[1] |
陈世悦,张顺,王永诗,等. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J]. 石油勘探与开发,2016,43(2):198-208. |
Chen Shiyue, Zhang Shun, Wang Yongshi, et al. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag, Bohai Bay Basin[J]. Petroleum Exploration and Development, 2016, 43(2): 198-208. |
[2] |
Macquaker J H S, Adams A E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones[J]. Journal of Sedimentary Research, 2003, 73(5): 735-744. |
[3] |
Potter P E, Maynard J B, Depetris P J. Mud and mudstones: Introduction and overview[M]. Berlin: Springer, 2005: 1-297. |
[4] |
Schieber J. Mud re-distribution in epicontinental basins-Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71, 119-133. |
[5] |
Sorby H C. On the application of quantitative methods to the study of the structure and history of rocks[J]. Quarterly Journal of the Geological Society, 1908, 64(1/2/3/4): 171-233. |
[6] |
Schieber J, Southard J, Thaisen K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. |
[7] |
邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29. |
Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29. |
[8] |
曹耀华,赖志云. 沉积模拟实验的历史现状及发展趋势[J]. 沉积学报,1990,8(1):143-147. |
Cao Yaohua, Lai Zhiyun. Sedimentary simulation experiments: In the past, current states, and developing trend[J]. Acta Sedimentologica Sinica, 1990, 8(1): 143-147. |
[9] |
张春生,刘忠保,张俊,等. 曲流河凹岸滩坝沉积模拟研究[J].江汉石油学院学报,1997,19(3):8-14. |
Zhang Chunsheng, Liu Zhongbao, Zhang Jun, et al. Concave-bank beach bar deposition of meandering river[J]. Journal of Jianghan Petroleum Institute, 1997, 19(3): 8-14. |
[10] |
Deacon G F. Discussion. The training of rivers and estuaries [J]. Minutes of the Proceedings of the Institute of Civil Engineers, 1894, 118: 78-103. |
[11] |
Gilbert G K, Murphy E C. The transportation of debris by running water[M]. Washington: Government Printing Office, 1914, 86: 1-263. |
[12] |
Holtorff G. Resistance to flow in alluvial channels[J]. Journal of Hydraulic Research, 1979, 17(2): 121-128. |
[13] |
钱宁,万兆惠. 泥沙运动力学[M]. 北京:科学出版社,1983:1-687. |
Qian Ning, Wan Zhaohui. Mechanics of sediment transport[M]. Beijing: Science Press, 1983: 1-687. |
[14] |
张春生,刘忠保,曹跃华,等. 歧北凹陷舌状砂体沉积模拟实验[J]. 石油与天然气地质,1995,16(2):178-183. |
Zhang Chunsheng, Liu Zhongbao, Cao Yaohua, et al. Depositional simulation of lobate sand body in Qibei Sag[J]. Oil & Gas Geology, 1995, 16(2): 178-183. |
[15] |
鄢继华,陈世悦,姜在兴,等. 断陷湖盆震浊积岩成因模拟实验[J]. 古地理学报,2007,9(3):277-282. |
Yan Jihua, Chen Shiyue, Jiang Zaixing, et al. Simulating experiment on genesis of seismo-turbidites in rift lacustrine Basin[J]. Journal of Palaeogeography, 2007, 9(3): 277-282. |
[16] |
周川闽,张志杰,邱振,等. 细粒沉积物理模拟研究进展与展望[J]. 沉积学报,2021,39(1):253-267. |
Zhou Chuanmin, Zhang Zhijie, Qiu Zhen, et al. Laboratory experiments on sedimentation of fine-grained sediment: A prospect review[J]. Acta Sedimentologica Sinica, 2021, 39(1): 253-267. |
[17] |
Baas J H, Best J L, Peakall J, et al. A phase diagram for turbulent, transitional, and laminar clay suspension flows[J]. Journal of Sedimentary Research, 2009, 79(4): 162-183. |
[18] |
Baker M L, Baas J H, Malarkey J, et al. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits[J]. Journal of Sedimentary Research, 2017, 87(11): 1176-1195. |
[19] |
Ho V L, Dorrell R M, Keevil G M, et al. Pulse propagation in turbidity currents[J]. Sedimentology, 2018, 65(2): 620-637. |
[20] |
Mohrig D, Marr J G. Constraining the efficiency of turbidity current generation from submarine debris flows and slides using laboratory experiments[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 883-899. |
[21] |
Mohrig D, Elverhøi A, Parker G. Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits[J]. Marine Geology, 1999, 154(1/2/3/4): 117-129. |
[22] |
Harbitz C B, Parker G, Elverhøi A, et al. Hydroplaning of subaqueous debris flows and glide blocks: Analytical solutions and discussion[J]. Journal of Geophysical Research, 2003, 108(B7): 2349. |
[23] |
Sawyer D E, Flemings P B, Buttles J, et al. Mudflow transport behavior and deposit morphology: Role of shear stress to yield strength ratio in subaqueous experiments[J]. Marine Geology, 2012, 307-310: 28-39. |
[24] |
Baas J H. A flume study on the development and equilibrium morphology of current ripples in very fine sand[J]. Sedimentology, 1994, 41(2): 185-209. |
[25] |
Baas J H. An empirical model for the development and equilibrium morphology of current ripples in fine sand[J]. Sedimentology, 1999, 46(1): 123-138. |
[26] |
Schindler R J, Parsons D R, Ye L P, et al. Sticky stuff: Redefining bedform prediction in modern and ancient environments[J]. Geology, 2015, 43(5): 399-402. |
[27] |
Malarkey J, Baas J H, Hope J A, et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications, 2015, 6(1): 6257. |
[28] |
Parsons D R, Schindler R J, Hope J A, et al. The role of biophysical cohesion on subaqueous bed form size[J]. Geophysical Research Letters, 2016, 43(4): 1566-1573. |
[29] |
Mooneyham C, Strom K. Deposition of suspended clay to open and sand-filled framework gravel beds in a laboratory flume[J]. Water Resources Research, 2018, 54(1): 323-344. |
[30] |
Baas J H, Manica R, Puhl E, et al. Processes and products of turbidity currents entering soft muddy substrates[J]. Geology, 2014, 42(5): 371-374. |
[31] |
Baas J H, Best J L, Peakall J. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand[J]. Journal of the Geological Society, 2016, 173(1): 12-45. |
[32] |
Miramontes E, Eggenhuisen J T, Jacinto R S, et al. Channel-levee evolution in combined contour current-turbidity current flows from flume-tank experiments[J]. Geology, 2020, 48(4): 353-357. |
[33] |
Ferreira R M L, Alves E C T L, Leal J G A B. River flow 2006 [M]. London: Taylor & Francis Group, 2006: 1801-1809. |
[34] |
冯文杰,吴胜和,刘忠保,等. 逆断层正牵引构造对冲积扇沉积过程与沉积构型的控制作用:水槽沉积模拟实验研究[J]. 地学前缘,2017,24(6):370-380. |
Feng Wenjie, Wu Shenghe, Liu Zhongbao, et al. The controlling effects on depositional process and sedimentary architecture of alluvial fan by normal drag structure caused by thrust fault: Insights from flume tank experiments[J]. Earth Science Frontiers, 2017, 24(6): 370-380. |
[35] |
程立华,陈世悦,吴胜和,等. 断陷盆地陡坡带扇三角洲模拟及沉积动力学分析[J]. 海洋地质与第四纪地质,2005,25(4):29-34. |
Cheng Lihua, Chen Shiyue, Wu Shenghe, et al. The simulation and sedimentary dynamic analysis of fan delta in the steep slope of fault basin[J]. Marine Geology & Quaternary Geology, 2005, 25(4): 29-34. |
[36] |
鄢继华,陈世悦,程立华,等. 湖平面变化对扇三角洲发育影响的模拟试验[J]. 中国石油大学学报(自然科学版),2009,33(6):1-4,10. |
Yan Jihua, Chen Shiyue, Cheng Lihua, et al. Simulation experiment for effects of lake level change on fan delta development[J]. Journal of China University of Petroleum, 2009, 33(6): 1-4, 10. |
[37] |
刘忠保,赖志云,汪崎生. 湖泊三角洲砂体形成及演变的水槽实验初步研究[J]. 石油实验地质,1995,17(1):34-41. |
Liu Zhongbao, Lai Zhiyun, Wang Qisheng. Flume-experimental study on the formation and evolution of lake delta sandbody[J]. Experimental Petroleum Geology, 1995, 17(1): 34-41. |
[38] |
刘锐娥,肖红平,范立勇,等. 鄂尔多斯盆地二叠系"洪水成因型"辫状河三角洲沉积模式[J]. 石油学报,2013,34(增刊1):120-127. |
Liu Rui’e, Xiao Hongping, Fan Liyong, et al. A depositional mode of flood-induced braided river delta in Permian of Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(Suppl. 1): 120-127. |
[39] |
朱永进,张昌民,尹太举. 叠覆式浅水三角洲沉积特征与沉积模拟[J]. 地质科技情报,2013,32(3):59-65. |
Zhu Yongjin, Zhang Changmin, Yin Taiju. Characteristics of superimposed shallow-lacustrine delta and its experimental simulation[J]. Geological Science and Technology Information, 2013, 32(3): 59-65. |
[40] |
尹太举,张昌民,朱永进,等. 叠覆式三角洲:一种特殊的浅水三角洲[J]. 地质学报,2014,88(2):263-272. |
Yin Taiju, Zhang Changmin, Zhu Yongjin, et al. Overlapping delta: A new special type of delta formed by overlapped lobes[J]. Acta Geologica Sinica, 2014, 88(2): 263-272. |
[41] |
石富伦,刘忠保,李少华,等. 河口坝成因主控因素分析实验模拟[J]. 水利与建筑工程学报,2013,11(2):32-36. |
Shi Fulun, Liu Zhongbao, Li Shaohua, et al. Analysis on main genesic factors of debouch bar based on experimental simulation[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(2): 32-36. |
[42] |
杨华,牛小兵,罗顺社,等. 鄂尔多斯盆地陇东地区长7段致密砂体重力流沉积模拟实验研究[J]. 地学前缘,2015,22(3):322-332. |
Yang Hua, Niu Xiaobing, Luo Shunshe, et al. Research of simulated experiment on gravity flow deposits of tight sand bodies of Chang 7 Formation in Longdong area, Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 322-332. |
[43] |
Schieber J, Southard J B. Bedload transport of mud by floccule ripples-direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. |
[44] |
Allen J R L. Current ripples: Their relation to patterns of water and sediment motion[M]. Amsterdam: North-Holland Publishing Company, 1968: 1-433. |
[45] |
Yawar Z, Schieber J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. |
[46] |
Schieber J, Bose P K, Eriksson P G, et al. Atlas of microbial mat features preserved within the siliciclastic rock record[M]. Amsterdam: Elsevier Science Ltd, 2007: 189-197. |
[47] |
Plint A G, Macquaker J H S, Varban B L. Bedload transport of mud across a wide, storm-influenced ramp: Cenomanian-Turonian Kaskapau Formation, western Canada Foreland Basin[J]. Journal of Sedimentary Research, 2012, 82(11): 801-822. |
[48] |
Plint A G. Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies[J]. Sedimentology, 2014, 61(3): 609-647. |
[49] |
Schieber J. Discussion: “Mud dispersal across a Cretaceous prodelta: Storm-generated, wave-enhanced sediment gravity flows inferred from mudstone microtexture and microfacies” by Plint (2014), Sedimentology 61, 609-647[J]. Sedimentology, 2015, 62(1): 389-393. |
[50] |
Pettijohn F J. Classification of sandstones[J]. The Journal of Geology, 1954, 62(4): 360-365. |
[51] |
Dickinson W R. Interpreting detrital modes of graywacke and arkose[J]. Journal of Sedimentary Petrology, 1970, 40(2): 695-707. |
[52] |
Bennett R H, Bryant W R, Hulbert M H. Microstructure of fine-grained sediments: From mud to shale[M]. New York: Springer-Verlag, 1991: 5-32. |
[53] |
Schieber J. Reverse engineering mother nature-shale sedimentology from an experimental perspective[J]. Sedimentary Geology, 2011, 238(1/2): 1-22. |
[54] |
Schieber J. Experimental testing of the transport-durability of shale Lithics and its implications for interpreting the rock record[J]. Sedimentary Geology, 2016, 331: 162-169. |
[55] |
Schieber J, Southard J B, Schimmelmann A. Lenticular shale fabrics resulting from intermittent erosion of water-rich muds-interpreting the rock record in the light of recent flume experiments[J]. Journal of Sedimentary Research, 2010, 80(1): 119-128. |
[56] |
Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer-Verlag, 2004: 1-976. |
[57] |
Boggs Jr S. Principles of sedimentology and stratigraphy[M]. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2006: 1-688. |
[58] |
Shinn E A, Steinen R P, Dill R F, et al. Lime-mud layers in high-energy tidal channels: A record of hurricane deposition[J]. Geology, 1993, 21(7): 603-606. |
[59] |
Shinn E A, Steinen R P, Lidz B H, et al. Whitings, a sedimentological dilemma[J]. Journal of Sedimentary Petrology, 1989, 59(1): 147-161. |
[60] |
Schieber J, Southard J B, Kissling P, et al. Experimental deposition of carbonate mud from moving suspensions: Importance of flocculation and implications for modern and ancient carbonate mud deposition[J]. Journal of Sedimentary Research, 2013, 83(11): 1026-1032. |