+绿泥石)可以反映化学风化和物理风化的对比值,其比值与温度和湿度呈正相关,并结合(蒙脱石+高岭石)/(伊利石+绿泥石)比值恢复了渤东地区新近系古气候环境。由于绿泥石形成于风化条件受抑制的地区[45],伊利石的抗风化能力要强于绿泥石[52],蒙脱石较伊利石、绿泥石风化程度更高[53],而伊/蒙混层矿物是形成于中等程度化学风化的地表环境[36]。因此,研究工作基于上述理论基础利用伊利石/绿泥石(I/C)和(蒙脱石+伊/蒙混层)/(伊利石+绿泥石)((S+I/S)/(I+C))两个比值来追踪物源区风化程度的强弱,风化作用越强,气候条件就越偏向于温暖潮湿,反之则偏向于寒冷干燥。

    但需要强调的是,在利用黏土矿物进行古气候重建时,应确保所选样品未遭受明显的成岩作用,且应评估物源的变化,只有当样品变质程度不高、物源位置没有发生较大的变化时,才认为黏土矿物可以反映研究区的古气候演化过程[14]。伊利石结晶度(IC)被广泛的作为一个判断变质程度的指标,Kübler[32]以伊利石结晶度Kübler指数0.42°和0.25°为界限,把变质程度分为三个区域:未变质(>0.42°)、近变质(0.25°~0.42°)、浅变质(<0.25°),只有当Kübler指数>0.25°,黏土矿物未发生明显成岩蚀变,才可以指示古气候的变化。本文伊利石的结晶度采用Jade软件测量伊利石d(001)峰的半高宽来表示,结果表明,研究区伊利石结晶度均大于0.25°,位于近变质带,且还有半数样品的伊利石结晶度大于0.42°,位于未变质带,因此认为研究区黏土矿物所受成岩蚀变作用影响较小。另外,主微量元素及其比值通常被用于沉积物的物源特征演化信息研究,不同的沉积环境下沉积物中的元素的迁移速率存在明显的差异,Al和Ti在沉积水体中很稳定,可以代表陆源物质的输入,其与其他元素的比值可以判断物源区位置是否发生变化[54-56]。Th/U也是一个能有效反应物源区信息的比值[57],化学侵蚀和风化作用都会导致沉积物的Th/U比值变大[58],所以根据样品Th/U的变化范围可以确定物源位置和来源是否发生改变[59]。研究区样品中Zr/Al、Fe/Al、Th/U比值波动变化范围和幅度较小(图4a~c),说明本区物源位置并未发生较大的改变。因此,本文认为研究区黏土矿物成岩蚀变程度较低、物源未发生明显变化,能够有效的记录伦坡拉盆地的古气候演化信息。

  • 依据黏土矿物特征及垂向变化规律,将研究剖面古气候演化划分为三个阶段,其特征如下:1)剖面底部0~39 m,伊利石和绿泥石的相对含量相对较低、伊蒙混层的相对含量较高,且(S+I/S)/(I+C)比值和I/C比值明显高于Ⅱ、Ⅲ段,指示当时风化作用相对较强,表明Ⅰ段的气候主要为温暖潮湿。2)剖面中部39~74 m,伊利石和绿泥石相对含量有逐渐增加的趋势,伊利石呈显著的波动上升,伊/蒙混层矿物在54~70 m呈明显的波动变化,(S+I/S)/(I+C)比值在41.5~43.5 m迅速下降,随后呈明显的波动趋势;I/C比值在40.6~46.8 m经过缓慢下降后趋于平缓,其平均值小于Ⅰ段,说明此阶段风化作用明显减弱,但由于Ⅱ段各条曲线都呈明显的波动变化,并不稳定,因此反映当时的气候以干冷—暖湿交替的周期性变化为特点。3)剖面顶部74~105 m,伊利石与绿泥石的相对含量都呈较稳定的上升趋势,其平均值为3段中最高,伊/蒙混层矿物的相对含量逐渐下降。(S+I/S)/(I+C)和(I/C)都趋于平缓并位于低值区,说明风化作用在3个阶段中相对较弱,且代表干冷气候的黏土矿物组合——伊利石与绿泥石均远大于其余两段,并仍然保持上升趋势,说明此阶段的气候已经变为以寒冷干燥为主。因此,青藏高原伦坡拉盆地在渐新世到中新世之交存在一个明显降温事件,并且从晚渐新世的温暖湿润气候到早中新世的干冷气候存在一个显著的波动过程。

  • 渐新世和中新世之交的降温事件不仅仅存在于伦坡拉盆地,在青藏高原其他地区均有所响应。例如高原北部可可西里盆地古气候特征在渐新世—中新世之交发生了明显的变化,湖相碳酸盐δ13C值和δ18O值发生显著正偏移[60-61],湖泊类型也发生了明显转变,由富含石膏的碎屑型淡水湖泊或微咸水湖转变为由藻灰岩、叠层石灰岩、白云石组成的碳酸盐型咸水湖,湖泊自生元素增加,陆相微量元素急剧下降,作为干旱指标的Na/Ti和Na/K明显增大,暗示了当时古气候由暖湿到干冷的演化过程[60-62]。此外,可可西里地区的古生态环境也发生了显著的转变,热带和亚热带植被衰减,代表温带的植物群落逐渐增加,草原动物开始出现,且动物的生理特征开始发生明显的变化[63-66]。另一方面,吴珍汉等[66]对西宁—民和盆地晚新生代孢粉组合的研究表明,热带—亚热带植物花粉含量在渐新世与中新世之交仅为3%~5%,与渐新世相比明显下降,说明西宁一民和盆地在当时所处气候带已经由亚热带转变为温带。宋鄂平[67]对高原中部改则盆地沉积物中的黏土矿物特征研究表明,改则盆地在晚渐新世—早中新世出现了气候环境变化波动及多次小的气候旋回变化,气候环境从温暖湿润渐变为温凉寒冷直至寒冷干旱。因此在约23 Ma发生的降温事件是整个青藏高原及周缘地区广泛出现的一次重大气候转型事件。

    近年来,随着国内外学者对古气候演化的深入研究,我们对气候历史有了更清晰的了解。众所周知,新生代气候的降温趋势从约55 Ma开始,其间发生了许多引人瞩目的降温事件[1]:例如,约34 Ma的Oi-1降温事件,约23 Ma的Mi-1降温事件,14 Ma左右的南极东部冰盖的扩张,以及约3 Ma北半球开始发生强烈的冰川作用。但据前人研究,全球气候的变化首先在两极反应出来,因为两极气候变化引起海冰减少或增加,反照率降低或升高,使热能从海洋表面转移,从而加速其他地区变暖或变冷[68]。Sellwood et al.[69]使用爱泼斯坦和克雷格方程式对大西洋和太平洋白垩纪森诺曼阶的古海水温度的计算表明,位于冰室期的白垩纪两极温度与现今相比变化可达30 ℃以上,而在赤道及中低纬度地区的古海水温度却一直保持在28 ℃左右。据Kidder et al.[70]对全球平均温度统计结果表明,地球两极温度在极端冰室期可达-50 ℃,在极端热室期可达13 ℃,但赤道以及中低纬度地区温度不论冰室期或温室期都保持在25 ℃左右,说明两极地区对全球气候变化的响应与反馈速度远大于其他地区。但在伦坡拉盆地的这次降温过程与Zachos et al.[1]2001年建立的全球深海底栖有孔虫δ18O曲线和2020年Westerhold et al.[35]建立的新一轮新生代气候演化的δ18O曲线(图4i,j)[1,35]均存在良好的对应关系,说明青藏高原腹地及周缘盆地广泛存在的渐新世到中新世之交的降温事件与全球Mi-1降温事件存在耦合关系,可能暗示了Mi-1降温事件的影响已经不局限于南北两极,在赤道及中低纬度地区都有所响应。

    但还需要指出的是,23 Ma也是青藏高原构造活动频发期以及中国乃至亚洲气候格局转变的一个重要时间节点,发生了著名的喜马拉雅运动[6],喜马拉雅山前西瓦利克前陆盆地形成[71],高原东北缘22 Ma开始发生剧烈的造山运动和盆地分割[72-73],在河西走廊盆地,疏勒河组(23~4.9 Ma)不整合于白杨河组之上[74],藏北钾质玄武岩广泛喷发[8],这些高原内部及周缘发生的构造活动代表了高原的大范围整体隆升过程,构成了高原喜马拉雅运动主幕[6]。与此同时,在渐新世与中新世之交青藏高原及周缘古生态及气候模型也发生了显著变化,其特征为中国东部地区从干旱向湿润转变,而中国西北部地区则受到干旱条件的限制[5,12,75-79]。目前对于这次干旱化进程,主要存在两种解释,一种是副特提斯海的萎缩,Ramstein et al.[80]建立大气环流模型模拟了现今、10 Ma和30 Ma的欧亚气候,指出在渐新世中晚期至中新世时期副特提斯海的萎缩在中亚气候从温带性气候转变为大陆性气候及亚洲季风的变化过程中都起着重要的推动作用。另一种占主导地位的理论认为印度板块和亚洲板块碰撞后导致青藏高原的逐步隆升,其在早中新世的构造隆升已经达到一定的高度[81],阻档了来自南方大洋的水汽,导致了亚洲内陆干旱化的增强[82-87]。然而,到目前为止青藏高原中部新生代这一引人注目的古地貌特征在印度板块和欧亚板块碰撞前后的演化仍然悬而未决,尤其是在位于高原核心区域的伦坡拉盆地及周缘地区,它的古海拔高程目前存在较大分歧。一些同位素研究表明,伦坡拉盆地的古海拔在晚渐新世已经隆升至一定高度(4~5 km)[88-91];然而,来自古植物学[92]和古生物学[1011,25-26,93]证据表明当时的海拔仍然较低(1~3 km);而2019年发表于Science上的两篇基于温度约束和热衰退率数值模拟的古海拔文章,其结论也相差很远[94-95]。针对这一局面,最近中国科学院青藏高原研究所方小敏研究员及其研究团队指出,造成上述古海拔重建结果矛盾的根本原因在于伦坡拉盆地的地层时代并未得到很好的约束[23],换句话说Rowley et al.[88]提出的伦坡拉盆地的高海拔主要是指26.5~23.3 Ma的晚渐新世时期,而Wu et al.[10],Su et al.[11]古生物团队所提出的低海拔主要针对39.7~37 Ma的始新世时期。倘若按照这一观点,意味着在渐新世至中新世过渡时期青藏高原腹地已经处于高海拔地区,这次的降温事件可能更多的倾向于反应全球Mi-1冰川作用在高原内部及周缘的响应。但无论如何,伦坡拉盆地及周缘地区所识别的渐新世到中新世之交的降温事件是Mi-1冰川作用在高原内部的响应还是高原隆升所导致,仍需要进一步研究。

  • (1) 西藏伦坡拉盆地渐新世—中新世之交黏土矿物以伊/蒙混层矿物为主,其次为伊利石,还含有少量蒙脱石和绿泥石,伊利石结晶度和主微量元素比值指示剖面沉积物中的黏土矿物特征可以有效反应伦坡拉盆地古气候演化过程。根据自生黏土矿物的习性指出伦坡拉盆地在晚渐新世时期古气候以温暖湿润为主,渐新世—中新世之交出现了一次明显的降温事件,并呈显著的干冷—暖湿交替的波动变化,早中新世时期古气候转变为以干冷为主。

    (2) 通过区域对比研究发现渐新世与中新世之交的这次降温事件不仅局限于伦坡拉盆地,而是在青藏高原及周缘地区都普遍存在,但这次降温事件是Mi-1冰川作用在高原内部的响应还是高原隆升所导致仍需要进一步研究。

Reference (95)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return