Advanced Search
Volume 40 Issue 3
Jun.  2022
Turn off MathJax
Article Contents

LIANG XiaoWei, XIAN BenZhong, FENG ShengBin, CHEN Peng, YOU Yuan, WU QianRan, DAN WeiDong, ZHANG WenMiao. Architecture and Main Controls of Gravity-flow Sandbodies in Chang 7 Member, Longdong Area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 641-652. doi: 10.14027/j.issn.1000-0550.2021.017
Citation: LIANG XiaoWei, XIAN BenZhong, FENG ShengBin, CHEN Peng, YOU Yuan, WU QianRan, DAN WeiDong, ZHANG WenMiao. Architecture and Main Controls of Gravity-flow Sandbodies in Chang 7 Member, Longdong Area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 641-652. doi: 10.14027/j.issn.1000-0550.2021.017

Architecture and Main Controls of Gravity-flow Sandbodies in Chang 7 Member, Longdong Area, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.017
Funds:

National Natural Science Foundation of China 41872113

National Science and Technology Major Project 2016ZX05046-005, 2017ZX05009-002

Strategic Cooperation Science and Technology Special Project between China National Petroleum Corporation and China University of Petroleum (Beijing) ZLZX2020-02

  • Received Date: 2020-08-20
  • Rev Recd Date: 2021-01-19
  • Publish Date: 2022-06-10
  • The Chang 7 member in the Longdong area of the Ordos Basin contains huge gravity-flow sandbodies and rich oil and gas resources. However, their shape, scale and superpositional relationships differ considerably in different strata regions, and very little is known about their architecture and development. This restricts the improvement of their oil and gas rolling exploration and development efficiency. A study based on core analysis, on the architectural division and the development characteristics of the sandbodies was carried out based on the identification of individual well sandbody architecture interface and their comparison at regionally connected wells, together with sandbody sedimentary facies analysis. The study suggests that the scale of gravity-flow sandbodies in this area is relatively large. The main provenance is a south⁃southwestern system, followed by a northeastern provenance system. The sandbodies are characterized as a typical lacustrine channel⁃fan system subdivided into seven sedimentary microfacies: erosional channel, transitional channel, sedimentary channel, levee, channelized lobe, tabular lobe and turbidite sheet sand. The thickness of the sandbody increases from the delta front slope to the deep-lake depocenter, and its shape changes from a strip to a fan. In addition, the architectural properties change (e.g., the scale). The vertical superpositional relationships and the lateral migration aspects of the sandbodies also show regular changes in the planar view. In the nearshore semi-deep lake delta front slope area individual sandbodies are relatively thin, and the isolated strips occur as thinly interbedded or single layers. The thickness of the single sand layer increases towards the center of the basin, and the lateral connectivity is enhanced. Superimposition of the bodies has led to an increase in vertical connectivity and a transition to continuous stacking. The thickness of individual sandbodies is slightly reduced near the depocenter, but the lateral connectivity is significantly enhanced with obvious continuity, evident as an interval-stacking type of deposition. Comprehensive analysis suggests that the configuration of the gravity-flow sandbodies in this area is controlled by gravity-flow sedimentary facies, base-level cyclic changes and provenance supply rate.
  • [1] Talling P J, Paull C K, Piper D J W. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125: 244-287.
    [2] Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits: Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
    [3] 刘自亮,朱筱敏,廖纪佳,等. 鄂尔多斯盆地西南缘上三叠统延长组层序地层学与砂体成因研究[J]. 地学前缘,2013,20(2):1-9.

    Liu Ziliang, Zhu Xiaomin, Liao Jijia, et al. Sequence stratigraphy and genesis of sand bodies of the Upper Triassic Yanchang Formation in the southwestern margin of Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 1-9.
    [4] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921.

    Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
    [5] 廖纪佳,朱筱敏,邓秀芹,等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘,2013,20(2):29-39.

    Liao Jijia, Zhu Xiaomin, Deng Xiuqin, et al. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong area in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 29-39.
    [6] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 861-882.
    [7] 郑荣才,文华国,韩永林,等. 鄂尔多斯盆地白豹地区长6油层组湖底滑塌浊积扇沉积特征及其研究意义[J]. 成都理工大学学报(自然科学版),2006,33(6):566-575.

    Zheng Rongcai, Wen Huaguo, Han Yonglin, et al. Discovery and significance of sublacustrine slump turbidite fans in Chang 6 oil-bearing formation of Baibao region in Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2006, 33(6): 566-575.
    [8] 李相博,陈启林,刘化清,等. 鄂尔多斯盆地延长组3种沉积物重力流及其含油气性[J]. 岩性油气藏,2010,22(3):16-21.

    Li Xiangbo, Chen Qilin, Liu Huaqing, et al. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16-21.
    [9] 付金华,邓秀芹,楚美娟,等. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义[J]. 沉积学报,2013,31(5):928-938.

    Fu Jinhua, Deng Xiuqin, Chu Meijuan, et al. Features of deepwater lithofacies, Yanchang Formation in Ordos Basin and its petroleum significance[J]. Acta Sedimentologica Sinica, 2013, 31(5): 928-938.
    [10] 李相博,刘化清,陈启林,等. 大型坳陷湖盆沉积坡折带特征及其对砂体与油气的控制作用:以鄂尔多斯盆地三叠系延长组为例[J]. 沉积学报,2010,28(4):717-729.

    Li Xiangbo, Liu Huaqing, Chen Qilin, et al. Characteristics of slope break belt in large depression lacustrine basin and its controlling effect on sandbody and petroleum: Taking the Triassic Yanchang Formation in the Ordos Basin as an example[J]. Acta Sedimentologica Sinica, 2010, 28(4): 717-729.
    [11] Liu F, Zhu X M, Li Y, et al. Sedimentary characteristics and facies model of gravity flow deposits of Late Triassic Yanchang Formation in southwestern Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(5): 633-645.
    [12] 邹才能,赵政璋,杨华,等. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报,2009,27(6):1065-1075.

    Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075.
    [13] 李相博,付金华,陈启林,等. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展,2011,26(3):286-294.

    Li Xiangbo, Fu Jinhua, Chen Qilin, et al. The concept of sandy debris flow and its application in the Yanchang Formation deep water sedimentation of the Ordos Basin[J]. Advances in Earth Science, 2011, 26(3): 286-294.
    [14] Li X B, Liu H Q, Pan S X, et al. Subaqueous sandy mass-transport deposits in lacustrine facies of the Upper Triassic Yanchang Formation, Ordos Basin, Central China[J]. Marine and Petroleum Geology, 2018, 97: 66-77.
    [15] Zou C N, Wang L, Li Y, et al. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, central China[J]. Sedimentary Geology, 2012, 265-266: 143-155.
    [16] 杨华,刘自亮,朱筱敏,等. 鄂尔多斯盆地西南缘上三叠统延长组物源与沉积体系特征[J]. 地学前缘,2013,20(2):10-18.

    Yang Hua, Liu Ziliang, Zhu Xiaomin, et al. Provenance and depositional systems of the Upper Triassic Yanchang Formation in the southwestern Ordos Basin, China[J]. Earth Science Frontiers, 2013, 20(2): 10-18.
    [17] Yang R C, Jin Z J, van Loon A J, et al. Climatic and tectonic controls of lacustrine hyperpycnite origination in the Late Triassic Ordos Basin, central China: Implications for unconventional petroleum development[J]. AAPG Bulletin, 2017, 101(1): 95-117.
    [18] Xian B Z, Wang J H, Gong C L, et al. Classification and sedimentary characteristics of lacustrine hyperpycnal channels: Triassic outcrops in the south Ordos Basin, central China[J]. Sedimentary Geology, 2018, 368: 68-82.
    [19] 孙福宁,杨仁超,李冬月. 异重流沉积研究进展[J]. 沉积学报,2016,34(3):452-462.

    Sun Funing, Yang Renchao, Li Dongyue. Research progresses on hyperpycnal flow deposits[J]. Acta Sedimentologica Sinica, 2016, 34(3): 452-462.
    [20] 杨仁超,金之钧,孙冬胜,等. 鄂尔多斯晚三叠世湖盆异重流沉积新发现[J]. 沉积学报,2015,33(1):10-20.

    Yang Renchao, Jin Zhijun, Sun Dongsheng, et al. Discovery of hyperpycnal flow deposits in the Late Triassic lacustrine Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 10-20.
    [21] 鲜本忠,万锦峰,董艳蕾,等. 湖相深水块状砂岩特征、成因及发育模式:以南堡凹陷东营组为例[J]. 岩石学报,2013,29(9):3287-3299.

    Xian Benzhong, Wan Jinfeng, Dong Yanlei, et al. Sedimentary characteristics, origin and model of lacustrine deepwater massive sandstone: An example from Dongying Formation in Nanpu Depression[J]. Acta Petrologica Sinica, 2013, 29(9): 3287-3299.
    [22] Liu J P, Xian B Z, Wang J H, et al. Sedimentary architecture of a sub-lacustrine debris fan: Eocene Dongying Depression, Bohai Bay Basin, east China[J]. Sedimentary Geology, 2017, 362: 66-82.
    [23] 曹江骏,杨友运,陈朝兵,等. 致密砂岩储层骨架砂体构型特征:以鄂尔多斯盆地合水地区延长组长6段砂体为例[J]. 沉积学报,2019,37(6):1105-1116.

    Cao Jiangjun, Yang Youyun, Chen Chaobing, et al. Analysis of configuration characteristics for skeleton sand body with tight sandstone reservoir: A case study of Triassic Chang 6 members in Heshui area, Ordos Basin, NW China[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1105-1116.
    [24] 李克永,熊山,牛斌莉,等. 鄂尔多斯盆地南部上三叠统重力流沉积的主控因素[J]. 西北大学学报(自然科学版),2018,48(4):603-610.

    Li Keyong, Xiong Shan, Niu Binli, et al. The main controlling factors of gravity flow of the Upper Triassic in the southern Ordos Basin[J]. Journal of Northwest University (Natural Science Edition), 2018, 48(4): 603-610.
    [25] Chen G, Gang W Z, Liu Y Z, et al. High-resolution sediment accumulation rate determined by cyclostratigraphy and its impact on the organic matter abundance of the hydrocarbon source rock in the Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2019, 103: 1-11.
    [26] Liu J P, Xian B Z, Ji Y L, et al. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay Basin, east China[J]. Marine and Petroleum Geology, 2020, 114: 104197.
    [27] Xian B Z, Liu J P, Dong Y L, et al. Classification and facies sequence model of subaqueous debris flows[J]. Acta Geologica Sinica (English Edition), 2017, 91(2): 751-752.
    [28] 张国栋,鲜本忠,晁储志,等. 鄂尔多斯盆地三水河剖面上三叠统块状砂岩的异重流成因:来自岩石结构的证据[J]. 沉积学报,2019,37(5):934-944.

    Zhang Guodong, Xian Benzhong, Chao Chuzhi, et al. Flood-generated massive sandstones of the Sanshuihe outcrop in the Triassic Ordos Basin: Evidence from sedimentary textural characteristics[J]. Acta Sedimentologica Sinica, 2019, 37(5): 934-944.
    [29] Xian B Z, Wang J H, Liu J P, et al. Delta-fed turbidites in a lacustrine rift Basin: The Eocene Dongying Depression, Bohai Bay Basin, East China[J]. Australian Journal of Earth Sciences, 2018, 65(1): 135-151.
    [30] Xian B Z, Liu J P, Wang J H, et al. Using of stratal slicing in delineating delta-turbidite systems in Eocene Dongying Depression, Bohai Bay Basin: Insights for the evolution of multi-source delta-turbidite systems in a fourth order sequence[J]. Journal of Petroleum Science and Engineering, 2018, 168: 495-506.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(4)

Article Metrics

Article views(405) PDF downloads(330) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-08-20
  • Revised:  2021-01-19
  • Published:  2022-06-10

Architecture and Main Controls of Gravity-flow Sandbodies in Chang 7 Member, Longdong Area, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2021.017
Funds:

National Natural Science Foundation of China 41872113

National Science and Technology Major Project 2016ZX05046-005, 2017ZX05009-002

Strategic Cooperation Science and Technology Special Project between China National Petroleum Corporation and China University of Petroleum (Beijing) ZLZX2020-02

Abstract: The Chang 7 member in the Longdong area of the Ordos Basin contains huge gravity-flow sandbodies and rich oil and gas resources. However, their shape, scale and superpositional relationships differ considerably in different strata regions, and very little is known about their architecture and development. This restricts the improvement of their oil and gas rolling exploration and development efficiency. A study based on core analysis, on the architectural division and the development characteristics of the sandbodies was carried out based on the identification of individual well sandbody architecture interface and their comparison at regionally connected wells, together with sandbody sedimentary facies analysis. The study suggests that the scale of gravity-flow sandbodies in this area is relatively large. The main provenance is a south⁃southwestern system, followed by a northeastern provenance system. The sandbodies are characterized as a typical lacustrine channel⁃fan system subdivided into seven sedimentary microfacies: erosional channel, transitional channel, sedimentary channel, levee, channelized lobe, tabular lobe and turbidite sheet sand. The thickness of the sandbody increases from the delta front slope to the deep-lake depocenter, and its shape changes from a strip to a fan. In addition, the architectural properties change (e.g., the scale). The vertical superpositional relationships and the lateral migration aspects of the sandbodies also show regular changes in the planar view. In the nearshore semi-deep lake delta front slope area individual sandbodies are relatively thin, and the isolated strips occur as thinly interbedded or single layers. The thickness of the single sand layer increases towards the center of the basin, and the lateral connectivity is enhanced. Superimposition of the bodies has led to an increase in vertical connectivity and a transition to continuous stacking. The thickness of individual sandbodies is slightly reduced near the depocenter, but the lateral connectivity is significantly enhanced with obvious continuity, evident as an interval-stacking type of deposition. Comprehensive analysis suggests that the configuration of the gravity-flow sandbodies in this area is controlled by gravity-flow sedimentary facies, base-level cyclic changes and provenance supply rate.

LIANG XiaoWei, XIAN BenZhong, FENG ShengBin, CHEN Peng, YOU Yuan, WU QianRan, DAN WeiDong, ZHANG WenMiao. Architecture and Main Controls of Gravity-flow Sandbodies in Chang 7 Member, Longdong Area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 641-652. doi: 10.14027/j.issn.1000-0550.2021.017
Citation: LIANG XiaoWei, XIAN BenZhong, FENG ShengBin, CHEN Peng, YOU Yuan, WU QianRan, DAN WeiDong, ZHANG WenMiao. Architecture and Main Controls of Gravity-flow Sandbodies in Chang 7 Member, Longdong Area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2022, 40(3): 641-652. doi: 10.14027/j.issn.1000-0550.2021.017
  • 重力流是深水沉积物最重要的搬运机制之一[1]。深化重力流理论研究不仅有助于层序地层学[2-3]、源—汇系统沉积学[4-5]、古气候重建[6]等基础科学问题的探索,而且有助于海底灾害预防、油气勘探开发领域[7-10]等工程应用问题的解决。

    长期以来,前人对鄂尔多斯盆地延长组7段(长7段)重力流沉积开展了大量研究[4],认为重力流沉积主要有两种类型:浊流沉积[7]和砂质碎屑流沉积[11-13]。同时,越来越多的研究人员也意识到,重力流沉积过程中普遍存在从碎屑流向浊流沉积的流体转换[14-16]。近年来,区内露头和钻井中泥质碎屑流[11]和异重流[17-20]的发现更加丰富了长7段重力流沉积的认识,为陇东地区长7段重力流砂体分布规律的研究奠定了基础。

    尽管目前已在长7段重力流的岩相划分、流体成因、沉积微相等方面开展了大量研究,但是对于长7段内部不同时期( 7 1 1 7 1 2 7 2 1 7 2 2 小层发育期)重力流砂体的规模变化、垂向叠置关系、横向迁移情况等构型特征的认识非常薄弱。这极大制约了重力流砂岩储层发育规律的预测,进而影响了重力流砂岩储层油气的高效勘探和开发。亟需解决的问题包括:1)深水区域面积大,但三维地震工区面积小或缺乏,重力流成因的砂体分布特征及规律认识程度低[21];2)缺乏合理、统一、有效的重力流砂体构型分类方案[22];3)缺乏对湖相大型重力流沉积区砂体构型控制因素的研究[23-24]

    为了明确鄂尔多斯盆地长7段重力流砂体构型特征及发育模式,本文基于鄂尔多斯盆地陇东地区700余口钻测井资料,通过小层划分对比、砂体分布编图、单井砂体识别及叠置关系划分、井间砂体精细对比,建立重力流砂体构型分类方案,总结砂体构型的平面、垂向发育规律及其主控因素,为鄂尔多斯盆地长7段重力流砂岩储层发育规律的理解和致密油的开发提供地质依据。

  • 鄂尔多斯盆地地理位置位于我国中部秦岭北侧,大地构造位置位于华北地台西部,是一个中生代与新生代叠加的、有多期次旋回且沉降稳定的大型坳陷盆地[10]。可以将鄂尔多斯盆地分为六个构造单元带,分别为伊陕斜坡、天环坳陷、晋西挠褶带、西缘逆冲带、伊盟隆起以及渭北隆起,呈现出四周的隆起、褶皱或断裂包围中间稳定盆地的、四周高中间低的特征[5]图1a)。本次研究区为陇东地区,横跨庆阳、平凉两市,面积约5×104 km2,占盆地面积的25%,其西部为西缘冲断带,中部横跨天环坳陷和伊陕斜坡,南部为渭北隆起,受四个构造单元控制,构造相对简单(图1)。

    Figure 1.  (a) Geological map of Ordos Basin. (b) Profiles in study area

    鄂尔多斯盆地上三叠统的延长组地层厚度约为1 000~1 300 m,自上而下可以划分为10个油组,也可称为10个段(图2a)。伴随着秦岭造山等构造运动的发生,晚三叠世延长期的鄂尔多斯湖盆依次经历了水体变深—变浅的变化过程,其中7油组沉积时期水体最深、湖盆面积最大,为湖盆演化发育的决定时期,主要包括河流、三角洲和湖泊等沉积环境,且重力流广泛发育。

    Figure 2.  (a) Column map of Upper Triassic Yanchang Formation, Ordos Basin. (b) Stratigraphic subdivision and sedimentary evolution of Chang 7 member

    Chen et al.[25]根据鄂尔多斯盆地长7段伽马(GR)测井曲线及密度(DEN)测井曲线的变化特点,利用旋回地层学基础理论,建立了鄂尔多斯盆地长7段地层格架,以及各亚段沉积的起止时间。依照地质年代表获得了长7段烃源岩高分辨沉积速率变化情况和405 kyr滤波天文校准曲线,并结合滑动窗口相关系数分析对获得的结果进行了对比验证(图2b)。从时间跨度上来看,长7段为1个完整的三级旋回,其中,长71、长72、长73亚段各自构成1个完整的四级旋回或亚段,之下各个旋回分界线可作为五级旋回或小层划分的重要依据。

    因此,本次参照前人地层划分对比结果,依据油组标志层特征、沉积旋回特征和测井曲线特征,将长7段分划为长71、长72和长73三个亚段,每个亚段厚度为32~40 m。其中,长72可细分为 7 2 2 7 2 1 两个小层,长71可细分为 7 1 2 7 1 1 两个小层(图2b),每个小层厚度大致相同,为15~23 m。

  • 本次研究主要围绕7条覆盖全区的连井剖面而展开(图1b)。研究资料包括7条剖面上310口钻井的录井资料和岩心资料、约735口井的测井数据、共56口井岩心观察及岩石样品粒度、薄片分析。

    研究中首先通过岩心观察、岩相分析、测录井深度校正、测井曲线形态分析,明确研究区重力流砂体的沉积特征和沉积规律,建立重力流沉积微相的划分方案。然后,在沉积微相分析的基础上分析砂体的级次关系、规模变化和纵横向叠置关系,开展重力流砂体构型的细分和平面展布特征研究。基于Petrel和Direct工区,进行区域性连井砂体对比,总结鄂尔多斯盆地长7段重力流砂体构型发育规律,构建研究区重力流砂体构型模型。最后,总结重力流砂体构型发育的主控因素。

  • 重力流沉积微相精细研究是其砂体构型研究的基础[26-27],在沉积微相内部讨论砂体构型特征,才能更准确地把握砂体构型的变化规律。因此,重力流砂体构型研究的前提在于重力流沉积微相的划分。基于前人对研究区重力流触发机制、流体类型判识基础上,首先根据露头中所观察到的上下岩层接触关系、岩性突变特征及砂体形态进行识别,然后综合应用研究区单井岩心沉积剖面结构、连井沉积剖面、岩性组合和结构特征及测井曲线响应特征,确定了各类构型要素的识别标志,开展了重力流沉积构型要素定量—半定量划分(表1)。本区重力流砂岩沉积分为重力流水道、溢岸和湖底扇3个亚相7个微相(图3)。

    沉积类型 识别特征
    亚相 沉积微相 侵蚀性 含砂率/% 单砂体厚/m 韵律类型 GR形态 共生微相 主要岩相
    重 力 流 重力流水道 侵蚀型水道 <25 <2 单指 滑塌 交错层理砂岩
    过渡型水道 25~50 2~8 钟形 溢岸 交错层理砂岩 含紫红泥砾块状砂岩
    沉积型水道 >50 5~10 钟形 溢岸 含紫红泥砾块状砂岩 交错层理砂岩
    溢岸 <25 <2 反—无 锯齿形 水道 波纹交错层理粉砂岩
    湖底扇 沟道化朵叶体 >50 4~10 正—无 钟形—箱形 水道—板状 含紫红泥砾块状砂岩 交错层理砂岩
    板状朵叶体 >50 2~8 漏斗 沟道化朵叶体 纯净块状砂岩 含紫红泥砾块状砂岩
    浊积席状砂 <25 <2 复指 板状朵叶体 波纹交错层理粉砂岩 爬升层理粉砂岩

    Table 1.  Identification marks of gravity⁃flow sedimentary facies in Chang 7 member, Ordos Basin

    Figure 3.  Profile and logging response of gravity⁃flow sedimentary facies in the study area

  • 研究区共建立7条区域性连井对比剖面,分别为剖面1—剖面7(平面位置见图1b),在7条剖面上开展长7段四个小层尺度的砂体对比。

    以剖面3中里91—里119—白81—木100—里34为例(图4),从图中可以看出长7段四个小层均有砂体分布,但相比于长72,长71 7 1 2 7 1 1 两个小层砂体更为发育,最多可发育4~5期重力流砂体,单期砂体厚度可达3 m。这可能与其处于上升的三级半旋回末端有关(图2b),因为此时湖盆已经萎缩到很小,重力流砂体逐渐向湖中心推进。

    Figure 4.  Comparison of small layers and sandbodies in the Chang 7 member, Longdong Area, Ordos Basin (location Fig.1b)

  • 研究区重力流砂体规模较大,主要来源于南北两大物源体系[28]。从 7 2 1 期砂体厚度平面图上可以看出,南北两大物源体系仍较为明显(图5)。其中南部和西南部物源的砂体连片性逐渐增强,尤其在庆阳和正宁一带,砂体成条带状(舌状)往前,物源供给更加稳定,水道发育。北部物源的砂体成土豆状,个别地方往前成条带状(舌状),物源不稳定,砂体连片性较差,但砂体厚度也有向盆地中心增大的趋势(图5)。

    Figure 5.  Thickness map of gravity⁃flow sandstone in C h a n g 7 2 1 small layer, Longdong area, Ordos Basin

  • 本研究基于砂体的沉积成因解释与沉积微相的精细刻画,综合考虑沉积微相、砂体级次关系、砂体规模变化与叠置关系对构型进行分类。基于各小层沉积微相分析,落实不同时期砂体成因类型及其分布。研究区发育洪水型重力流相[18],包括重力流水道、湖底扇、溢岸等不同微相(表1图3),不同成因类型砂体因其形成过程不同,具有不同的形态与展布[29-30]

    首先,对各小层以复合水道与复合扇体级别进行砂体垂向规模变化类型的划分。由于各小层处于层序演化的不同阶段,砂体垂向上规模受基准面变化的影响,呈规律性的变化,可识别出规模稳定型(等厚型)与规模不稳定型,其中规模不稳定型可细分为规模增加型与规模减弱型。然后,针对各小层内部砂地比与单砂体垂向叠置关系进行细分,分出连续叠加型、间隔叠加型、单层型和薄互层型。其中连续叠加型砂地比>50%,无或者少夹层;间隔叠加型砂地比>50%,夹层较发育;单层型砂地比<50%,隔层厚且分布稳定;薄互层型砂地比<50%,隔夹层多且稳定。同时可结合砂体横向迁移情况对各类进行细分,分为稳定型、定向型和不定向型。

    综合考虑砂体规模变化、垂向叠置关系、横向迁移情况,划分出30种砂体构型类型(表2)。

    Table 2.  Gravity⁃flow sandbody configuration classification scheme

  • 通过对全区7条长剖面的研究,共识别出723个砂体构型,包含27种类型。其中,最常出现的砂体构型为间隔叠加型,细分砂体构型以间隔叠加等厚稳定型(D1)、间隔叠加增强稳定型(E1)、间隔叠加减弱稳定型(F1)为主;出现较少的砂体构型为薄互层型(H、I、J);未识别出薄互层减弱稳定型(J1)、薄互层减弱不定向型(J3)和连续叠加减弱不定向型(C3)。连续叠加型、间隔叠加型、单层型和薄互层型是最基础的4类砂体构型,不同构型具有其独特的砂地比、单砂体厚度和隔夹层泥岩厚度。

  • 砂地比小于30%,多为孤立单砂体,表现为沉积作用较弱,多发育于侵蚀型水道微相中(图6a)。侵蚀型水道因具有较强的侧向迁移能力,导致不同时期的水道砂体相互切割,砂体间的连通性较好。

    Figure 6.  The configuration profile of Chang 7 member in study area (location Fig.1b; legend Fig.3)

  • 砂地比小于30%,以发育大于2m厚的泥质夹层为主要特征,多发育于过渡型水道边缘的漫溢沉积(天然堤)与湖底扇的扇缘部位(图6b,c)。由于漫溢沉积泥岩含量较高,导致垂向上不同时期单砂体之间彼此不连通;同时水道与漫溢之间被泥岩所分隔,表现为弱连通或者不连通。

  • 泥质含量较连续叠加型相对增加,砂地比大于50%,可见发育厚度小于1 m的泥质夹层或泥质条带,在过渡型水道及板状朵叶体中均有发育,但在侵蚀型水道沉积微相中少见(图6b,d)。过渡型水道沉积时处于欠补偿条件下,在洪水能量增强—减弱交替演化过程中,不同时期水道间易发生泥质沉降,导致垂向上水道砂体不连通。

  • 砂体泥质含量少,砂地比远大于30%,少数发育泥质夹层,但一般仅有0.2~0.5 m,为多期沉积叠加形成,砂体沉积稳定叠加,多发育于沉积型水道或板状朵叶体沉积微相中,该类砂体的垂向连通性和横向连通性相对较好(图6c)。

  • 7 2 2 小层主要发育单层型、薄互层型、间隔叠加增强型、间隔叠加减弱型、连续叠加增强型和连续叠加减弱型6种砂体构型样式,间隔叠加稳定型和间隔叠加减弱型最为发育。其中,单层型砂体主要发育于侵蚀型水道沉积微相内,薄互层砂体主要发育沉积型水道侧翼的天然堤或漫溢沉积微相内部,间隔叠加型发育于湖底扇主体和沉积型水道、过渡型水道的侧缘,连续叠加型则集中发育于过渡型和沉积型水道的中心部位(图7a)。

    Figure 7.  Plan view of gravity⁃flow sandbody types in study area

    7 2 1 小层主要发育间隔叠加增强型、间隔叠加稳定型、连续叠加增强型和连续叠加稳定型4种砂体构型样式。与 7 2 2 小层相比,连续叠加减弱型和间隔叠加减弱型不再发育(图7b)。总结而言,本层砂体构型发育上具有以下几个特征:1)不再发育连续叠加减弱型和间隔叠加减弱型;2)间隔叠加型面积大,其次是连续叠加型。间隔叠加型砂体在深水区普遍发育,但连片性不足,主要呈分散状特征。连续叠加型砂体主要分布多个扇状间隔叠加型扇体之间的重力流水道的中心部位;3)间隔叠加型和连续叠加型砂体都表现出较多见的增强型,这与 7 2 1 小层整体处于长7段内部第一个四级上升半旋回有关,此时为水体变迁、湖泊出现萎缩、陆源碎屑物质供给增加的特殊演化阶段(图2b)。

    进入长71亚段之后,湖泊进入了另一个湖平面上升—下降的沉积旋回。其中 7 1 2 小层处于下半部的湖平面上升—下降初期,盆地早期小规模扩张之后再次转入小规模萎缩阶段(图2b)。受此影响,长 7 1 2 小层的砂体构型表现出复杂多变、规律性差的整体特征。其中,减弱—增强复合性质的间隔叠加和连续叠加型砂体非常普遍(图7c)。除此之外,在物源供给较为充分的地区也发育间隔叠加稳定型和连续叠加稳定型砂体。本阶段砂体连片性增强,北部物源增强后导致北部的华池一带也开始发育较为连续的规模性间隔叠加或连续叠加的砂体;减弱—增强复合性质的砂体与该时期整体处于长7段水体快速小规模加深又快速小规模变浅、湖泊出现扩张之后快速小规模萎缩有关(图2b)。

    7 1 2 小层不同, 7 1 1 小层对应于长7段最后一个四级半旋回的稳定下降阶段(图2b)。因此, 7 1 1 小层内部的砂体构型相对简单、规律性较好,间隔叠加增强型和连续叠加增强型砂体非常普遍。除此之外,盆地中心部位砂体连片性进一步加强,从南到北均表现出较强的连片分布特征(图7d)。此时,砂体连片性进一步增强,北部物源持续增强导致北部的华池—林镇一带的砂体较为连续,主要发育间隔叠加增强型和稳定型砂体,与南部物源体系影响区分隔开来。

  • 重力流砂体构型受控于重力流沉积微相类型、基准面旋回变化以及物源供给速率,以下分别讨论这三种因素对砂体构型的影响。

  • 由于不同沉积微相沉积过程与水动力条件的差异,导致砂体构型在平面上存在差异且受相带控制。对于侵蚀型水道来说,由于水动力较强,以“过路不沉积”为主要特征,通常发育薄层砂体,因此以单层型为主,多出现迁移摆动等特征。对于过渡型水道来说,由于水动力慢慢减弱,通常发育薄层砂体或间隔叠加型砂体,因此以单层型和间隔叠加型为主。而对于沉积型水道来说,由于水动力较弱,以沉积为主要特征,通常发育间隔叠加型或连续叠加型砂体,无迁移摆动等特征。朵叶体也主要发育间隔叠加型或连续叠加型砂体,但单期砂体厚度较薄,表明水动力已经达到最弱。浊积席状砂以薄互层型为主,砂体之间的间距较大(表3)。

    相类型 砂体构型
    亚相 沉积微相 垂向叠置关系 规模变化情况
    重 力 流 相 重 力 流 水 道 侵蚀型水道 单层型(薄) 等厚
    过渡型水道 单层型 等厚
    间隔叠加型 等厚、增强、减弱
    沉积型水道 间隔叠加型 等厚、增强、减弱
    连续叠加型 等厚、增强、减弱
    溢岸 薄互层型 等厚、增强、减弱
    湖 底 扇 沟道化朵叶体 连续叠加型 等厚、增强、减弱
    板状朵叶体 连续叠加型 等厚、增强、减弱
    间隔叠加型 等厚、增强、减弱
    浊积席状砂 薄互层型 等厚、增强、减弱

    Table 3.  Relationship between configuration types and sedimentary facies of gravity⁃flow sandbodies in study area, Chang 7 member

    顺物源方向表现为侵蚀型水道—过渡型水道—沉积型水道—朵叶体相序的构型类型以单层型—间隔叠加型—连续叠加型—间隔叠加型序列为主要特征(表3)。

  • 由于砂体规模受基准面旋回变化影响,不同时期主要构型类型存在差异。长72至长71沉积期,基准面下降,可容纳空间(A)减小,横向上整体表现为进积特征(图2b),垂向上砂体构型逐步变为增强型;同时长72与长71各小层内部砂体构型也受次一级基准面波动影响,表现为基准面上升时发育减弱型与稳定型,基准面下降时发育稳定型与增强型(表4)。

    地层单元 砂体构型
    亚段 小层 规模变化情况 垂向叠置关系
    长7 长71 长7 1 1 增强型 连续叠加型、间隔叠加型、薄互层型
    等厚型 连续叠加型、间隔叠加型、 单层型、薄互层型
    长7 1 2 等厚型 连续叠加型、间隔叠加型、 单层型、薄互层型
    减弱—增强复合型 连续叠加型、间隔叠加型、薄互层型
    长72 长7 2 1 增强型 连续叠加型、间隔叠加型、薄互层型
    减弱型 连续叠加型、间隔叠加型、薄互层型
    长7 2 2 减弱型 连续叠加型、间隔叠加型、薄互层型

    Table 4.  Gravity⁃flow sandbody configuration type characteristics of each small layer in study area,Chang 7 member

  • 沉积物供给速率(S)会影响砂体的厚度,也影响砂体的垂向连通性,因此形成近源和远源差异性的砂体构型。沉积物供给速率越快的地方,A/S值不断减小,水道易发生侧向迁移和侵蚀早期形成的砂体,出现连续叠加型的几率越大(图7)。而平面上相同厚度砂体的区域,由于沉积过程不同,泥质夹层发育程度也会有所不同,因此内部可形成不同种类的砂体构型(图4图7c)。

  • (1) 研究区重力流砂体规模较大,主要来源于南北两大物源体系。靠近物源的三角洲前缘斜坡—深水区,砂体较薄,厚度多为0~8 m,连片性差;而靠近盆地中心的深湖区,砂体较厚,多为8~16 m,连片性好。

    (2) 研究区长7段重力流砂岩发育典型的水道—湖底扇体系,可细分为侵蚀型水道、过渡型水道、沉积型水道、溢岸、沟道化朵叶体、板状朵叶体和浊积席状砂7种沉积微相。

    (3) 综合考虑重力流砂体规模变化、垂向叠置关系、横向迁移情况,建立了重力流砂体构型划分方案。研究区共识别出723个构型单元,分为连续叠加型、间隔叠加型、单层型和薄互层型4类27种砂体构型,其中间隔叠加型最常出现,薄互层型发育最少。

    (4) 沉积微相、基准面变化和沉积物供给速率是该区重力流砂体构型的主控因素。顺物源方向,随着沉积微相从侵蚀型水道—过渡型水道—沉积型水道向湖底扇演化,砂体构型从单层型—间隔叠加型—连续叠加型向间隔叠加型演化。此外,重力流砂体构型受到基准面升降影响,不同时期砂体的优势构型不同。从亚段尺度看,随着基准面下降,长72至长71整体表现为进积,可容纳空间减小,增强型砂体增多;从小层尺度看,长72与长71内部各小层砂体构型还受次级基准面波动影响,基准面上升时发育减弱型,基准面下降时发育稳定型与增强型。最后,沉积物供给速率影响砂体厚度,进而影响砂体的垂向连通性。

Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return