[1] |
Shu D. Cambrian explosion: Birth of tree of animals[J]. Gondwana Research, 2008, 14(1/2): 219-240. |
[2] |
Erwin D H, Laflamme M, Tweedt S M, et al. The Cambrian conundrum: Early divergence and later ecological success in the early history of animals[J]. Science, 2011, 334 (6059): 1091-1097. |
[3] |
Chen X, Ling H F, Vance D, et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals[J]. Nature Communications, 2015, 6(1): 7142. |
[4] |
Pagès A, Schmid S, Edwards D, Barnes S, He N N, Grice K. A molecular and isotopic study of palaeoenvironmental conditions through the Middle Cambrian in the Georgina Basin, Central Australia[J]. Earth and Planetary Science Letters, 2016, 447: 21-32. |
[5] |
He T C, Zhu M Y, Mills B J W, et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals[J]. Nature Geoscience, 2019, 12(6): 468-474. |
[6] |
Zhu M Y, Zhang J M, Li G X, et al. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions[J]. Geobios, 2004, 37(2): 287-301. |
[7] |
Evins L Z, Jourdan F, Phillips D. The Cambrian Kalkarindji Large Igneous province: Extent and characteristics based on new 40Ar/39Ar and geochemical data[J]. Lithos, 2009, 110(1/2/3/4): 294-304. |
[8] |
Hough M L, Shields G A, Evins L Z, et al. A major sulphur isotope event at c. 510 Ma: A possible anoxia-extinction-volcanism connection during the Early-Middle Cambrian transition?[J]. Terra Nova, 2006, 18(4): 257-263. |
[9] |
Ren Y, Zhong D K, Gao C L, et al. High-resolution carbon isotope records and correlations of the Lower Cambrian Longwangmiao Formation (Stage 4, Toyonian) in Chongqing, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 485: 572-592. |
[10] |
Ren Y, Zhong D K, Gao C L, et al. The paleoenvironmental evolution of the Cambrian Longwangmiao Formation (Stage 4, Toyonian) on the Yangtze Platform, South China: Petrographic and geochemical constrains[J]. Marine and Petroleum Geology, 2019, 100: 391-411. |
[11] |
Shu D G, Morris S C, Han J, et al. Ancestral echinoderms from the Chengjiang deposits of China[J]. Nature, 2004, 430(6998): 422-428. |
[12] |
Jiang S Y, Pi D H, Heubeck C, et al. Early Cambrian ocean anoxia in South China[J]. Nature, 2009, 459(7248): E5-E6. |
[13] |
Tostevin R, Wood R A, Shields G A, et al. Low-oxygen waters limited habitable space for early animals[J]. Nature Communications, 2016, 7(1): 12818. |
[14] |
Li C, Cheng M, Zhu M Y, et al. Heterogeneous and dynamic marine shelf oxygenation and coupled early animal evolution[J]. Emerging Topics in Life Sciences, 2018, 2(2): 279-288. |
[15] |
Wei G Y, Planavsky N J, Tarhan L G, et al. Marine redox fluctuation as a potential trigger for the Cambrian explosion[J]. Geology, 2018, 46(7): 587-590. |
[16] |
Jiang L, Cai C F, Worden R H, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, North-West China[J]. Sedimentology, 2016, 63(7): 2130-2157. |
[17] |
任影,钟大康,柳慧琳,等. 渝东地区寒武系第四阶龙王庙组古环境演化的稳定同位素与主、微量元素证据[J]. 地球科学,2018,43(11):4066-4095. |
Ren Ying, Zhong Dakang, Liu Huilin, et al. Isotopic and elemental evidence for paleoenvironmental evolution of Cambrian Stage 4 Longwangmiao Formation, east Chongqing, China[J]. Earth Science, 2018, 43(11): 4066-4095. |
[18] |
Wignall P B, Hallam A. Anoxia as a cause of the Permian/Triassic mass extinction: Facies evidence from northern Italy and the western United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 93(1/2): 21-46. |
[19] |
Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event[J]. Science, 2005, 307(5710): 706-709. |
[20] |
Meyer K M, Kump L R. Oceanic euxinia in earth history: Causes and consequences[J]. Earth and Planetary Sciences, 2008, 36: 251-288. |
[21] |
谢树成,王风平,颜佳新,等. 若干重大地质环境突变的地球生物学过程[J]. 科技资讯,2016,14(21):176-177.[ |
Xie Shucheng, Wang Fengping, Yan Jiaxin, et al. Geobiological processes during critical environmental transitions in earth history[J]. Science & Technology Information, 2016, 14(21): 176-177. |
[22] |
张力楠. 铁同位素示踪埃迪卡拉纪古海洋环境[D]. 北京:中国地质大学(北京),2019:30-36. |
Zhang Linan. Iron isotope tracing of Ediacaran paleomarine environment[D]. Beijing: China University of Geosciences (Beijing), 2019: 30-36. |
[23] |
Ling H F, Chen X, Li D, et al. Cerium anomaly variations in Ediacaran-Earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater[J]. Precambrian Research, 2013, 225: 110-127. |
[24] |
Wen H J, Carignan J, Chu X L, et al. Selenium isotopes trace anoxic and ferruginous seawater conditions in the Early Cambrian[J]. Chemical Geology, 2014, 390: 164-172. |
[25] |
Rong J Y, Harper D A T. Brachiopod survival and recovery from the Latest Ordovician mass extinctions in South China[J]. Geological Journal, 1999, 34(4): 321-348. |
[26] |
Zhang T G, Shen Y N, Zhan R B, et al. Large perturbations of the carbon and sulfur cycle associated with the Late Ordovician mass extinction in South China[J]. Geology, 2009, 37(4): 299-302. |
[27] |
Guo Q J, Strauss H, Liu C Q, et al. A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian series 3 on the Yangtze platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 285(3/4): 143-151. |
[28] |
Jiang Ganqing, 2014: 华南埃迪卡拉纪—寒武纪过渡期的有机碳同位素梯度和海洋分层[J]. 中国科学(D辑):地球科学, 44, 1142-1154.
|
Wang Xinqiang, Shi Xiaoying, Jiang Ganqing . et al. Organic carbon isotope gradient and ocean stratification across the Late Ediacaran-Early Cambrian Yangtze Platform[J]. Science China(Seri.D): Earth Sciences, 2014, 44(6): 1142-1154. |
[29] |
Na L, Kiessling W. Diversity partitioning during the Cambrian radiation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4702-4706. |
[30] |
Chang C, Hu W X, Wang X L, et al. Carbon isotope stratigraphy of the Lower to Middle Cambrian on the eastern Yangtze Platform, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 479: 90-101. |
[31] |
任影,钟大康,高崇龙,等. 川东及其周缘地区下寒武统龙王庙组沉积相[J]. 古地理学报,2015,17(3):335-346. |
Ren Ying, Zhong Dakang, Gao Chonglong, et al. Sedimentary facies of the Lower Cambrian Longwangmiao Formation in eastern Sichuan Basin and its adjacent areas[J]. Journal of Palaeogeography, 2015, 17(3): 335-346. |
[32] |
Zhang X L, Liu W, Zhao Y L. Cambrian burgess shale-type Lagerstätten in South China: Distribution and significance[J]. Gondwana Research, 2008, 14(1/2): 255-262. |
[33] |
Yang A H, Zhu M Y, Zhuravlev A Y, et al. Archaeocyathan zonation of the Yangtze Platform: Implications for regional and global correlation of Lower Cambrian stages[J]. Geological Magazine, 2016, 153(3): 388-409. |
[34] |
关士聪. 中国海陆变迁海域沉积相与油气:晚元古代—三叠纪[M]. 北京:科学出版社,1984. |
Guan Shicong. Marine sedimentary facies and oil and gas in China's sea land transition (Late Proterozoic Triassic)[M]. Beijing: Science Press, 1984. |
[35] |
王鸿祯. 中国古地理图集[M]. 北京:地图出版社,1985. |
Wang Hongzhen. Atlas of the palaeogeography of China[M]. Beijing: Map Publishing House, 1985. |
[36] |
刘宝珺,许效松. 中国南方岩相古地理图集:震旦纪—三叠纪[M]. 北京:科学出版社,1994. |
Liu Baojun, Xu Xiaosong. Lithofacies paleogeography atlas of southern China[M]. Beijing: Science Press, 1994. |
[37] |
Yang Z Y, Sun Z M, Yang T S, et al. A long connection (750-380 Ma) between South China and Australia: Paleomagnetic constraints[J]. Earth and Planetary Science Letters, 2004, 220(3/4): 423-434. |
[38] |
Zhu M Y, Babcock L E, Peng S C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction[J]. Palaeoworld, 2006, 15(3/4): 217-222. |
[39] |
马永生,陈洪德,王国力,等. 中国南方层序地层与古地理[M]. 北京:科学出版社,2009:224-266. |
Ma Yongsheng, Chen Hongde, Wang Guoli, et al. Sequence stratigraphy and paleogeography in southern China[M]. Beijing: Science Press, 2009: 224-266. |
[40] |
Peng S, Babcock L E, Cooper R A. The Cambrian Period[M]//Gradstein F M, Ogg J G, Schmitz M D, et al. The geologic time scale. Amsterdam: Elsevier, 2012: 437-488. |
[41] |
李江海,韩喜球,毛翔. 全球构造图集[M]. 北京:地质出版社,2014:38-46. |
Li Jianghai, Han Xiqiu, Mao Xiang. Global tectonic atlas[M]. Beijing: Geological Publishing House, 2014: 38-46. |
[42] |
朱茂炎,杨爱华,袁金良,等. 中国寒武纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):26-65. |
Zhu Maoyan, Yang Aihua, Yuan Jinliang, et al. Cambrian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 26-65. |
[43] |
冯增昭,彭勇民,金振奎,等. 中国早寒武世岩相古地理[J]. 古地理学报,2002,4(1):1-12. |
Feng Zengzhao, Peng Yongmin, Jin Zhenkui, et al. Lithofacies palaeogeography of the Early Cambrian in China[J]. Journal of Palaeogeography, 2002, 4(1): 1-12. |
[44] |
梅冥相,马永生,张海,等. 上扬子区寒武系的层序地层格架:寒武纪生物多样性事件形成背景的思考[J]. 地层学杂志,2007,31(1):68-78. |
Mei Mingxiang, Ma Yongsheng, Zhang Hai, et al. Sequence-stratigraphic frameworks for the Cambrian of the Upper-Yangtze region: Ponder on the sequence stratigraphic background of the Cambrian biological diversity events[J]. Journal of Stratigraphy, 2017, 31(1): 68-78. |
[45] |
黄福喜,陈洪德,侯明才,等. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报,2011,27(8):2299-2317. |
Huang Fuxi, Chen Hongde, Hou Mingcai, et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica, 2011, 27(8): 2299-2317. |
[46] |
周进高,徐春春,姚根顺,等. 四川盆地下寒武统龙王庙组储集层形成与演化[J]. 石油勘探与开发,2015,42(2):158-166. |
Zhou Jingao, Xu Chunchun, Yao Genshun, et al. Genesis and evolution of Lower Cambrian Longwangmiao Formation reservoirs, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2015, 42(2): 158-166. |
[47] |
王瀚,李智武,刘树根,等. 川北地区下寒武统龙王庙组混积特征及其对储层的影响[J]. 石油实验地质,2019,41(5):663-673. |
Wang Han, Li Zhiwu, Liu Shugen, et al. Characteristics of mixed sediments and influence on reservoir of Lower Cambrian Longwangmiao Formation, northern Sichuan Basin[J]. Petroleum Geology and Experiment, 2019, 41(5): 663-673. |
[48] |
杨伟强,刘正,陈浩如,等. 四川盆地下寒武统龙王庙组颗粒滩沉积组合及其对储集层的控制作用[J]. 古地理学报,2020,22(2):251-265. |
Yang Weiqiang, Liu Zheng, Chen Haoru, et al. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs[J]. Journal of Palaeogeography, 2020, 22(2): 251-265. |
[49] |
匡文龙,杨绍祥,刘新华,等. 湘西北渔塘地区寒武系清虚洞组风暴岩及其地质意义[J]. 吉林大学学报(地球科学版),2008,38(2):225-232. |
Kuang Wenlong, Yang Shaoxiang, Liu Xinhua, et al. Significance of tempestite from the Cambrian Qingxudong Formation in Yutang area of northwestern Hunan province[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(2): 225-232. |
[50] |
宋金民,刘树根,赵异华,等. 川中地区中下寒武统风暴岩特征及沉积地质意义[J]. 石油学报,2016,37(1):30-42. |
Song Jinmin, Liu Shugen, Zhao Yihua, et al. Characteristics and sedimentary geological significances of Lower-Middle Cambrian tempestites in central Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 30-42. |
[51] |
郑斌嵩,牟传龙,梁薇,等. 扬子地台东南缘下寒武统清虚洞组风暴沉积特征及其重要意义[J]. 地质学报,2018,92(7):1524-1540. |
Zheng Binsong, Mou Chuanlong, Liang Wei, et al. The characteristics of storm deposits of the Lower Cambrian Qingxudong Formation in the southeastern margin of Yangtze Platform and its significance[J]. Acta Geologica Sinica, 2018, 92(7): 1524-1540. |
[52] |
Sackett W M. The depositional history and isotopic organic carbon composition of marine sediments[J]. Marine Geology, 1964, 2(3): 173-185. |
[53] |
Jasper J P, Gagosian R B. The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 1990, 54(4): 1117-1132. |
[54] |
袁桃,伊海生,兰叶芳,等. 元素分析在古海水原始信息保存性研究中的应用[J]. 地质论评,2018,64(3):584-596. |
Yuan Tao, Yi Haisheng, Lan Yefang, et al. An application of elements analysis on researches of the paleo-seawater information preservation[J]. Geological Review, 2018, 64(3): 584-596. |
[55] |
Li C, Jin C S, Planavsky N J, et al. Coupled oceanic oxygenation and metazoan diversification during the Early-Middle Cambrian?[J]. Geology, 2017, 45(8): 743-746. |
[56] |
Dilliard K A, Pope M C, Coniglio M, et al. Stable isotope geochemistry of the Lower Cambrian Sekwi Formation, Northwest Territories, Canada: Implications for ocean chemistry and secular curve generation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 174-194. |
[57] |
Wu Y S, Wang W, Jiang H X, et al. Evolution patterns of seawater carbon isotope composition during the Cambrian and their stratigraphic significance[J]. Geological Journal, 2021, 56(1): 457-474. |
[58] |
Montañez I P, Osleger D A, Banner J L, et al. Evolution of the Sr and C isotope composition of Cambrian oceans[J]. GSA Today, 2000, 10(5): 1-5. |
[59] |
Brasier M D, Sukhov S S. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: Northern Siberia data[J]. Canadian Journal of Earth Science, 1998, 35(4): 353-373. |
[60] |
Guo Q J, Strauss H, Zhu M Y, et al. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran-Cambrian Transition[J]. Precambrian Research, 2013, 225: 209-217. |
[61] |
Ishikawa T, Ueno Y, Shu D G, et al. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China[J]. Gondwana Research, 2014, 25(3): 1045-1056. |
[62] |
Faggetter L E, Wignall P B, Pruss S B, et al. Trilobite extinctions, facies changes and the ROECE carbon isotope excursion at the Cambrian Series 2-3 boundary, Great Basin, western USA[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478: 53-66. |
[63] |
Kirschvink J L, Raub T D. A methane fuse for the Cambrian explosion: Carbon cycles and true polar wander[J]. Comptes Rendus Geoscience, 2003, 335(1): 65-78. |
[64] |
Marshall C R. Explaining the Cambrian “explosion” of animals[J]. Annual Review of Earth and Planetary Science, 2006, 34: 355-384. |
[65] |
Canfield D E, Poulton S W, Narbonne G M. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J]. Science, 2007, 315(5808): 92-95. |
[66] |
Jin C S, Li C, Algeo T J, et al. A highly redox-heterogeneous ocean in South China during the Early Cambrian (~529- 514Ma): Implications for biota-environment co-evolution[J]. Earth and Planetary Science Letters, 2016, 441: 38-51. |
[67] |
李丹丹. 寒武纪海洋化学组成变化与早期动物演化的相互作用[D]. 合肥:中国科学技术大学,2017:1-47. |
Li Dandan. The interplay between Cambrian ocean chemistry changes and early animal evolution[D]. Hefei: University of Science and Technology of China, 2017: 1-47. |
[68] |
李伟平. 下扬子埃迪卡拉纪晚期和寒武纪早期沉积碳酸盐岩地球化学研究[D]. 合肥:中国科学技术大学,2017:38-66. |
Li Weiping. Geochemistry of sedimentary carbonates from the Late Ediacaran to the Early Cambrian in the Lower Yangtze region of South China[D]. Hefei: University of Science and Technology of China, 2017: 38-66. |
[69] |
Wille M, Nägler T F, Lehmann B, et al. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary[J]. Nature, 2008, 453(7196): 767-769. |
[70] |
Steiner M, Wallis E, Erdtmann B D, et al. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils- insights into a Lower Cambrian facies and bio-evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 169(3/4): 165-191. |
[71] |
Jiang S Y, Yang J H, Ling H F, et al. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 217-228. |
[72] |
Chen D Z, Wang J G, Qing H R, et al. Hydrothermal venting activities in the Early Cambrian, South China: Petrological, geochronological and stable isotopic constraints[J]. Chemical Geology, 2009, 258(3/4): 168-181. |
[73] |
Partin C A, Bekker A, Planavsky N J, et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales[J]. Earth and Planetary Science Letters, 2013, 369-370: 284-293. |
[74] |
王勋. Cu、Zn、Sr同位素在寒武纪生命大爆发和晚泥盆世生物大灭绝时期古海洋环境中的应用[D]. 北京:中国地质大学(北京),2018:31-47. |
Wang Xun. The applications of Cu, Zn and Sr isotopes in oceanic environments during the Cambrian explosion and Late Devonian mass extinction[D]. Beijing: China University of Geosciences (Beijing), 2018: 31-47. |
[75] |
Santosh M, Maruyama S, Sawaki Y, et al. The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth[J]. Gondwana Research, 2013, 25(3): 945-965. |
[76] |
Squire R J, Campbel I H, Allen C M, et al. Did the transgondwanan supermountain trigger the explosive radiation of animals on Earth?[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 116-133. |
[77] |
Campbell I H, Allen C M. Formation of supercontinents linked to increases in atmospheric oxygen[J]. Nature Geoscience, 2008, 1(8): 554-558. |
[78] |
刘凯. 寒武纪早期扬子板块古海洋与生物群协同演化及其对有机质富集的影响[D]. 武汉:中国地质大学,2018:34-68. |
Liu Kai. The co-evolution of ocean redox chemistry and biota during the Early Cambrian, South China and its influence on organic matter accumulation[D]. Wuhan: China University of Geosciences, 2018: 34-68. |
[79] |
Shen Y N, Farquhar J, Zhang H, et al. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction[J]. Nature Communications, 2011, 2: 210. |
[80] |
Hammarlund E U, Dahl T W, Harper D A T, et al. A sulfidic driver for the End-Ordovician mass extinction[J]. Earth and Planetary Science Letters, 2012, 331-332: 128-139. |
[81] |
沈树忠,张华. 什么引起五次生物大灭绝?[J]. 科学通报,2017,62(11):1119-1135. |
Shen Shuzhong, Zhang Hua. What caused the five mass extinctions?[J]. Chinese Science Bulletin, 2017, 62(11): 1119-1135. |
[82] |
Chang X L, Hou M C, Liu X C, et al. Abundant microspherules from the Upper Ordovician of northern Tarim Basin, Northwest China: Origin and palaeoenvironmental implications[J]. Geological Journal, 2018, 53(6): 2896-2907. |
[83] |
祝圣贤. 华北中部晚石炭—早二叠世古气候记录[D]. 成都:成都理工大学,2019:40-43. |
Zhu Shengxian. Paleoclimate records in Permo-Carboniferous of central North China[D]. Chengdu: Chengdu University of Technology, 2019: 40-43. |
[84] |
Knoll A H, Carroll S B. Early animal evolution: Emerging views from comparative biology and geology[J]. Science, 1999, 284(5423): 2129-2137. |
[85] |
Dong B H, Long X P, Li J, et al. Mo isotopic variations of a Cambrian sedimentary profile in the Huangling area, South China: Evidence for redox environment corresponding to the Cambrian Explosion[J]. Gondwana Research, 2019, 69: 45-55. |
[86] |
Logan G A, Hayes J M, Hieshima G B, et al. Terminal Proterozoic reorganization of biogeochemical cycles[J]. Nature, 1995, 376(6535): 53-56. |
[87] |
Butterfield N J. Oxygen, animals and oceanic ventilation: An alternative view[J]. Geobiology, 2009, 7(1): 1-7. |
[88] |
Feng L J, Li C, Huang J, et al. A sulfate control on marine mid-depth euxinia on the early Cambrian (ca. 529-521 Ma) Yangtze platform, South China[J]. Precambrian Research, 2014, 246: 123-133. |
[89] |
Shen Y N, Schidlowski M. New C isotope stratigraphy from southwest China: Implications for the placement of the Precambrian-Cambrian boundary on the Yangtze Platform and global correlations[J]. Geology, 2000, 28(7): 623-626. |
[90] |
Li C, Love G D, Lyons T W, et al. A stratified redox model for the Ediacaran ocean[J]. Science, 2010, 328(5974): 80-83. |
[91] |
Wang S F, Zou C N, Dong D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672. |
[92] |
Sperling E A, Frieder C A, Raman A V, et al. Oxygen, ecology, and the Cambrian radiation of animals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13446-13451. |
[93] |
Zhang X L, Cui L H. Oxygen requirements for the Cambrian explosion[J]. Journal of Earth Science, 2016, 27(2): 187-195. |
[94] |
Wotte T, Strauss H, Fugmann A, et al. Paired δ34S data from carbonate-associated sulfate and chromium–reducible sulfur across the traditional Lower-Middle Cambrian boundary of W-Gondwana[J]. Geochimica et Cosmochimica Acta, 2012, 85: 228-253. |
[95] |
Chang B, Li C, Liu D, et al. Massive Formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”[J]. Proceedings of the National Academy of Science of United States of America, 2020, 117(25): 14005-14014. |
[96] |
胡安平,沈安江,梁峰,等. 激光铀铅同位素定年技术在塔里木盆地肖尔布拉克组储层孔隙演化研究中的应用[J]. 石油与天然气地质,2020,41(1):37-49. |
Hu Anping, Shen Anjiang, Liang Feng, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin[J]. Oil & Gas Geology, 2020, 41(1): 37-49. |
[97] |
Peng J W, Fu Q L, Larson T E, et al. Trace-elemental and petrographic constraints on the severity of hydrographic restriction in the silled Midland Basin during the Late Paleozoic ice age[J]. GSA Bulletin, 2021, 133(1/2): 57-73. |
[98] |
Mukherjee I, Large R R. Co-evolution of trace elements and life in Precambrian oceans: The pyrite edition[J]. Geology, 2020, 48(10): 1018-1022. |
[99] |
Zhang L J, Zhang X, Buatois L A, et al. Periodic fluctuations of marine oxygen content during the latest Permian[J]. Global and Planetary Change, 2020, 195: 103326. |