Advanced Search
Volume 40 Issue 3
Jun.  2022
Turn off MathJax
Article Contents

REN Ying, ZHONG DaKang, TAI JunWei, CHEN Cong, LIU Wei, LIU Ke, WANG Ke, YANG ZiJie. Research Progress in Paleo-marine Redox Conditions and Their Co-evolution with Biology During the Cambrian Stage 4 in South China[J]. Acta Sedimentologica Sinica, 2022, 40(3): 701-714. doi: 10.14027/j.issn.1000-0550.2021.018
Citation: REN Ying, ZHONG DaKang, TAI JunWei, CHEN Cong, LIU Wei, LIU Ke, WANG Ke, YANG ZiJie. Research Progress in Paleo-marine Redox Conditions and Their Co-evolution with Biology During the Cambrian Stage 4 in South China[J]. Acta Sedimentologica Sinica, 2022, 40(3): 701-714. doi: 10.14027/j.issn.1000-0550.2021.018

Research Progress in Paleo-marine Redox Conditions and Their Co-evolution with Biology During the Cambrian Stage 4 in South China

doi: 10.14027/j.issn.1000-0550.2021.018
Funds:

Youth Science Foundation of Northeast Petroleum University 2018QNL-09

Research Start-up Funds for Talent Introduction of Northeast Petroleum University 1305021844

Natural Science Foundation of Heilongjiang Province LH2021D003

  • Received Date: 2020-09-10
  • Rev Recd Date: 2021-01-12
  • Publish Date: 2022-06-10
  • The genetic relationship between the Cambrian Explosion and the evolution of the paleo-marine environment is one of the frontier scientific issues in tracing the origin and development of life, environmental changes, and their co-evolution. The Cambrian Stage 4 is one of the key points during this period, and the South China Plate is a prominent window for the research on Cambrian Explosion related issues. Thus, the redox condition of the paleo-ocean is a crucial pointcut for analyzing the geological origin of great changes of paleontological species and numbers. Therefore, based on the sufficient survey of previous research, this paper systematically reviews and summarizes the sedimentary paleogeographic background, paleo-marine environment conditions, biological development situation, and cataclysmic geological events, and then explores the genetic relationships among geological events, paleo-marine redox conditions, and biological evolutions during the Cambrian Stage 4 to reveal the co-evolution between paleo-ocean redox conditions and biology in the Early Cambrian. The results infer that the frequent terrestrial water injection, storm surge, intensively volcanic activity, and transgressive events during the Cambrian Stage 4 affected the paleo-marine redox conditions significantly, and the biological crisis was closely related with the paleo-marine anoxic event caused by geological events. However, the differences in biological abundance among different fluctuation stages of redox conditions and the differences in redox conditions at different paleontological abundance points, as well as the exact temporal correspondences between paleo-marine anoxic and/or oxidation events and the proposed triggering geological events, are still controversial, leading to confusion about the internal relationships among them. Thus, this paper introduces the paleo-marine redox conditions of the Early Cambrian and their co-evolution with biology in order to provide reference for the research on the causal relationships between life and environmental changes on the earth.
  • [1] Shu D. Cambrian explosion: Birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240.
    [2] Erwin D H, Laflamme M, Tweedt S M, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334 (6059): 1091-1097.
    [3] Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6(1): 7142.
    [4] Pagès A, Schmid S, Edwards D, Barnes S, He N N, Grice K. A molecular and isotopic study of palaeoenvironmental conditions through the Middle Cambrian in the Georgina Basin, Central Australia[J]. Earth and Planetary Science Letters, 2016, 447: 21-32.
    [5] He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals[J]. Nature Geoscience, 2019, 12(6): 468-474.
    [6] Zhu M Y, Zhang J M, Li G X, et al. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions[J]. Geobios, 2004, 37(2): 287-301.
    [7] Evins L Z, Jourdan F, Phillips D. The Cambrian Kalkarindji Large Igneous province: Extent and characteristics based on new 40Ar/39Ar and geochemical data[J]. Lithos, 2009, 110(1/2/3/4): 294-304.
    [8] Hough M L, Shields G A, Evins L Z, et al. A major sulphur isotope event at c. 510 Ma: A possible anoxia-extinction-volcanism connection during the Early-Middle Cambrian transition?[J]. Terra Nova, 2006, 18(4): 257-263.
    [9] Ren Y, Zhong D K, Gao C L, et al. High-resolution carbon isotope records and correlations of the Lower Cambrian Longwangmiao Formation (Stage 4, Toyonian) in Chongqing, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 572-592.
    [10] Ren Y, Zhong D K, Gao C L, et al. The paleoenvironmental evolution of the Cambrian Longwangmiao Formation (Stage 4, Toyonian) on the Yangtze Platform, South China: Petrographic and geochemical constrains[J]. Marine and Petroleum Geology, 2019, 100: 391-411.
    [11] Shu D G, Morris S C, Han J, et al. Ancestral echinoderms from the Chengjiang deposits of China[J]. Nature, 2004, 430(6998): 422-428.
    [12] Jiang S Y, Pi D H, Heubeck C, et al. Early Cambrian ocean anoxia in South China[J]. Nature, 2009, 459(7248): E5-E6.
    [13] Tostevin R, Wood R A, Shields G A, et al. Low-oxygen waters limited habitable space for early animals[J]. Nature Communications, 2016, 7(1): 12818.
    [14] Li C, Cheng M, Zhu M Y, et al. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution[J]. Emerging Topics in Life Sciences, 2018, 2(2): 279-288.
    [15] Wei G Y, Planavsky N J, Tarhan L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46(7): 587-590.
    [16] Jiang L, Cai C F, Worden R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, North-West China[J]. Sedimentology, 2016, 63(7): 2130-2157.
    [17] 任影,钟大康,柳慧琳,等. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据[J]. 地球科学,2018,43(11):4066-4095.

    Ren Ying, Zhong Dakang, Liu Huilin, et al. Isotopic and elemental evidence for paleoenvironmental evolution of Cambrian Stage 4 Longwangmiao Formation, east Chongqing, China[J]. Earth Science, 2018, 43(11): 4066-4095.
    [18] Wignall P B, Hallam A. Anoxia as a cause of the Permian/Triassic mass extinction: Facies evidence from northern Italy and the western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1/2): 21-46.
    [19] Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5710): 706-709.
    [20] Meyer K M, Kump L R. Oceanic euxinia in earth history: Causes and consequences[J]. Earth and Planetary Sciences, 2008, 36: 251-288.
    [21] 谢树成,王风平,颜佳新,等. 若干重大地质环境突变的地球生物学过程[J]. 科技资讯,2016,14(21):176-177.[

    Xie Shucheng, Wang Fengping, Yan Jiaxin, et al. Geobiological processes during critical environmental transitions in earth history[J]. Science & Technology Information, 2016, 14(21): 176-177.
    [22] 张力楠. 铁同位素示踪埃迪卡拉纪古海洋环境[D]. 北京:中国地质大学(北京),2019:30-36.

    Zhang Linan. Iron isotope tracing of Ediacaran paleomarine environment[D]. Beijing: China University of Geosciences (Beijing), 2019: 30-36.
    [23] Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-Earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127.
    [24] Wen H J, Carignan J, Chu X L, et al. Selenium isotopes trace anoxic and ferruginous seawater conditions in the Early Cambrian[J]. Chemical Geology, 2014, 390: 164-172.
    [25] Rong J Y, Harper D A T. Brachiopod survival and recovery from the Latest Ordovician mass extinctions in South China[J]. Geological Journal, 1999, 34(4): 321-348.
    [26] Zhang T G, Shen Y N, Zhan R B, et al. Large perturbations of the carbon and sulfur cycle associated with the Late Ordovician mass extinction in South China[J]. Geology, 2009, 37(4): 299-302.
    [27] Guo Q J, Strauss H, Liu C Q, et al. A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian series 3 on the Yangtze platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(3/4): 143-151.
    [28] 王新强,史晓颖, Jiang Ganqing,等. 华南埃迪卡拉纪—寒武纪过渡期的有机碳同位素梯度和海洋分层[J]. 中国科学(D辑):地球科学,2014,44(6):1142-1154.

    Wang Xinqiang, Shi Xiaoying, Jiang Ganqing . et al. Organic carbon isotope gradient and ocean stratification across the Late Ediacaran-Early Cambrian Yangtze Platform[J]. Science China(Seri.D): Earth Sciences, 2014, 44(6): 1142-1154.
    [29] Na L, Kiessling W. Diversity partitioning during the Cambrian radiation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4702-4706.
    [30] Chang C, Hu W X, Wang X L, et al. Carbon isotope stratigraphy of the Lower to Middle Cambrian on the eastern Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 479: 90-101.
    [31] 任影,钟大康,高崇龙,等. 川东及其周缘地区下寒武统龙王庙组沉积相[J]. 古地理学报,2015,17(3):335-346.

    Ren Ying, Zhong Dakang, Gao Chonglong, et al. Sedimentary facies of the Lower Cambrian Longwangmiao Formation in eastern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography, 2015, 17(3): 335-346.
    [32] Zhang X L, Liu W, Zhao Y L. Cambrian burgess shale-type Lagerstätten in South China: Distribution and significance[J]. Gondwana Research, 2008, 14(1/2): 255-262.
    [33] Yang A H, Zhu M Y, Zhuravlev A Y, et al. Archaeocyathan zonation of the Yangtze Platform: Implications for regional and global correlation of Lower Cambrian stages[J]. Geological Magazine, 2016, 153(3): 388-409.
    [34] 关士聪. 中国海陆变迁海域沉积相与油气:晚元古代—三叠纪[M]. 北京:科学出版社,1984.

    Guan Shicong. Marine sedimentary facies and oil and gas in China's sea land transition (Late Proterozoic Triassic)[M]. Beijing: Science Press, 1984.
    [35] 王鸿祯. 中国古地理图集[M]. 北京:地图出版社,1985.

    Wang Hongzhen. Atlas of the palaeogeography of China[M]. Beijing: Map Publishing House, 1985.
    [36] 刘宝珺,许效松. 中国南方岩相古地理图集:震旦纪—三叠纪[M]. 北京:科学出版社,1994.

    Liu Baojun, Xu Xiaosong. Lithofacies paleogeography atlas of southern China[M]. Beijing: Science Press, 1994.
    [37] Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750-380 Ma) between South China and Australia: Paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 423-434.
    [38] Zhu M Y, Babcock L E, Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld, 2006, 15(3/4): 217-222.
    [39] 马永生,陈洪德,王国力,等. 中国南方层序地层与古地理[M]. 北京:科学出版社,2009:224-266.

    Ma Yongsheng, Chen Hongde, Wang Guoli, et al. Sequence stratigraphy and paleogeography in southern China[M]. Beijing: Science Press, 2009: 224-266.
    [40] Peng S, Babcock L E, Cooper R A. The Cambrian Period[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 437-488.
    [41] 李江海,韩喜球,毛翔. 全球构造图集[M]. 北京:地质出版社,2014:38-46.

    Li Jianghai, Han Xiqiu, Mao Xiang. Global tectonic atlas[M]. Beijing: Geological Publishing House, 2014: 38-46.
    [42] 朱茂炎,杨爱华,袁金良,等. 中国寒武纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):26-65.

    Zhu Maoyan, Yang Aihua, Yuan Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 26-65.
    [43] 冯增昭,彭勇民,金振奎,等. 中国早寒武世岩相古地理[J]. 古地理学报,2002,4(1):1-12.

    Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Early Cambrian in China[J]. Journal of Palaeogeography, 2002, 4(1): 1-12.
    [44] 梅冥相,马永生,张海,等. 上扬子区寒武系的层序地层格架:寒武纪生物多样性事件形成背景的思考[J]. 地层学杂志,2007,31(1):68-78.

    Mei Mingxiang, Ma Yongsheng, Zhang Hai, et al. Sequence-stratigraphic frameworks for the Cambrian of the Upper-Yangtze region: Ponder on the sequence stratigraphic background of the Cambrian biological diversity events[J]. Journal of Stratigraphy, 2017, 31(1): 68-78.
    [45] 黄福喜,陈洪德,侯明才,等. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报,2011,27(8):2299-2317.

    Huang Fuxi, Chen Hongde, Hou Mingcai, et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica, 2011, 27(8): 2299-2317.
    [46] 周进高,徐春春,姚根顺,等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发,2015,42(2):158-166.

    Zhou Jingao, Xu Chunchun, Yao Genshun, et al. Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(2): 158-166.
    [47] 王瀚,李智武,刘树根,等. 川北地区下寒武统龙王庙组混积特征及其对储层的影响[J]. 石油实验地质,2019,41(5):663-673.

    Wang Han, Li Zhiwu, Liu Shugen, et al. Characteristics of mixed sediments and influence on reservoir of Lower Cambrian Longwangmiao Formation, northern Sichuan Basin[J]. Petroleum Geology and Experiment, 2019, 41(5): 663-673.
    [48] 杨伟强,刘正,陈浩如,等. 四川盆地下寒武统龙王庙组颗粒滩沉积组合及其对储集层的控制作用[J]. 古地理学报,2020,22(2):251-265.

    Yang Weiqiang, Liu Zheng, Chen Haoru, et al. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs[J]. Journal of Palaeogeography, 2020, 22(2): 251-265.
    [49] 匡文龙,杨绍祥,刘新华,等. 湘西北渔塘地区寒武系清虚洞组风暴岩及其地质意义[J]. 吉林大学学报(地球科学版),2008,38(2):225-232.

    Kuang Wenlong, Yang Shaoxiang, Liu Xinhua, et al. Significance of tempestite from the Cambrian Qingxudong Formation in Yutang area of northwestern Hunan province[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(2): 225-232.
    [50] 宋金民,刘树根,赵异华,等. 川中地区中下寒武统风暴岩特征及沉积地质意义[J]. 石油学报,2016,37(1):30-42.

    Song Jinmin, Liu Shugen, Zhao Yihua, et al. Characteristics and sedimentary geological significances of Lower-Middle Cambrian tempestites in central Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 30-42.
    [51] 郑斌嵩,牟传龙,梁薇,等. 扬子地台东南缘下寒武统清虚洞组风暴沉积特征及其重要意义[J]. 地质学报,2018,92(7):1524-1540.

    Zheng Binsong, Mou Chuanlong, Liang Wei, et al. The characteristics of storm deposits of the Lower Cambrian Qingxudong Formation in the southeastern margin of Yangtze Platform and its significance[J]. Acta Geologica Sinica, 2018, 92(7): 1524-1540.
    [52] Sackett W M. The depositional history and isotopic organic carbon composition of marine sediments[J]. Marine Geology, 1964, 2(3): 173-185.
    [53] Jasper J P, Gagosian R B. The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1117-1132.
    [54] 袁桃,伊海生,兰叶芳,等. 元素分析在古海水原始信息保存性研究中的应用[J]. 地质论评,2018,64(3):584-596.

    Yuan Tao, Yi Haisheng, Lan Yefang, et al. An application of elements analysis on researches of the paleo-seawater information preservation[J]. Geological Review, 2018, 64(3): 584-596.
    [55] Li C, Jin C S, Planavsky N J, et al. Coupled oceanic oxygenation and metazoan diversification during the Early-Middle Cambrian?[J]. Geology, 2017, 45(8): 743-746.
    [56] Dilliard K A, Pope M C, Coniglio M, et al. Stable isotope geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for ocean chemistry and secular curve generation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 174-194.
    [57] Wu Y S, Wang W, Jiang H X, et al. Evolution patterns of seawater carbon isotope composition during the Cambrian and their stratigraphic significance[J]. Geological Journal, 2021, 56(1): 457-474.
    [58] Montañez I P, Osleger D A, Banner J L, et al. Evolution of the Sr and C isotope composition of Cambrian oceans[J]. GSA Today, 2000, 10(5): 1-5.
    [59] Brasier M D, Sukhov S S. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data[J]. Canadian Journal of Earth Science, 1998, 35(4): 353-373.
    [60] Guo Q J, Strauss H, Zhu M Y, et al. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian Transition[J]. Precambrian Research, 2013, 225: 209-217.
    [61] Ishikawa T, Ueno Y, Shu D G, et al. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China[J]. Gondwana Research, 2014, 25(3): 1045-1056.
    [62] Faggetter L E, Wignall P B, Pruss S B, et al. Trilobite extinctions, facies changes and the ROECE carbon isotope excursion at the Cambrian Series 2-3 boundary, Great Basin, western USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478: 53-66.
    [63] Kirschvink J L, Raub T D. A methane fuse for the Cambrian explosion: Carbon cycles and true polar wander[J]. Comptes Rendus Geoscience, 2003, 335(1): 65-78.
    [64] Marshall C R. Explaining the Cambrian “explosion” of animals[J]. Annual Review of Earth and Planetary Science, 2006, 34: 355-384.
    [65] Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95.
    [66] Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (~529- 514Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51.
    [67] 李丹丹. 寒武纪海洋化学组成变化与早期动物演化的相互作用[D]. 合肥:中国科学技术大学,2017:1-47.

    Li Dandan. The interplay between Cambrian ocean chemistry changes and early animal evolution[D]. Hefei: University of Science and Technology of China, 2017: 1-47.
    [68] 李伟平. 下扬子埃迪卡拉纪晚期和寒武纪早期沉积碳酸盐岩地球化学研究[D]. 合肥:中国科学技术大学,2017:38-66.

    Li Weiping. Geochemistry of sedimentary carbonates from the Late Ediacaran to the Early Cambrian in the Lower Yangtze region of South China[D]. Hefei: University of Science and Technology of China, 2017: 38-66.
    [69] Wille M, Nägler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature, 2008, 453(7196): 767-769.
    [70] Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils- insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191.
    [71] Jiang S Y, Yang J H, Ling H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228.
    [72] Chen D Z, Wang J G, Qing H R, et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009, 258(3/4): 168-181.
    [73] Partin C A, Bekker A, Planavsky N J, et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369-370: 284-293.
    [74] 王勋. Cu、Zn、Sr同位素在寒武纪生命大爆发和晚泥盆世生物大灭绝时期古海洋环境中的应用[D]. 北京:中国地质大学(北京),2018:31-47.

    Wang Xun. The applications of Cu, Zn and Sr isotopes in oceanic environments during the Cambrian explosion and Late Devonian mass extinction[D]. Beijing: China University of Geosciences (Beijing), 2018: 31-47.
    [75] Santosh M, Maruyama S, Sawaki Y, et al. The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth[J]. Gondwana Research, 2013, 25(3): 945-965.
    [76] Squire R J, Campbel I H, Allen C M, et al. Did the transgondwanan supermountain trigger the explosive radiation of animals on Earth?[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 116-133.
    [77] Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1(8): 554-558.
    [78] 刘凯. 寒武纪早期扬子板块古海洋与生物群协同演化及其对有机质富集的影响[D]. 武汉:中国地质大学,2018:34-68.

    Liu Kai. The co-evolution of ocean redox chemistry and biota during the Early Cambrian, South China and its influence on organic matter accumulation[D]. Wuhan: China University of Geosciences, 2018: 34-68.
    [79] Shen Y N, Farquhar J, Zhang H, et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction[J]. Nature Communications, 2011, 2: 210.
    [80] Hammarlund E U, Dahl T W, Harper D A T, et al. A sulfidic driver for the End-Ordovician mass extinction[J]. Earth and Planetary Science Letters, 2012, 331-332: 128-139.
    [81] 沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135.

    Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135.
    [82] Chang X L, Hou M C, Liu X C, et al. Abundant microspherules from the Upper Ordovician of northern Tarim Basin, Northwest China: Origin and palaeoenvironmental implications[J]. Geological Journal, 2018, 53(6): 2896-2907.
    [83] 祝圣贤. 华北中部晚石炭—早二叠世古气候记录[D]. 成都:成都理工大学,2019:40-43.

    Zhu Shengxian. Paleoclimate records in Permo-Carboniferous of central North China[D]. Chengdu: Chengdu University of Technology, 2019: 40-43.
    [84] Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137.
    [85] Dong B H, Long X P, Li J, et al. Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China: Evidence for redox environment corresponding to the Cambrian Explosion[J]. Gondwana Research, 2019, 69: 45-55.
    [86] Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376(6535): 53-56.
    [87] Butterfield N J. Oxygen, animals and oceanic ventilation: An alternative view[J]. Geobiology, 2009, 7(1): 1-7.
    [88] Feng L J, Li C, Huang J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133.
    [89] Shen Y N, Schidlowski M. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations[J]. Geology, 2000, 28(7): 623-626.
    [90] Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83.
    [91] Wang S F, Zou C N, Dong D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
    [92] Sperling E A, Frieder C A, Raman A V, et al. Oxygen, ecology, and the Cambrian radiation of animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13446-13451.
    [93] Zhang X L, Cui L H. Oxygen requirements for the Cambrian explosion[J]. Journal of Earth Science, 2016, 27(2): 187-195.
    [94] Wotte T, Strauss H, Fugmann A, et al. Paired δ34S data from carbonate-associated sulfate and chromium–reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana[J]. Geochimica et Cosmochimica Acta, 2012, 85: 228-253.
    [95] Chang B, Li C, Liu D, et al. Massive Formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Science of United States of America, 2020, 117(25): 14005-14014.
    [96] 胡安平,沈安江,梁峰,等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质,2020,41(1):37-49.

    Hu Anping, Shen Anjiang, Liang Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49.
    [97] Peng J W, Fu Q L, Larson T E, et al. Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the Late Paleozoic ice age[J]. GSA Bulletin, 2021, 133(1/2): 57-73.
    [98] Mukherjee I, Large R R. Co-evolution of trace elements and life in Precambrian oceans: The pyrite edition[J]. Geology, 2020, 48(10): 1018-1022.
    [99] Zhang L J, Zhang X, Buatois L A, et al. Periodic fluctuations of marine oxygen content during the latest Permian[J]. Global and Planetary Change, 2020, 195: 103326.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(565) PDF downloads(131) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-09-10
  • Revised:  2021-01-12
  • Published:  2022-06-10

Research Progress in Paleo-marine Redox Conditions and Their Co-evolution with Biology During the Cambrian Stage 4 in South China

doi: 10.14027/j.issn.1000-0550.2021.018
Funds:

Youth Science Foundation of Northeast Petroleum University 2018QNL-09

Research Start-up Funds for Talent Introduction of Northeast Petroleum University 1305021844

Natural Science Foundation of Heilongjiang Province LH2021D003

Abstract: The genetic relationship between the Cambrian Explosion and the evolution of the paleo-marine environment is one of the frontier scientific issues in tracing the origin and development of life, environmental changes, and their co-evolution. The Cambrian Stage 4 is one of the key points during this period, and the South China Plate is a prominent window for the research on Cambrian Explosion related issues. Thus, the redox condition of the paleo-ocean is a crucial pointcut for analyzing the geological origin of great changes of paleontological species and numbers. Therefore, based on the sufficient survey of previous research, this paper systematically reviews and summarizes the sedimentary paleogeographic background, paleo-marine environment conditions, biological development situation, and cataclysmic geological events, and then explores the genetic relationships among geological events, paleo-marine redox conditions, and biological evolutions during the Cambrian Stage 4 to reveal the co-evolution between paleo-ocean redox conditions and biology in the Early Cambrian. The results infer that the frequent terrestrial water injection, storm surge, intensively volcanic activity, and transgressive events during the Cambrian Stage 4 affected the paleo-marine redox conditions significantly, and the biological crisis was closely related with the paleo-marine anoxic event caused by geological events. However, the differences in biological abundance among different fluctuation stages of redox conditions and the differences in redox conditions at different paleontological abundance points, as well as the exact temporal correspondences between paleo-marine anoxic and/or oxidation events and the proposed triggering geological events, are still controversial, leading to confusion about the internal relationships among them. Thus, this paper introduces the paleo-marine redox conditions of the Early Cambrian and their co-evolution with biology in order to provide reference for the research on the causal relationships between life and environmental changes on the earth.

REN Ying, ZHONG DaKang, TAI JunWei, CHEN Cong, LIU Wei, LIU Ke, WANG Ke, YANG ZiJie. Research Progress in Paleo-marine Redox Conditions and Their Co-evolution with Biology During the Cambrian Stage 4 in South China[J]. Acta Sedimentologica Sinica, 2022, 40(3): 701-714. doi: 10.14027/j.issn.1000-0550.2021.018
Citation: REN Ying, ZHONG DaKang, TAI JunWei, CHEN Cong, LIU Wei, LIU Ke, WANG Ke, YANG ZiJie. Research Progress in Paleo-marine Redox Conditions and Their Co-evolution with Biology During the Cambrian Stage 4 in South China[J]. Acta Sedimentologica Sinica, 2022, 40(3): 701-714. doi: 10.14027/j.issn.1000-0550.2021.018
  • 埃迪卡拉纪末期—寒武纪早期(约542~517 Ma)全球出现“寒武纪生命大爆发”,生物种属与多样性急速增加[1-3]。但在寒武纪第3期末至第4期(514~509 Ma),生物种属及数量却显著降低,国际上称之为“波托姆期—图央期生物消亡”[4];作为规模不亚于“显生宙五次生物大灭绝事件”的显生宙首次动物大型灭绝事件[5],其在寒武纪第4期表现为以三叶虫为代表的生物大量灭绝[6],同时全球发生地质历史上规模第四大的大火成岩省集中喷发,喷发面积达2.1×106 km2[7],且海水出现显生宙最大幅度的硫同位素正偏移(δ 34S值高达+50‰[8])以及幅度达6‰的碳同位素负偏移(国际上称之为Redlichiid-Olenellid Extinction Carbon Isotope Excursion[9])。寒武纪第4期生物灭绝与全球火成岩大规模喷发、海水地球化学组成显著变化具有较好的时间一致性(图1),是地球环境与生命演化史上的重要节点。

    Figure 1.  Geological, biological, and geochemical events during the Cambrian (modified from reference [10])

    古海洋环境变化与生物爆发及灭绝的成因联系一直是追溯生命起源、地球环境演化及两者协同作用的前沿科学问题之一。目前国际上关于“寒武纪生命大爆发”的成因研究较为丰富[3,11-15],但对紧随其后发生在寒武纪第4期的生物灭绝事件关注有限。此外,全球寒武系第4阶多以厚层碎屑岩沉积为特征,仅在劳伦古大陆、澳大利亚古陆、西伯利亚板块和塔里木、华北、华南板块的局部地区发育较大规模的海相碳酸盐岩沉积[9,16-17]图2a),加之寒武系第4阶全球界线层型剖面和点位(GSSP)尚未建立,给该时间段古海洋环境信息获取与重建等工作带来困难。截至目前,寒武纪第4期生物大量灭绝的地质成因尚不明确。

    Figure 2.  Paleo⁃latitude position (a), paleogeography (b), and biological abundance from different sections (c) on the South China Plate during the Cambrian Age 4 (modified from reference [10])

    古海洋氧化还原条件是分析论证古生物种属及数量巨变地质成因的关键切入点。不同地质历史时期全球海洋生物集群研究已逐步证实各生物集群的爆发与灭绝事件往往与古海洋大规模的氧化还原条件变化密切相关[18-22]。目前,国际上普遍认为自542 Ma开始海洋不断发生氧化事件,至寒武纪第4期海洋逐渐转变为氧化环境[15,23-24],但缺氧事件仍时有发生[14,25-26];而寒武纪第4期古海洋氧化还原条件及其与生物灭绝事件的联系正逐渐成为国际上探索寒武纪地球与生命演化关系的热点科学问题[5]

    中国华南板块寒武系发育完整并包含从滨浅海至大陆斜坡的连续沉积序列(图2b),且地层出露完整,生物化石研究精细[6,27-30],而且华南板块在寒武纪第4期生物种属及数量出现显著降低,仅零星可见呈破碎状异地堆积的三叶虫(Arthricocephalus chauveui、KunmingaspisChangaspis elongata等)甲壳类化石以及与微生物密切相关的核形石、叠层石等结构构造[31-33]图2c),生物消亡现象明显。我国寒武纪古海洋环境研究可追溯到20世纪80年代,但前期研究多围绕沉积古地理背景展开[34-36],直至20世纪末期随着古地磁、精细地球化学分析等技术的应用,有关寒武纪古板块纬度位置、古海洋物理化学条件的研究才开始进入较为全面、系统的阶段[37-41]。但寒武纪第4期古海洋环境的重建工作仍处于探索阶段,古海洋氧化还原条件演化过程及其与同时期地质突变事件间的成因联系、与生物灭绝间的时限对应关系等研究普遍十分薄弱。

    因此,本文旨在通过系统梳理国内外寒武纪第4期古海洋环境演化的研究进展,在阐明寒武系第4阶海相碳酸盐岩沉积古地理背景及古海洋环境基础上,对比并总结归纳寒武纪早期多期次生物辐射及消亡演化的潜在环境触发因素,探讨寒武纪第4期古海洋氧化还原条件波动对生物演化控制机制,以期为追溯生命起源、发展及地球环境变迁和两者协同演化的研究提供借鉴和参考。

  • 寒武系第4阶发育于寒武系第2统末期,沉积持续时间约5 Ma[42]。古地磁研究显示,华南板块在埃迪卡拉纪末期位于北纬0°~15°,但在寒武纪第4期漂移至北纬15°~25°[37,41],整体位于热带—北温带区域,远离各大陆并被广海包围(图2a)。自北西向南东,华南板块可进一步划分为扬子地台、南华盆地和华夏地台;其中,扬子地台在寒武纪第4期以浅水碳酸盐岩台地沉积的广泛发育为显著特征(图2b)。

    研究普遍认为扬子地台在寒武纪第4期受加里东运动影响发生一系列区域性差异升降运动,古地貌呈一定起伏,但整体较为平缓,且自西向东发育有碳酸盐岩台地、盆地与斜坡沉积环境[39,43-45]。但扬子地台西部边缘地区在寒武纪第4期存在频繁的陆源水体注入,发育陆源碎屑与自生碳酸盐矿物混合形成的混积岩或碎屑岩与碳酸盐岩互层的混积层系[46-48]。而扬子地台中部的渝东—黔北—湘西地区则存在显著的风暴作用过程,使得碳酸盐岩地层内发育风暴岩夹层,并可见风暴砂屑、风暴撕扯及菊花状构造等[49-51]

  • 碳酸盐岩作为化学沉积岩的一种,其在沉积过程中与水体的同位素、元素达到平衡;在沉积后二次改造作用微弱的情况下,海相沉积碳酸盐岩的地球化学组成能够较为完好地保留海水原始信息[52-54],因此被广泛地应用于恢复古海洋环境(海水盐度、温度及氧化还原条件等)的研究。

    扬子地台寒武系第4阶内陆架原生泥晶方解石与同期海水化学组分对比研究显示,两者具有较为一致的δ 13Ccarb值,但前者具有相对较高的87Sr/86Sr比值、较低的Sr含量及较高的ΣREE含量;特别注意的是,内陆架内部的渝东地区原生泥晶方解石V/(V+Ni)比值较高,而黔北地区Ce负异常较为显著[15,17]图3)。上述地球化学表征参数揭示出寒武纪第4期扬子地台的内陆架陆源水体注入较为充足,但其内部渝东与黔北地区古海水的氧化还原条件存在明显差异(较高的V/(V+Ni)比值指向缺氧条件,Ce负异常则指向氧化条件)。此外,扬子地台寒武系第4阶外陆架、斜坡与盆地沉积剖面的铁元素形态对比分析显示相对深水沉积区的FeHR/FeT(0.08~0.46)比值较低,揭示出寒武纪第4期扬子地台相对深水区整体处于缺氧向氧化条件转化的关键阶段[14,55]图3)。

    Figure 3.  δ 238U data and Ce anomaly data from the Xiaotan section, northeast Yunnan province in the inner shelf and FeHR/FeT data from sections in the outer shelf and basinal environments of the Yangtze Platform during the Early Cambrian alongside the spatiotemporal variation in ocean redox conditions in the South China Plate (modified from references [15, 55])

    此外,全球寒武系第4阶海相碳酸盐岩碳同位素地层研究显示δ 13Ccarb值多分布在-4‰~+4‰,普遍发育一次较为显著的δ 13Ccarb负偏移变化(ROECE),而且来自碳酸盐岩盆地等相对深水环境的不同剖面ROECE大都在第4阶顶界附近出现(图4),但滨浅海环境不同剖面δ 13Ccarb负偏移变化的位置与幅度均存在明显差异[10,30,56-57]。针对ROECE的形成环境与成因机理主要存在2类观点:一类观点认为其归因于大洋底部大规模火山活动而引发的水体缺氧事件和随之而来的生产力变化[58];而另一类观点则认为ROECE是由大规模海侵导致的深海缺氧水体持续上涌和滨浅海水体相对缺氧造成的[5,59-60]。但两类观点均强调ROECE的形成与沉积期不同地质突变事件所引发的古海洋氧化还原条件变化密切相关。

    Figure 4.  Comparison of temporal variations in carbonate δ 13C and δ 13O during the Cambrian Stage 4 from different sections across the South China Plate (modified from reference [17])

    整体而言,寒武纪第4期华南板块不同区域的古地理条件存在一定差异,局部出现的陆源供给、风暴作用及突发性的火山活动、海侵事件等均会对古海洋条件,特别是氧化还原条件产生重要影响,总体上处于缺氧条件向氧化条件转化的关键阶段。但目前针对第4期古海洋氧化还原条件的系统性研究较为薄弱,早—中寒武纪氧化还原条件表征参数基础数据库仍十分匮乏,已有报道普遍受古海水深度限制(或局限于内陆架或聚焦于相对深水区,导致采样位置集中、空间涵盖范围有限)并存在不同古水体深度表征参数差异等问题,使得相关研究极易漏失氧化还原条件演化的时间连续性及空间差异性等关键信息,造成氧化还原条件演化不同波动阶段划分及持续时间不清,不同古地理背景或水体深度下氧化还原条件空间变化不明以及全区氧化还原条件演化模式尚未建立等问题,难以满足古海洋条件精细化定量表征及恢复的要求。

  • “寒武纪生命大爆发”始于埃迪卡拉纪末期,并在寒武纪第3期末达到高峰,主要由埃迪卡拉生物群、小壳类化石(SSFs)和澄江动物群(CFs)三个幕式生命事件构成[1,11]。特别注意的是,在此期间全球出现多次生物灭绝事件,如发生在埃迪卡拉纪末的软体动物大量灭绝、寒武纪第2期的小壳类生物大量灭绝和第4期的古杯、三叶虫大量灭绝[4,61-62],可见寒武纪古海洋承载了连续多期次的生物灭绝和复苏过程[5,15]

    构造运动、海侵作用、气候变化与海洋化学条件波动等均被视为埃迪卡拉纪末期及寒武纪海洋生物繁盛、消亡多期次演化的环境触发因素[14,63-68]。其中,埃迪卡拉纪末期软体动物灭绝成因仍尚无定论,但关于其外部环境触发因素主要存在2种观点:第一种观点认为这一时期海洋表现为广泛的厌氧至硫化环境,海侵作用引起硫化海水上涌至浅水区后,真核细胞生物因受到硫化海水的毒化作用而大量灭绝[12,69];另一种观点则认为频发的海底热液事件所释放的大量伴有甲烷及火山来源H2S的还原热液流体进入海洋后,造成极端的高温和缺氧环境从而导致这一时期生物的灭绝[70-72]。但是,上述大规模海侵、热液活动等地质突变事件的持续时间尚不明确,如海侵事件的起始时间在阿曼与华南板块相差异约10 Ma,导致缺氧事件与生物灭绝的时间一致性存在较大争议。

    相比而言,“寒武纪生命大爆发”的环境触发因素得到广泛探讨,形成包括生态学、基因学在内的多种假说与解释,其中2种观点得到普遍认可:第一种观点认为大气—海洋系统氧含量的显著升高是大爆发的关键触发因素,原因在于寒武纪首次出现了尺寸较大、具矿化甲壳的后生动物,这一类型的生物需要消耗更多的氧来支持其肌肉组织的形成和进行新陈代谢,而广泛的大气—海洋系统氧含量增高是高等生物进化的必要条件[3,73-74];另一种观点认为超大陆形成过程中造山带碰撞导致陆源物质快速风化并携带大量的营养物质进入海洋是生命大爆发的关键触发因素(图5),海水中营养元素输入增高引起藻类大量繁殖并通过光合作用产生大量氧气,同时营养元素对后生动物甲壳、骨骼、牙齿等的形成和细胞高速新陈代谢起到关键作用[75-78]

    Figure 5.  Zircon age⁃population diagrams of river⁃mouth sands across the world (a) and the birth of the Second Ecosystem on the Earth (b)

  • 显生宙五次生物大灭绝事件(分别发生在奥陶纪末、泥盆纪晚期F/F、二叠纪末、三叠纪末和白垩纪末)研究证实海洋氧化还原条件波动与海洋生物大量灭绝密切相关[79-83]。寒武纪古海洋氧化还原条件波动变化规律是揭示生物演化进程的关键切入点。

    全球寒武纪早期古海洋氧化还原条件与生命大爆发的协同演化作用得到广泛关注,各研究成果可概括为以下2方面主要认识:第一,寒武纪早期大气和海洋系统中氧气的增加促进生物多样化进程[84-85];第二,海洋氧化是大型、中型浮游动物悬浮捕食等生命进化的结果,并伴有有机质下沉与埋藏量的增加,最终导致海洋—生物地球化学的全面重组[86-87]。但是,寒武纪纽芬兰世全球发育的大套富有机质黑色页岩(图1)及相关大量地球化学指标(图6)则指向间歇性厌氧与铁化的深海海水环境[5,89-91]图6);有学者认为埃迪卡拉纪与寒武纪过渡阶段由海洋间歇性缺氧导致的环境压力是刺激寒武纪生命爆发的原因[15]。因此,对于寒武纪生命大爆发时期古海洋氧化还原条件及其对生物爆发的影响仍存在一定争议。

    Figure 6.  Composite chemostratigraphy with iron speciation and molybdenum abundance data for different sections of the South China Plate for the Fortunian of the Early Cambrian (after reference [88])

    近年来,华南板块扬子地台寒武纪早期(幸运期至第4期)古海洋氧化还原条件研究,尤其是富含化石地层剖面的研究取得显著进展,主要认为华南板块在寒武纪第2期时较深的水域仍然处于缺氧状态,从3期时开始表层氧化水域由浅向深持续扩张(521 Ma),至第4期从外陆架至盆地逐渐转化为较稳定的氧化水体,但局部仍呈缺氧条件(图3)。这种逐步的海洋氧化作用在时间上对应于华南板块的小壳类动物群和海绵体为主的群落(幸运期和第2期)被更复杂的节肢动物和棘皮动物生物群落(第3期和第4期)替代(图3)。鉴于后生动物呼吸的氧需求相对较高,海洋含氧水平的上升可能促进了第2期和第3期后生动物的多样性[5]。此外,在第3期至第4期海洋无脊椎动物在空间上的扩展,主要表现为:1)复杂节肢动物为主的生物群落从浅陆棚相逐步向深斜坡相扩展;2)海绵、棘皮动物和三叶虫入侵深水环境,支持早期后生动物生态中明显受到氧化还原条件控制的观点[14,55]。上述分析表明早寒武纪以缺氧为主的海洋中,海洋氧化还原条件和大陆架动态氧化作用具有高度的空间异质性。

    综上所述,古海洋物理化学条件变化,尤其是氧化还原条件波动,被认为是寒武纪生物繁盛、消亡多期次演化的关键环境触发因素。但寒武纪古海洋氧化还原条件与生物协同演化的研究仍处于探索阶段,古海洋氧化还原条件、陆架动态氧化作用等高度的空间异质性使得研究难度进一步增大,而且在这一过程中尤其缺乏针对寒武纪“波托姆期—图央期生物消亡”阶段古海洋氧化还原条件的研究。

  • 华南板块寒武纪第3期至第4期(521~509 Ma)大陆架持续性氧化的成因研究仍处于探索阶段,各研究成果可概括为以下2方面主要认识:一是认为其形成可能与寒武纪复杂生态系统所需的更高大气氧含量有关,寒武纪早期出现的许多新生动物的身体结构和生活方式都与相当高的氧气需求有关,所需氧阈值不低于现今大气氧浓度(PAL)的10%~25%[92-93],一个与之相关的推论是早寒武纪海洋中生物泵作用的增强,即生物地球化学模拟表明在较高的大气O2水平下海洋表层溶解O2的浓度主要由大气控制;而且,521 Ma之后掠食性动物快速进化也可能起到一定作用,捕食会导致低营养水平的有机物被包装成更大的粪便颗粒,从而加速有机质下沉,减少水体中腐烂作用消耗的O2图7)。二是认为与陆架区的磷循环作用有关:陆架区底层水体的持续氧化会增加磷向沉积物的迁移,进而降低当地的生产力和对O2的需求,促进当地水体的氧化[14]图7)。

    Figure 7.  Schematic representations of possible mechanisms for dynamic shelf oxygenation during the Early Cambrian oceans

    上述分析通过对华南板块寒武纪第3至第4期古海洋氧化还原条件与动物进化的初步时空耦合,支持了氧气水平增加和早期动物多样化之间复杂的共同进化观点:即浅海氧化是由大气氧含量升高所驱动的,而高氧水平适合各种新进化的动物身体构造和生活方式,所以氧的波动可能会导致浅海生态系统中宜居带的阶段性扩张和/或收缩,因此可能起到调节早期寒武纪动物全球辐射模式的作用[5]。但是,上述研究更倾向于提出了一个公认终极观点内的具体细节,而且这一细节在空间上局限于外陆架至盆地环境,缺少浅水区以及仍处于缺氧条件的深水区相关实例论证,在时间上局限于520 Ma与510 Ma这2个时间节点,并未涉及寒武纪第4期出现的生物灭绝事件及其驱动因素。

    针对“波托姆期—图央期生物消亡”这一显生宙以来首个生物大量灭绝事件的古海洋氧化还原条件及其与生物灭绝关系的研究较为匮乏,所见报道多是在研究寒武系第4阶碳酸盐岩碳、硫同位素地层时有所涉及。上述报道兼带提出2种定性推论:一种推论认为大规模火山活动引发的全球变暖与热盐环流降低导致海水溶氧量减少和浅海—陆架环境缺氧,进而触发生物灭绝[7,93-94];另一种推论则认为构造沉降引发的大规模快速海侵作用造成陆架缺氧海水涌入浅海,进而导致生物灭绝[5,30,58-59]。其中,东西伯利亚台地海相碳酸盐的高分辨率碳、硫同位素数据分析显示,524~514 Ma碳酸盐岩δ 13C值和碳酸盐岩相伴的硫酸盐δ 34S值呈较强的正相关性,生物地球化学模拟表明这种同位素耦合现象反映了黄铁矿与有机碳等在海相高生产力缺氧条件下耦合埋藏导致的含氧水域范围和/或较浅区域最大溶解O2的增加,而动物门类呈幕式出现的生物多样性极大值与这些极端的氧扰动相吻合;相反,随后的“波托姆期—图央期生物消亡”事件(514~512 Ma)对应于δ 13C-δ 34S值的解耦记录,揭示出海洋硫酸盐储藏库的缩小和浅海缺氧的扩大[5]。上述推论均强调地质突变事件所引发的海洋缺氧与寒武纪第4期生物大量消亡密切相关。然而,上述推论并未进行不同生物丰度点位的纵向(时间)与横向(空间)氧化还原条件的对比工作,且均未给出氧化还原条件在时间—空间上具体的演化过程,使得缺氧事件出现的精准点和影响范围仍然未知,其在“波托姆期—图央期生物消亡”事件中所起到的作用尚未被深入挖掘。

    综上可见,寒武纪第4期古海洋氧化还原条件演化历程与同期可诱发其产生巨变的突发性地质事件(火山活动、大规模海侵、热液活动、构造升降等)间的精确时限对应关系及内在联系仍存在争议,不同生物丰度点位的氧化还原条件差异、氧化还原条件波动过程及其与生物灭绝间的深层成因联系等仍然未知,进而难以探索“波托姆期—图央期生物消亡”事件中生物演化与古海洋氧化还原条件之间更深层次的内在联系。

  • 寒武纪生物与古海洋环境演化的成因联系是追溯生命起源、发展及地球环境变迁和两者协同演化的前沿科学问题之一。寒武纪第4期作为其中重要的时间节点之一,其古海洋氧化还原条件具有很高的研究价值。华南板块作为全球寒武纪相关问题研究的重要窗口,探索其寒武纪第4期古海洋氧化还原条件及与生物的协同演化作用等科学问题对于阐明寒武纪古海洋环境变迁和生物演化过程具有重要科学意义,同时对寒武纪地质突变事件识别、全球碳同位素地层划分与对比以及古海洋沉积学与地球化学特征研究具有重要的理论和现实意义。

    近年来,随着新兴的碳酸盐团簇同位素分析技术[95]、方解石激光原位U-Pb同位素定年技术[96]等测试手段在前寒武纪—寒武纪古老碳酸盐岩地层中的应用,古代沉积物中氧化还原敏感元素富集机理[97]、以碳酸盐岩为载体的地球化学指标追踪地球表层环境历史演化等理论[95]的逐步完善,微量元素与生命协同演化[98]、遗迹化石与重大地质突变期响应[99]等方面的最新研究,势必会对包括“寒武纪第4期古海洋氧化还原条件与生物协同演化”在内的寒武纪生物与古海洋环境协同演化及成因联系提供重要启示,引起新的研究热潮。

    结合已有研究中存在的问题,认为“寒武纪第4期古海洋氧化还原条件与生物协同演化”在以下几个方面可能会有所突破:1)古海洋氧化还原条件演化不同波动阶段划分及其持续时间标定;2)不同古地理背景或水体深度下氧化还原条件空间变化表征;3)可诱发古海洋氧化还原条件波动的突发性地质事件识别;4)古海洋氧化还原条件时间—空间上的差异与生物消亡事件的时限和区域对应关系等。上述问题可作为后续研究工作重点,有助于明确寒武纪第4期出现的生物灭绝事件的地质成因,以进一步揭示寒武纪突发性地质事件、古海洋氧化还原条件和生物演化间的成因联系。

Reference (99)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return