Advanced Search
Volume 39 Issue 5
Sep.  2021
Turn off MathJax
Article Contents

PAN ShiLe, JIANG Yun, KANG Jian, CHEN Bo, ZHANG ShunCun, SUN GuoQiang. Analysis of Paleoclimate and Source of the Upper Section, Lower Ganchaigou Formation, Lenghu No. 7 Region, North Qaidam Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1292-1304. doi: 10.14027/j.issn.1000-0550.2021.013
Citation: PAN ShiLe, JIANG Yun, KANG Jian, CHEN Bo, ZHANG ShunCun, SUN GuoQiang. Analysis of Paleoclimate and Source of the Upper Section, Lower Ganchaigou Formation, Lenghu No. 7 Region, North Qaidam Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1292-1304. doi: 10.14027/j.issn.1000-0550.2021.013

Analysis of Paleoclimate and Source of the Upper Section, Lower Ganchaigou Formation, Lenghu No. 7 Region, North Qaidam Basin

doi: 10.14027/j.issn.1000-0550.2021.013
Funds:

National Natural Science Foundation of China 41872145

Talent Training Plan of "light of the west" of Chinese Academy of Sciences Y304RC1SGQ

Natural Science Foundation of Gansu Province 17JR5RA293

Key Laboratory Project of Gansu Province 1309RTSA041

Cultivation Project Jointly funded by Guangxi Natural Science Foundation 2019GXNSFAA245016

  • Received Date: 2019-11-25
  • Rev Recd Date: 2021-01-18
  • Publish Date: 2021-10-10
  • Core samples from this area were analyzed for major elements and REE content, combined with observation of drilling core, thin section identification and scanning electron microscope (SEM) imaging to clarify paleoclimate evolution history and tectonic background of the source. Analysis of clay minerals in sandstone in the Lenghu No. 7 region showed mainly an authigenic source with higher illite, high mixed layer of illite/smectite, chlorite, low montmorillonite and no kaolinite. Major element analysis found large changes in oxide content, and high overall Na+ and K+ and low Mg/Ca, TiO2, Al2O3/MgO, indicating relatively frequent changes in a cold, alkaline environment. The compositional variation index (ICV) is >1 or close to 1, evidence that sediment recycling has had little effect on sediment composition, and maturity is low. The chemical alteration index (CIA) is mainly 50-65 (average 58), indicating that the upper section experienced weak chemical weathering in a cold, dry climate. Three fluctuations occurred in the paleoclimate, with some warm, humid gaps, possibly due to increased tectonic activity around the basin. A somewhat steep La-Sm curve and a gentler Dy-Lu curve indicate enriched LREE and depleted HREE. The shapes of the LREE curves in the La-Eu and Gd-Lu sections indicate greater fractionation of LREEs than HREEs. An obvious V-shaped negative Eu anomaly (δEu 0.62-0.82, average 0.72) and small negative Ce anomaly (δCe 0.85-0.94, average 0.90) indicate a relatively consistent stable provenance typical of sedimentary rocks. The normalized REE distribution pattern of North American shale (NASC) is generally enriched (La/Yb)N in the range 1.14-1.63, and δCe in the range 0.86-0.95, which tends to be a negative anomaly, reflecting an oxidizing paleosedimentary environment. Characteristic K2O/Na2O-SiO2, La-Th-Sc and La/Yb-ΣREE discrimination diagrams signify a stable tectonic regional environment, mainly of active continental margin/continental island arc systems. The source rocks are mainly sedimentary rocks and granites. Global sea levels slowly lowered from the Middle Eocene to the Early Oligocene; the Antarctic continent formed a permanent ice sheet in gradual cooling conditions. Warming in the late Oligocene began to melt the ice sheet; global tectonic movement increased. The reduction of CO2 due to weathering of the newly exposed rock lowered global temperatures. The Tibetan Plateau continued to rise, uplifting the Kunlun-Altun-Qilian Mountains, and the northern margin of the Qaidam Basin closed and became dry. The dry, cold climate in the study area is consistent with global climate indicators. The sediment source at the northern margin of the Qaidam Basin was mainly controlled by the Altun and Qilian Mountains, producing multi-provenance and multi-regional sources. The Lenghu No. 7 structural belt was affected by multi-stage tectonic movements in the Mesozoic and Cenozoic. Differential uplift and regional denudation in the late Yanshan movement caused an overall dip to the southwest. The study revealed that the orogenic belt in the eastern part of the study area was the main clastic source region. In the Early Cenozoic Himalayan (Paleogene-Early Pliocene), regional compression and tectonic movement was weak, resulting in long-term stability of the northern margin of the Qaidam Basin.
  • [1] Sun G Q, Wang Y, Guo J, et al. Clay minerals and element geochemistry of clastic reservoirs in the Xiaganchaigou Formation of the Lenghuqi area, northern Qaidam Basin, China[J]. Minerals, 2019, 9(11): 678.
    [2] Werne J P, Lyons T W, Hollander D J, et al. Reduced sulfur in euxinic sediments of the Cariaco Basin: Sulfur isotope constraints on organic sulfur Formation[J]. Chemical Geology, 2003, 195(1/2/3/4): 159-179.
    [3] 范玉海,屈红军,王辉,等. 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质,2012,39(2):382-389.

    Fan Yuhai, Qu Hongjun, Wang Hui, et al. The application of trace elements analysis to identifying sedimentary media environment: A case study of Late Triassic strata in the middle part of western Ordos Basin[J]. Geology in China, 2012, 39(2): 382-389.
    [4] Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289-318.
    [5] 李宏义,汤良杰,姜振学,等. 柴达木盆地北缘冷湖七号构造油气成藏过程与模式[J]. 地质学报,2007,81(2):267-272.

    Li Hongyi, Tang Liangjie, Jiang Zhenxue, et al. Process and model of hydrocarbon accumulation in the area of Lenghu No.7 on the northern margin of the Qaidam Basin[J]. Acta Geologica Sinica, 2007, 81(2): 267-272.
    [6] 白亚东,杨巍,马峰,等. 柴北缘冷湖七号—南八仙地区构造特征及油气勘探方向[J]. 特种油气藏,2019,26(1):75-79.

    Bai Yadong, Yang Wei, Ma Feng, et al. Tectonic feature and oil and gas exploration direction of Lenghu 7—Nanbaxian area on north margin of Qaidam Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 75-79.
    [7] 谢宗奎,胡锌波,陶宗谱,等. 柴达木盆地冷湖七号第三系储层物性影响因素及分类意义[J]. 内蒙古石油化工,2006,32(10):81-83.

    Xie Zongkui, Hu Xinbo, Tao Zongpu, et al. The influence on reservoir physical property of Lenghu-7 Tertiary, Qindam Basin along with classification significance[J]. Inner Mongolia Petrochemical Industry, 2006, 32(10): 81-83.
    [8] 谢宗奎,刘人和,苏燕,等. 柴达木盆地冷湖七号构造成藏分析及勘探意义[J]. 石油天然气学报(江汉石油学院学报),2005,27(增刊3):451-452,459.

    Xie Zongkui, Liu Renhe, Su Yan, et al. Hydrocarbon accumulation analysis and exploration significance of No.7 Lenghu structure in Qaidam Basin[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2005, 27(Suppl. 3): 451-452, 459.
    [9] 李得信,黄素品,杨洪明,等. 对柴达木盆地北缘冷湖构造带冷湖七号构造深层油气显示的深化认识[J]. 青海石油,2006,24(3):9-14.

    Li Dexin, Huang Supin, Yang Hongming, et al. Deepening understanding of the deep oil and gas display of the Lenghu No. 7 structure in the cold lake tectonic belt of the northern margin of the Qaidam Basin[J]. Qinghai Petroleum, 2006, 24(3): 9-14.
    [10] 王步清,王清华,陈汉林,等. 柴北缘冷湖地区构造建模和构造分析[J]. 大地构造与成矿学,2006,30(4):430-434.

    Wang Buqing, Wang Qinghua, Chen Hanlin, et al. Three-dimensional structure modeling and structural analysis of the Lenghu area on the northern margin of Qaidam Basin[J]. Geotectonica et Metallogenia, 2006, 30(4): 430-434.
    [11] 林洪,李凤杰,李磊,等. 柴达木盆地北缘古近系重矿物特征及物源分析[J]. 天然气地球科学,2014,25(4):532-541.

    Lin Hong, Li Fengjie, Li Lei, et al. Characteristics of Paleogene heavy mineral and its source in northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2014, 25(4): 532-541.
    [12] 赵睿. 柴北缘冷湖地区古近系物源研究[C]//2015年全国沉积学大会沉积学与非常规资源论文摘要集. 武汉:中国地质学会沉积地质专业委员会,中国矿物岩石地球化学学会沉积学专业委员会,长江大学地球科学学院,2015:2.

    Zhao Rui. Paleogene provenance study in Lenghu area, northern margin of Qaidam Basin[C]//Abstracts of papers on sedimentology and unconventional resources of 2015 national sedimentology congress. Wuhan: Sedimentary Geology Committee of Chinese Geological Society, Sedimentology Committee of Chinese Society of Mineralogy and Petrochemistry School of Earth Sciences, Changjiang University, 2015: 2.
    [13] 顾家裕. 塔里木盆地石炭系东河砂岩沉积环境分析及储层研究[J]. 地质学报,1996,70(2):153-161.

    Gu Jiayu. Sedimentary environment and reservoir characters of the Carboniferous Donghe sandstone in the Tarim Basin[J]. Acta Geologica Sinica, 1996, 70(2): 153-161.
    [14] 韩清华,兖鹏,余朝华,等. 渤海湾盆地东营凹陷辛东地区构造演化及油气成藏规律[J]. 地质力学学报,2008,14(4):362-373,345.

    Han Qinghua, Yan Peng, Yu Zhaohua, et al. Structural evolution and hydrocarbon accumulation in the Xindong area of Dongying Sag, Bohai Bay Basin[J]. Journal of Geomechanics, 2008, 14(4): 362-373, 345.
    [15] 贾艳艳,邢学军,孙国强,等. 柴北缘西段古—新近纪古气候演化[J]. 地球科学,2015,40(12):1955-1967.

    Jia Yanyan, Xing Xuejun, Sun Guoqiang, et al. The Paleogene-Neogene paleoclimate evolution in western sector of northern margin of Qaidam Basin[J]. Earth Science, 2015, 40(12): 1955-1967.
    [16] 王朝文,洪汉烈,李朝晖,等. 新生代柴北缘的气候和构造演化:来自沉积学和矿物学的证据[J]. 地球科学,2013,24(3):314-327.

    Wang Chaowen, Hong Hanlie, Li Zhaohui, et al. Climatic and tectonic evolution in the north Qaidam since the Cenozoic: Evidence from sedimentology and mineralogy[J]. Journal of Earth Science, 2013, 24(3): 314-327.
    [17] 孙国强,郑建京,苏龙,等. 柴达木盆地西北区中—新生代构造演化过程研究[J]. 天然气地球科学,2010,21(2):212-217.

    Sun Guoqiang, Zheng Jianjing, Su Long, et al. Mesozoic-Cenozoic tectonic evolution in northwestern Qaidam Basin[J]. Natural Gas Geoscience, 2010, 21(2): 212-217.
    [18] 靳宁,李安春,刘海志,等. 帕里西维拉海盆西北部表层沉积物中粘土矿物的分布特征及物源分析[J]. 海洋与湖沼,2007,38(6):504-511.

    Jin Ning, Li Anchun, Liu Haizhi, et al. Clay minerals in surface sediment of the northwest Parece Vela Basin: Distribution and provenance[J]. Oceanologia et Limnologia Sinica, 2007, 38(6): 504-511.
    [19] 杨作升. 黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系[J]. 海洋与湖沼,1988,19(4):336-346.

    Yang Zuosheng. Mineralogical assemblages and chemical characteristics of clays from sediments of the Huanghe, Changjiang, Zhujiang rivers and their relationship to the climate environment in their sediment source areas[J]. Oceanologia et Limnologia Sinica, 1988, 19(4): 336-346.
    [20] 党玉琪,胡勇,余辉龙,等. 柴达木盆地北缘石油地质[M]. 北京:地质出版社,2003:45-78.

    Dang Yuqi, Hu Yong, Yu Huilong, et al. Petroleum geology in the northern margin of Qaidam Basin[M]. Beijing: Geological Publishing House, 2003: 45-78.
    [21] 王峰,刘玄春,邓秀芹,等. 鄂尔多斯盆地纸坊组微量元素地球化学特征及沉积环境指示意义[J]. 沉积学报,2017,35(6):1265-1273.

    Wang Feng, Liu Xuanchun, Deng Xiuqin, et al. Geochemical characteristics and environmental implications of trace elements of Zhifang Formation in Ordos Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1265-1273.
    [22] 孙国强,陈波,郑永仙,等. 柴北缘冷湖五号构造中新统成岩作用及沉积环境[J]. 天然气地球科学,2015,26(4):679-688.

    Sun Guoqiang, Chen Bo, Zheng Yongxian, et al. Diagenesis and sedimentary environment of Miocene in Lenghu Ⅴ tectonic belt[J]. Natural Gas Geoscience, 2015, 26(4): 679-688.
    [23] 孙国强,吕婧文,赵明君,等. 柴达木盆地鄂博梁Ⅲ号中新统成岩作用及沉积环境[J]. 沉积学报,2015,33(2):337-347.

    Sun Guoqiang, Jingwen Lü, Zhao Mingjun, et al. Diagenesis and sedimentary environment of Miocene series in Eboliang III area[J]. Acta Sedimentologica Sinica, 2015, 33(2): 337-347.
    [24] 隆浩,王晨华,刘勇平,等. 粘土矿物在过去环境变化研究中的应用[J]. 盐湖研究,2007,15(2):21-25,29.

    Long Hao, Wang Chenhua, Liu Yongping, et al. Application of clay minerals in paleoenviroment research[J]. Journal of Salt Lake Research, 2007, 15(2): 21-25, 29.
    [25] Cox R, Lowe D R, Cullers R L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 1995, 59(14): 2919-2940.
    [26] 金章东. 湖泊沉积物的矿物组成、成因、环境指示及研究进展[J]. 地球科学与环境学报,2011,33(1):34-44,77.

    Jin Zhangdong. Composition, origin and environmental interpretation of minerals in lake sediments and recent progress[J]. Journal of Earth Sciences and Environment, 2011, 33(1): 34-34, 77.
    [27] 钟巍,方小敏,李吉均,等. 近7.0-0.73MaB.P期间甘肃临夏盆地古气候演变的沉积物地球化学记录[J]. 干旱区资源与环境,1998,12(1):36-43.

    Zhong Wei, Fang Xiaomin, Li Jijun, et al. The geochemical record of paleoclimate during about 7.0Ma-0.73Ma in Linxia Basin, Gansu province[J]. Journal of Arid Land Resources and Environment, 1998, 12(1): 36-43.
    [28] 匡少平,徐仲,张书圣,等. 运用地球化学方法研究中、新生代环境气候演替:兼论四川盆地侏罗纪气候变化[J]. 青岛化工学院学报,2002,23(1):4-9.

    Kuang Shaoping, Xu Zhong, Zhang Shusheng, et al. Applying geochemistry to research into Meso-Cenozoic climate: Discussion on Jurassic climatic change in Sichuan Basin, China[J]. Journal of Qingdao Institute of Chemical Technology, 2002, 23(1): 4-9.
    [29] 宋明水. 东营凹陷南斜坡沙四段沉积环境的地球化学特征[J]. 矿物岩石,2005,25(1):67-73.

    Song Mingshui. Sedimentary environment geochemistry in the Shasi section of southern ramp, Dongying Depression[J]. Journal of Mineralogy and Petrology, 2005, 25(1): 67-73.
    [30] 马宝林,王琪. 青海湖现代沉积物的元素分布特征[J]. 沉积学报,1997,15(3):120-125.

    Ma Baolin, Wang Qi. Distribution characteristics of elements in modern sediments of Qinghai Lake[J]. Acta Sedimentologica Sinica, 1997, 15(3): 120-125.
    [31] 袁宝印,陈克造,Bowler J M,等. 青海湖的形成与演化趋势[J]. 第四纪研究,1990(3):233-243.

    Yuan Baoyin, Chen Kezao, Bowler J M, et al. The formation and evolution of the Qinghai Lake[J]. Quaternary Sciences, 1990(3): 233-243.
    [32] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-314.

    Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment: Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-314.
    [33] Gromet L P, Haskin L A, Korotev R L, et al. The “North American shale composite”: Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48(12): 2469-2482.
    [34] 王自强,尹崇玉,高林志,等. 黔南—桂北地区南华系化学地层特征[J]. 地球学报,2009,30(4):465-474.

    Wang Ziqiang, Yin Chongyu, Gao Linzhi, et al. Chemostratigraphic characteristics of the Nanhua system in southern Guizhou-northern Guangxi area[J]. Acta Geoscientia Sinica, 2009, 30(4): 465-474.
    [35] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [36] 杨守业,李从先. REE示踪沉积物物源研究进展[J]. 地球科学进展,1999,14(2):164-167.

    Yang Shouye, Li Congxian. Research progress in REE tracer for sediment source[J]. Advances in Earth Science, 1999, 14(2): 164-167.
    [37] 史基安,郭雪莲,王琪,等. 青海湖QH1孔晚全新世沉积物稀土元素地球化学与气候环境关系探讨[J]. 湖泊科学,2003,15(1):28-34.

    Shi Ji’an, Guo Xuelian, Wang Qi, et al. Geochemistry of REE in QH1 sediments of Qinghai Lake since Late Holocene and its paleoclimatic significance[J]. Journal of Lake Sciences, 2003, 15(1): 28-34.
    [38] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publication, 1985.
    [39] 常华进,储雪蕾,冯连君,等. 氧化还原敏感微量元素对古海洋沉积环境的指示意义[J]. 地质论评,2009,55(1):91-99.

    Chang Huajin, Chu Xuelei, Feng Lianjun, et al. Redox sensitive trace elements as paleoenvironments proxies[J]. Geological Review, 2009, 55(1): 91-99.
    [40] Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283.
    [41] Haskin L A, Frey F A. Dispersed and not-so-rare earths[J]. Science, 1966, 152(3720): 299-314.
    [42] Cullers R L, Basu A, Suttner L J. Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A.[J]. Chemical Geology, 1988, 70(4): 335-348.
    [43] Bhatia M R. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: Provenance and tectonic control[J]. Sedimentary Geology, 1985, 45(1/2): 97-113.
    [44] Bhatia M R. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 1983, 91(6): 611-627.
    [45] Bhatia M R, Crook K A W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 181-193.
    [46] Grunsky E, Massey N. Using geochemical data: Evaluation, presentation, interpretation[J]. Geochimica et Cosmochimica Acta, 1994, 59(3): 439-441.
    [47] 常吟善,赵洪,覃军,等. 古近纪气候变化在东海盆地内的化石记录[J]. 沉积学报,2019,37(2):320-329.

    Chang Yinshan, Zhao Hong, Qin Jun, et al. Sedimentary response to paleoclimate change in the East China Sea shelf basin[J]. Acta Sedimentologica Sinica, 2019, 37(2): 320-329.
    [48] 拓守廷,刘志飞. 始新世—渐新世界线的全球气候事件:从“温室”到“冰室”[J]. 地球科学进展,2003,18(5):691-696.

    Shouting Tuo, Liu Zhifei. Global climate event at the Eocene-Oligocene transition: From greenhouse to icehouse[J]. Advance in Earth Sciences, 2003, 18(5): 691-696.
    [49] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
    [50] Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5752): 1293-1298.
    [51] DeConto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003, 421(6920): 245-249.
    [52] Royden L H, Burchfiel B C, Van Der Hilst R D. The geological evolution of the Tibetan plateau[J]. Science, 2008, 321(5892): 1054-1058.
    [53] 李俊武,代廷勇,李凤杰,等. 柴达木盆地鄂博梁地区古近系沉积物源方向分析[J]. 沉积学报,2015,33(4):649-658.

    Li Junwu, Dai Tingyong, Li Fengjie, et al. Provenance analysis of the Palaeogene in Eboliang area of Qaidam Basin[J]. Acta sedimentologica Sinica, 2015, 33(4): 649-658.
    [54] 陈迎宾. 柴达木盆地北缘构造发育特征及其对油气成藏的控制[D]. 北京:中国地质大学(北京),2010.

    Chen Yingbin. Tectonic developmental feature and its control for hydrocarbon accumulation in northern margin of Qaidam Basin[D]. Beijing: China University of Geosciences (Beijing), 2010.
    [55] 刘伟明,孙国强,郭佳佳,等. 柴北缘西段古近纪物源体系分析[J]. 沉积与特提斯地质,2018,38(1):53-61.

    Liu Weiming, Sun Guoqiang, Guo Jiajia, et al. Provenance analysis of the Palaeogene clastic rocks in the western part of northern Qaidam Basin[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(1): 53-61.
    [56] 王波,周飞,石正灏,等. 柴北缘冷湖构造带古近系沉积体系及演化特征[J]. 地质与资源,2019,28(6):543-552.

    Wang Bo, Zhou Fei, Shi Zhenghao, et al. The Paleogene sedimentary system and evolution characteristics of Lenghu structural belt in northern Qaidam Basin[J]. Geology and Resources, 2019, 28(6): 543-552.
    [57] 赵凡,孙德强,闫存凤,等. 柴达木盆地中新生代构造演化及其与油气成藏关系[J]. 天然气地球科学,2013,24(5):940-947.

    Zhao Fan, Sun Deqiang, Yan Cunfeng, et al. Meso-Cenozoic tectonic evolution of Qaidam Basin and its relationship with oil and gas accumulation[J]. Natural Gas Geoscience, 2013, 24(5): 940-947.
    [58] 周建勋,徐凤银,胡勇. 柴达木盆地北缘中、新生代构造变形及其对油气成藏的控制[J]. 石油学报,2003,24(1):19-24.

    Zhou Jianxun, Xu Fengyin, Hu Yong. Mesozoic and Cenozoic tectonism and its control on hydrocarbon accumulation in the northern Qaidam Basin of China[J]. Acta Petrolei Sinica, 2003, 24(1): 19-24.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article Metrics

Article views(388) PDF downloads(112) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-11-25
  • Revised:  2021-01-18
  • Published:  2021-10-10

Analysis of Paleoclimate and Source of the Upper Section, Lower Ganchaigou Formation, Lenghu No. 7 Region, North Qaidam Basin

doi: 10.14027/j.issn.1000-0550.2021.013
Funds:

National Natural Science Foundation of China 41872145

Talent Training Plan of "light of the west" of Chinese Academy of Sciences Y304RC1SGQ

Natural Science Foundation of Gansu Province 17JR5RA293

Key Laboratory Project of Gansu Province 1309RTSA041

Cultivation Project Jointly funded by Guangxi Natural Science Foundation 2019GXNSFAA245016

Abstract: Core samples from this area were analyzed for major elements and REE content, combined with observation of drilling core, thin section identification and scanning electron microscope (SEM) imaging to clarify paleoclimate evolution history and tectonic background of the source. Analysis of clay minerals in sandstone in the Lenghu No. 7 region showed mainly an authigenic source with higher illite, high mixed layer of illite/smectite, chlorite, low montmorillonite and no kaolinite. Major element analysis found large changes in oxide content, and high overall Na+ and K+ and low Mg/Ca, TiO2, Al2O3/MgO, indicating relatively frequent changes in a cold, alkaline environment. The compositional variation index (ICV) is >1 or close to 1, evidence that sediment recycling has had little effect on sediment composition, and maturity is low. The chemical alteration index (CIA) is mainly 50-65 (average 58), indicating that the upper section experienced weak chemical weathering in a cold, dry climate. Three fluctuations occurred in the paleoclimate, with some warm, humid gaps, possibly due to increased tectonic activity around the basin. A somewhat steep La-Sm curve and a gentler Dy-Lu curve indicate enriched LREE and depleted HREE. The shapes of the LREE curves in the La-Eu and Gd-Lu sections indicate greater fractionation of LREEs than HREEs. An obvious V-shaped negative Eu anomaly (δEu 0.62-0.82, average 0.72) and small negative Ce anomaly (δCe 0.85-0.94, average 0.90) indicate a relatively consistent stable provenance typical of sedimentary rocks. The normalized REE distribution pattern of North American shale (NASC) is generally enriched (La/Yb)N in the range 1.14-1.63, and δCe in the range 0.86-0.95, which tends to be a negative anomaly, reflecting an oxidizing paleosedimentary environment. Characteristic K2O/Na2O-SiO2, La-Th-Sc and La/Yb-ΣREE discrimination diagrams signify a stable tectonic regional environment, mainly of active continental margin/continental island arc systems. The source rocks are mainly sedimentary rocks and granites. Global sea levels slowly lowered from the Middle Eocene to the Early Oligocene; the Antarctic continent formed a permanent ice sheet in gradual cooling conditions. Warming in the late Oligocene began to melt the ice sheet; global tectonic movement increased. The reduction of CO2 due to weathering of the newly exposed rock lowered global temperatures. The Tibetan Plateau continued to rise, uplifting the Kunlun-Altun-Qilian Mountains, and the northern margin of the Qaidam Basin closed and became dry. The dry, cold climate in the study area is consistent with global climate indicators. The sediment source at the northern margin of the Qaidam Basin was mainly controlled by the Altun and Qilian Mountains, producing multi-provenance and multi-regional sources. The Lenghu No. 7 structural belt was affected by multi-stage tectonic movements in the Mesozoic and Cenozoic. Differential uplift and regional denudation in the late Yanshan movement caused an overall dip to the southwest. The study revealed that the orogenic belt in the eastern part of the study area was the main clastic source region. In the Early Cenozoic Himalayan (Paleogene-Early Pliocene), regional compression and tectonic movement was weak, resulting in long-term stability of the northern margin of the Qaidam Basin.

PAN ShiLe, JIANG Yun, KANG Jian, CHEN Bo, ZHANG ShunCun, SUN GuoQiang. Analysis of Paleoclimate and Source of the Upper Section, Lower Ganchaigou Formation, Lenghu No. 7 Region, North Qaidam Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1292-1304. doi: 10.14027/j.issn.1000-0550.2021.013
Citation: PAN ShiLe, JIANG Yun, KANG Jian, CHEN Bo, ZHANG ShunCun, SUN GuoQiang. Analysis of Paleoclimate and Source of the Upper Section, Lower Ganchaigou Formation, Lenghu No. 7 Region, North Qaidam Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1292-1304. doi: 10.14027/j.issn.1000-0550.2021.013
  • 差异性环境条件对不同元素在分解和迁移过程中的行为有不同的影响,从而导致元素浓度在不同环境条件下产生分异,因此,沉积物中元素含量的变化可以反映沉积期间环境条件的变化[1-4]。冷湖七号位于柴达木盆地北缘腹部,生储盖条件优越、油气资源丰富[5],前人在冷湖七号地区主要开展了构造演化[6]、沉积环境[1]、储层特征[7-8]及成藏规律[9-10]等方面的研究,目前对其古气候及源—汇系统的研究较少,且缺乏统一的认识[11-12]。古气候及源—汇系统制约着油气成藏的条件、过程和模式[13-14],但开放的古气候条件[15-16]和多种潜在的物源区,为深入研究带来了很大的困难。本文在前人研究的基础上,通过对冷湖七号下干柴沟组上段钻井岩心的精细分析,结合岩心样品的岩性、黏土矿物组合规律及元素地球化学特征,对冷湖七号下干柴沟组上段沉积时期的古气候条件、风化过程及源区构造背景等进行了详细研究,以期为后续的油气勘探提供依据。

  • 柴达木盆地是我国西部一个大型的中—新生代陆相含油气盆地,盆地面积约1.2×105 km2[17],在整个新生代经历挤压构造环境,西南部为东昆仑断裂带,东北部为南祁连断裂带,西北部为阿尔金断裂带[18]。古湖盆从古近纪到新近纪经历了三个演化阶段:湖盆最早出现在古新世和始新世早期,从始新世晚期到渐新世不断扩张,并在渐新世阶段沉降达到最大程度,随后在早中新世到上新世逐渐缩小[19]

    冷湖七号位于柴北缘冷湖构造带东南段,是冷湖构造带中规模最大的背斜构造,北靠赛什腾凹陷,南邻一里坪凹陷[20]图1)。古近系下干柴沟组上段( E 3 2 )上部为灰白色和青灰色中砂岩、细砂岩,下部为棕红色泥质粉砂岩。砂岩主要以长石岩屑砂岩为主,其次为岩屑长石砂岩,孔隙较发育,多为原生粒间孔,局部可见溶蚀孔,填隙物为方解石。砂岩中发育楔状、波状及平行层理,底部常见冲刷面(图2)。

    Figure 1.  Structural location of Lenghu No. 7 region at the northern margin of the Qaidam Basin

    Figure 2.  Comprehensive sedimentary facies diagram of the Lower Ganchaigou Formation in Lenghu No. 7 region

  • 为明确冷湖七号下干柴沟组上段( E 3 2 )储层的古气候及源区构造背景,重点对仙西1井进行了样品采集(图2),并且尽量选择成岩作用相对较弱的样品,在最大程度上减少机械分异对岩石成分的影响[21]。扫描电镜依据SY/T 5162—2014《岩石样品扫描电子显微镜分析方法》和SY/T 6189—2010《岩石矿物能谱定量分析方法》,利用ZEISS EVO-18扫描电子显微镜进行实验观察。主量元素和稀土元素实验分析时先将岩石样品用清水冲洗、烘干,初步研磨后去除样品中的粗碎屑颗粒,再将其中的细颗粒破碎[22-23]。主量元素测定采用日本理学公司生产的X射线荧光光谱仪3080E3X,首先将样品粉碎成200目左右,压饼后上机测试;稀土元素测试样品用无污染碎样机研磨,并且过200目筛,之后将样品在烤箱上烘烤样品3小时左右去除水分,以便准确称重,之后用HF+HNO3密封溶解样品并用激光耦合等离子体质谱ICP-MS进行分析测试。样品测试在甘肃省油气资源研究重点实验室完成。

  • 黏土矿物晶粒微小,成分、结构易发生转变,对古气候的变化非常敏感。因此,黏土矿物沉积分异、组合类型及其含量变化、微细结构等特征对古气候有重要的指示意义[24]。成分成熟度低的碎屑岩富含蒙脱石、伊利石等黏土矿物,或者含有较高比例的非黏土矿物;而成分成熟度高的碎屑岩黏土矿物则以高岭石为主[25]。并且伊利石、蒙脱石是弱碱性、干燥环境指示矿物;而高岭石的存在指示矿物曾经历了温暖潮湿环境下的弱酸性、强化学风化作用[26]

    冷湖七号下干柴沟组上段砂岩中黏土矿物以伊利石为主,含少量伊蒙混层和绿泥石。伊利石多呈丝状或搭桥状充填在颗粒之间,伊蒙混层常见于颗粒表面或充填在颗粒之间(图3),说明砂岩中黏土矿物主要以自生为主,其组合特征是沉积时期气候、沉积环境及成岩环境等条件共同作用的结果。在扫描电镜下对样品的黏土矿物大致做了估算,伊利石、伊蒙混层和绿泥石相对占比分别为55%、25%和20%,黏土矿物组合呈高伊利石、较高伊蒙混层和绿泥石矿物含量、少蒙脱石,缺失高岭石的分布特点(图3),反映出冷湖七号下干柴沟组上段处于干旱的碱性环境,化学风化作用较弱,沉积物成分成熟度较低。

    Figure 3.  SEM images of sandstone from the upper section of the Lower Ganchaigou Formation, Lenghu No. 7 region

  • 主量元素中常见的氧化物对古环境反映较为敏感,具有明显的古气候指示意义[27-28]。冷湖七号下干柴沟组上段氧化物含量变化较大(表1),说明在沉积时期环境变化相对频繁。一般Mg/Ca比值高指示干旱气候,低值反映潮湿气候,但出现碱层时该比值不但不是高值,反而呈现低值,即当钠盐、钾盐等易溶性盐类不参与沉淀时,Mg/Ca比的高值指示干热气候,而当它们参与沉淀时,其低值和K+,Na+的相对高值共同指示干热气候[29]。Ti元素含量的变化反映的是陆源物质加入的程度,该值愈高则表明陆源物含量愈丰富,表明了一种温暖潮湿的气候背景[30-31]。黏土矿物的中Al2O3/MgO的大小也可反映沉积过程中的古气候,其值越大,表明水体淡化,反映温湿气候;值越小,则表明干旱气候[32]

    层位 深度/m 岩性 SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MgO/CaO Al2O3/MgO ICV CIA
    下 干 柴 沟 组 上 段 4 111.49 深灰色中砂岩 79.75 7.90 2.26 0.51 1.97 2.15 1.66 0.09 0.26 15.49 1.09 57.75
    4 111.64 深灰色细砂岩 76.77 8.88 3.13 0.77 2.47 2.00 1.80 0.13 0.31 11.53 1.16 58.61
    4 112.24 红褐色含泥砾细砂岩 64.37 16.69 5.90 2.98 0.54 1.52 4.05 0.32 5.52 5.60 0.92 73.20
    4 113.54 深灰色细砂岩 68.64 10.07 2.96 1.05 5.18 2.04 2.03 0.24 0.20 9.59 1.34 52.12
    4 114.04 灰白色含泥砾中砂岩 68.78 9.68 2.76 0.98 6.87 1.93 1.94 0.26 0.14 9.88 1.52 47.40
    4 114.50 灰白色含泥砾中砂岩 71.18 11.99 3.49 1.39 3.15 1.86 2.53 0.26 0.44 8.63 1.06 61.39
    4 115.44 灰白色中砂岩 80.38 7.91 2.05 0.44 2.01 2.19 1.76 0.08 0.22 17.98 1.08 57.03
    4 116.24 灰白色粗砂岩 78.63 7.08 1.70 0.31 2.31 2.15 1.61 0.08 0.13 22.84 1.15 53.84
    4 116.99 灰白色含泥砾中砂岩 57.87 15.37 6.25 2.87 4.53 1.60 3.46 0.44 0.63 5.36 1.25 61.58
    4 207.82 灰白色含砾粗砂岩 80.26 7.00 1.99 0.44 2.81 1.85 1.65 0.07 0.16 15.91 1.26 52.59
    4 208.57 青灰色中砂岩 76.69 9.18 2.52 1.04 2.76 1.81 2.05 0.15 0.38 8.83 1.13 58.10
    4 209.32 青灰色粉砂岩 57.29 21.02 5.77 5.31 0.56 1.19 4.75 0.46 9.48 3.96 0.86 76.38
    4 209.92 灰白色中粗砂岩 76.24 6.74 1.79 0.43 5.04 1.91 1.74 0.06 0.09 15.67 1.63 43.68
    4 210.32 灰白色中粗砂岩 79.97 6.25 2.04 0.41 3.47 1.81 1.57 0.09 0.12 15.24 1.50 47.71
    4 210.92 灰白色粗砂岩 78.51 8.92 2.43 0.85 2.06 1.92 2.10 0.10 0.41 10.49 1.06 59.47
    4 211.32 灰白色中粗砂岩 77.88 6.80 1.96 0.42 4.04 1.76 1.74 0.08 0.10 16.19 1.47 47.42
    4 211.87 灰白色粗砂岩 78.89 7.67 2.12 0.62 3.11 1.80 1.89 0.08 0.20 12.37 1.25 53.00
    4 212.22 灰白色泥砾中砂岩 65.22 16.72 4.44 3.47 1.56 1.23 4.05 0.35 2.22 4.82 0.90 70.97
    4 212.82 青灰色砾质中砂岩 71.54 12.99 3.24 1.99 2.26 1.88 2.93 0.17 0.88 6.53 0.96 64.76
    4 213.22 灰白色含砾粗砂岩 81.92 6.74 1.93 0.36 2.14 2.08 1.68 0.08 0.17 18.72 1.23 53.32
    4 213.82 灰白色含砾粗砂岩 74.64 7.22 2.20 0.57 3.43 1.98 1.70 0.08 0.17 12.67 1.38 50.38
    4 214.02 青灰色中砂岩 69.52 13.51 4.12 2.69 1.84 2.05 2.39 0.27 1.46 5.02 0.99 68.27
    4 215.02 棕红色泥质粉砂岩 59.08 14.97 5.88 3.79 4.31 1.13 3.59 0.37 0.88 3.95 1.27 62.38
    4 215.42 棕红色泥质粉砂岩 57.05 11.51 4.10 2.42 9.70 1.48 2.24 0.39 0.25 4.76 1.77 46.17
    4 216.02 棕红色粉砂质泥岩 54.42 21.37 7.51 6.05 0.62 1.04 5.24 0.46 9.76 3.53 0.98 75.59
    平均值 71.42 10.97 3.38 1.69 3.15 1.77 2.49 0.21 1.38 10.62 1.21 58.12

    Table 1.  Major elements content (%), upper section of the Lower Ganchaigou Formation, Lenghu No. 7 region

    下干柴沟组上段样品中CaO、Na2O、K2O、MgO和TiO2的平均含量分别为3.15%、1.77%、2.49%、1.69%和0.21%(表1),通过和美国页岩[33]对比下干柴沟组上段主量元素表现为较高CaO、Na2O、K2O和较低MgO、TiO2的特征,冷湖七号下干柴沟组上段沉积时期K+,Na+含量较高,说明其参与了沉淀,所以可以利用其高含量和Mg/Ca的低值来判别古气候,即古气候较为寒冷干旱,这与黏土矿物反应的气候特征一致。Ti元素和Al2O3/MgO比值也指示了同样的结果。

  • 气候条件控制着沉积物(岩)的化学风化程度,构造背景则控制着源岩的剥蚀和供应程度[34]。通常采用化学蚀变指数(CIA)来确定物源区的化学风化程度:CIA值介于50~65,反映寒冷干燥条件下的弱化学风化程度;CIA值介于65~85,反映温暖湿润条件下的中等化学风化程度;CIA值介于85~100,反映炎热潮湿条件下的强化学风化程度[35]。成分变异指数(ICV)可以用来估计碎屑岩的原始成分变化,判断岩石序列是代表第一次沉积还是源于再循环的沉积物:ICV越高,其代表的成分成熟度越低,即ICV大于1,表明沉积物中含有很少的黏土矿物,反映是在活动的构造带首次沉积;ICV小于1,则表明沉积物中有大量的黏土矿物,代表可能经历了再沉积或强化学风化条件下的首次沉积[25]

    表1图4显示出冷湖七号下干柴沟组上段的CIA和ICV指数具有明显的规律性,而且存在着三次突变,每次突变均是物源区构造活动或古气候变迁的响应:1)ICV值主要集中于1~1.5,平均值为1.2,意味着样品受沉积再循环作用的影响较小,成分成熟度较低;CIA值主要集中于50~65,平均值为58,表明研究区下干柴沟组上段处于寒冷干燥气候条件下的弱化学风化程度的沉积环境。2)CIA和ICV指数较为集中,局部存在着间断性变化,说明物源区整体构造相对稳定。3)下干柴沟组上段下部到中部CIA指数减小,ICV指数增大,反映了物源区化学风化作用减弱,沉积物的成熟度降低;中部到上部CIA指数增大,ICV指数减小,表明源区化学风化作用相对增强,沉积物成熟度升高,在碎屑矿物上表现为砂岩中的长石、云母含量也发生变化。4)下干柴沟组上段CIA和ICV 指数发生三次波动,每次波动对应着地层主色调的变化,指示着下干柴沟组上段蚀源区古气候波动较大,有一定程度的温暖湿润间隙,可能由盆地周缘造山带构造活动性加强所引起。

    Figure 4.  Variable trend map of ICV and CIA, upper section of the Lower Ganchaigou Formation, Lenghu No. 7 region

  • 稀土元素(REE)在风化、迁移、沉积和成岩过程中具有很强的稳定性,在水中的溶解度很低[36]。由于稀土元素的化学性质相似,它们通常在自然界中一起发现,并且在原子结构上仅表现出很小的差异,因此,稀土元素在不同的地质过程中显示出特征性的分馏模式[37]。沉积物或沉积岩中的稀土元素总量(∑REE)是陆地物质总量的一个指标,通常用作标准的平均页岩(PAAS)的∑REE为184.8×10-6[38],如果所分析的沉积物或沉积岩中的∑REE接近或高于该值时,说明沉积物或沉积岩中的微量元素主要由陆源碎屑提供;当∑REE远低于这个值,说明它受陆相物质的影响较小[39-40],所测样品稀土元素总量大部分低于PAAS值(表2),表明样品中稀土元素主要是自生的,有一部分陆源碎屑物质的加入。

    层位 样号 深度/m La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE LREE HREE LREE/HREE 球粒陨石标准化 北美页岩标准化
    (La/Yb)N δEu δCe (La/Yb)N δEu δCe
    下 干 柴 沟 组 上 段 78 4 111.49 11.78 20.84 2.48 9.05 1.68 0.41 1.49 0.24 1.35 0.27 0.77 0.12 0.78 0.12 51.39 46.24 5.15 8.99 10.21 0.79 0.90 1.42 1.22 0.91
    79 4 111.64 15.21 25.79 3.03 10.97 2.11 0.51 1.86 0.30 1.75 0.35 1.04 0.16 1.05 0.16 64.30 57.62 6.68 8.63 9.80 0.78 0.89 1.37 1.20 0.90
    80 4 112.40 38.25 69.93 7.89 28.64 4.91 1.01 4.21 0.68 4.05 0.83 2.45 0.38 2.46 0.38 166.05 150.63 15.42 9.77 10.53 0.68 0.94 1.47 1.05 0.95
    82 4 114.04 23.41 43.86 5.39 20.09 3.82 0.78 3.48 0.56 3.20 0.63 1.81 0.28 1.80 0.28 109.39 97.35 12.04 8.08 8.78 0.65 0.92 1.22 1.00 0.93
    83 4 114.50 26.29 46.65 5.37 19.46 3.51 0.71 3.11 0.50 2.93 0.60 1.76 0.28 1.81 0.28 113.26 101.99 11.27 9.05 9.82 0.66 0.92 1.37 1.01 0.93
    85 4 115.44 11.47 20.82 2.45 9.22 1.70 0.42 1.48 0.24 1.37 0.27 0.78 0.12 0.79 0.12 51.25 46.07 5.18 8.89 9.75 0.80 0.92 1.36 1.23 0.93
    87 4 115.89 21.44 39.09 4.64 17.38 3.31 0.67 2.95 0.47 2.72 0.54 1.58 0.25 1.60 0.25 96.89 86.53 10.36 8.35 9.07 0.66 0.92 1.27 1.01 0.93
    88 4 116.24 9.34 17.95 2.13 8.14 1.53 0.38 1.38 0.23 1.29 0.26 0.73 0.11 0.73 0.11 44.31 39.47 4.84 8.16 8.70 0.80 0.94 1.21 1.23 0.95
    90 4 116.99 42.17 74.27 8.48 30.82 5.49 1.09 4.95 0.82 4.87 1.00 2.94 0.46 2.93 0.45 180.72 162.32 18.40 8.82 9.72 0.64 0.92 1.36 0.98 0.93
    91 4 207.82 12.92 23.08 2.84 10.29 1.90 0.42 1.68 0.27 1.54 0.30 0.88 0.14 0.89 0.14 57.28 51.45 5.82 8.83 9.87 0.72 0.89 1.38 1.10 0.90
    94 4 208.57 18.81 32.07 3.90 14.61 2.72 0.57 2.42 0.40 2.33 0.47 1.38 0.21 1.36 0.21 81.46 72.68 8.78 8.28 9.35 0.68 0.88 1.30 1.05 0.89
    96 4 209.32 48.05 92.59 11.19 41.93 8.41 1.67 7.87 1.30 7.55 1.49 4.21 0.63 3.94 0.60 231.44 203.85 27.59 7.39 8.25 0.63 0.94 1.15 0.97 0.95
    98 4 209.92 11.76 20.90 2.69 10.26 2.12 0.54 1.98 0.31 1.75 0.34 0.96 0.14 0.87 0.13 54.75 48.26 6.49 7.44 9.08 0.80 0.87 1.27 1.23 0.88
    99 4 210.32 11.00 18.67 2.43 9.24 1.76 0.41 1.61 0.26 1.50 0.30 0.86 0.14 0.86 0.13 49.18 43.51 5.67 7.67 8.61 0.74 0.85 1.20 1.14 0.86
    101 4 210.92 17.01 27.20 3.10 11.15 1.96 0.46 1.77 0.29 1.77 0.36 1.10 0.18 1.15 0.18 67.69 60.89 6.81 8.95 9.99 0.75 0.88 1.39 1.15 0.89
    102 4 211.32 11.97 20.10 2.58 9.55 1.90 0.47 1.70 0.27 1.58 0.32 0.93 0.14 0.92 0.14 52.58 46.57 6.01 7.75 8.75 0.80 0.85 1.22 1.23 0.86
    103 4 211.87 14.07 23.81 3.05 11.33 2.11 0.53 1.86 0.30 1.68 0.33 0.96 0.15 0.94 0.14 61.25 54.90 6.36 8.64 10.11 0.82 0.85 1.41 1.26 0.86
    104 4 212.22 47.06 73.29 8.11 26.50 4.40 0.90 3.86 0.65 4.05 0.86 2.61 0.42 2.73 0.42 175.87 160.25 15.62 10.26 11.66 0.67 0.88 1.63 1.03 0.89
    105 4 212.82 26.29 43.35 4.93 17.38 3.26 0.72 2.89 0.48 2.88 0.59 1.76 0.27 1.76 0.27 106.83 95.92 10.91 8.80 10.09 0.72 0.89 1.41 1.11 0.90
    106 4 213.22 10.88 19.54 2.35 8.76 1.68 0.38 1.55 0.25 1.48 0.30 0.89 0.14 0.90 0.14 49.26 43.60 5.66 7.70 8.15 0.72 0.91 1.14 1.11 0.92
    107 4 213.82 12.59 22.05 2.64 9.82 1.87 0.45 1.68 0.27 1.57 0.31 0.90 0.14 0.89 0.14 55.31 49.42 5.89 8.39 9.61 0.77 0.90 1.34 1.18 0.91
    108 4 214.02 26.42 44.78 5.04 17.84 3.30 0.68 2.93 0.49 2.97 0.62 1.88 0.30 1.93 0.30 109.47 98.06 11.41 8.60 9.27 0.67 0.91 1.29 1.03 0.92
    111 4 215.02 36.00 71.57 8.88 32.36 6.28 1.26 5.58 0.88 4.94 0.98 2.82 0.44 2.82 0.44 175.25 156.35 18.90 8.27 8.61 0.65 0.94 1.20 1.00 0.95
    112 4 215.42 33.68 65.09 8.20 30.54 5.81 1.09 5.02 0.79 4.43 0.87 2.47 0.39 2.49 0.39 161.26 144.41 16.85 8.57 9.12 0.62 0.92 1.27 0.95 0.93
    平均值 22.41 39.89 4.74 17.31 3.23 0.69 2.89 0.47 2.73 0.55 1.60 0.25 1.60 0.25 98.60 88.26 10.34 8.51 9.45 0.72 0.90 1.32 1.10 0.91

    Table 2.  Rare earth elements content (×10–6), upper section of the Lower Ganchaigou Formation in Lenghu No. 7 region

    研究区下干柴沟组上段稀土元素∑REE介于44.31×10-6~231.44×10-6,HREE介于4.84×10-6~25.79×10-6,LREE介于39.47×10-6~203.85×10-6,LREE/HREE介于7.39~10.26,平均值为8.51,(La/Yb)N(球粒陨石)集中在8.15~11.66,平均值为9.45(表2),上述结果显示研究区轻、重稀土元素分异明显,轻稀土元素富集而重稀土元素亏损。

    球粒陨石标准化[38]的稀土元素配分模式图显示研究区样品的稀土元素配分模式基本类似,并具有如下特点(图5a):La~Sm曲线略陡,Dy~Lu曲线较为平缓,说明轻稀土元素富集、重稀土元素亏损;La-Eu段轻稀土元素表现为明显“右倾”,Gd-Lu段重稀土元素配分曲线斜率较小,说明轻稀土元素分馏程度较高,重稀土元素分馏程度较低;Eu处出现一个“V”形,存在明显Eu负异常(δEu介于0.62~0.82,平均值为0.72),Ce处为轻微负异常(δCe介于0.85~0.94,平均值为0.90),说明物源较为一致,物源区相对稳定。这些特点体现了典型沉积岩的稀土配分特征,其物源可能属于亲上地壳长英质岩石(如中酸性侵入岩、长英质变质岩)的源区,而且与活动大陆边缘和大陆岛弧物源区沉积岩的稀土配分模式较为相似。

    Figure 5.  Chondrite and NASC-normalized REE patterns of the upper section of the Lower Ganchaigou Formation, Lenghu No. 7 region

    北美页岩(NASC)标准化[41]的稀土元素配分模式图显示轻稀土元素LREE整体较为富集[(La/Yb)N集中在1.14~1.63](图5b),其中δCe集中在0.86~0.95间(表2),趋于负异常,反映古沉积环境为氧化环境。

  • 风化、成岩及蚀变作用对稀土元素的组成影响很小,因此稀土元素分布特征可以用来恢复母岩的性质,对物源区岩石地球化学特征和构造环境有很大的示踪意义[42]。无论是砾岩、砂岩和泥岩都经常采用标准化后的稀土元素数据来判断母岩的性质。Bhatia[43]归纳总结了不同构造背景下杂砂岩REE特征值和模式曲线特征,认为从次稳定的被动边缘到非稳定的大洋岛弧区,∑REE、LREE/HREE、La/Yb值明显降低。La-Th-Sc、Th-Co-Hf/10和K2O/Na2O-SiO2等图解可以进行源区构造环境的判别[44-46]。并且La/Yb与ΣREE含量的变化关系可以反映某些岩石大类的成因特征[43]

    Bhatia[43]将4种不同构造环境稀土元素特征进行了分类。大洋岛弧源区类型为未切割的岩浆弧,稀土元素总量底,轻稀土元素弱富集以及基本无Eu负异常;大陆岛弧源区类型为切割的岩浆弧,稀土元素总量较高,轻稀土元素中等富集以及弱的Eu异常;活动大陆边缘和被动大陆边缘源区类型分别为上隆的基底及克拉通内部构造高地,且具有稀土元素总量高、轻稀土元素富集以及较为明显的Eu负异常。研究区下干柴沟组上段碎屑岩的稀土元素分析数据显示稀土元素总量较高、轻稀土元素富集以及较为明显的Eu负异常(表2图5a),且元素特征值与活动大陆边缘和大陆岛弧背景下的稀土元素特征值最为相似(表3),表明物源区主要为活动大陆边缘和大陆岛弧的构造环境。

    构造背景 源区类型 REE参数
    La/10-6 Ce/10-6 ∑REE/10-6 La/Yb (La/Yb)N LREE/HREE δEu
    大洋岛弧 未切割的岩浆弧 8±1.7 19±3.7 58±10 4.2±1.3 2.8±0.9 3.8±0.9 1.04±0.11
    大陆岛弧 切割岩浆弧 27±4.5 59±8.2 146±20 11.0±3.6 7.5±2.5 7.7±1.7 0.79±0.13
    活动大陆边缘 上隆的基底 37 78 186 12.5 8.5 9.1 0.60
    被动大陆边缘 克拉通内部构造高地 39 85 210 15.9 10.8 8.5 0.56
    仙西1井下干柴沟组上段 22.41 39.89 98.60 14.0 8.51 9.45 0.72

    Table 3.  REE values for different tectonic settings

    La-Th-Sc图解显示研究区大部分数据点落在活动大陆边缘和被动大陆边缘的区域内,一部分落在大陆岛弧的范围内,说明物源区长期处于大陆边缘和大陆岛弧的构造环境(图6a)。球粒陨石标准化的稀土元素配分曲线与典型构造背景对比分析,下干柴沟组上段REE分布曲线特征显示其物源具有活动大陆边缘和大陆岛弧构造背景的亲和性(图6c),K2O/Na2O-SiO2判别图解也同样显示物源区构造背景以活动陆缘和大陆岛弧为主(图6b)。利用La/Yb-∑REE源岩属性判别图解,对研究区源岩属性进行了研究,在La/Yb-∑REE图解中,样品大部分落入沉积岩范围内,少量落在花岗岩与沉积岩重叠区,说明冷湖七号下干柴沟组上段源岩类型主要为沉积岩,并混合有少量的花岗岩(图6d)。

    Figure 6.  Tectonic setting discrimination diagrams, upper section of the Lower Ganchaigou Formation, Lenghu No. 7 region

  • 中始新世到早渐新世全球海平面缓慢下降,南极大陆形成永久性冰盖,是一个长期渐进的变冷过程,直到晚渐新世气候再次变暖时,永久冰盖开始消融[47-50];同时期全球构造运动增加,新鲜岩体风化消耗大量CO2使得全球温度降低[51];青藏高原不断隆升[52],使得昆仑—阿尔金—祁连山不断抬升,柴达木盆地北缘变得封闭干旱。这些信息均指示着晚始新世到早渐新世全球气候进入了寒冷干燥时期。根据主量元素以及黏土矿物特征表明冷湖七号下干柴沟组上段气候整体干、冷的特征,与全球和区域气候相符;并且在这一期间,全球气候进入了短暂的回暖期,冷湖七号沉积期间古气候有一定的温暖湿润间隙,正是这一气候现象的反应。

    柴北缘沉积物源体系主要受到阿尔金山和祁连山两大主力物源的控制[53],物源供给呈现出多物源、多区域分布的特征。冷湖七号构造带在中、新生代受到多期次构造运动影响,燕山运动晚期的差异抬升及区域剥蚀,使冷湖七号整体呈现向南西倾的斜坡形态[54],揭示了研究区东部的造山带为其主要碎屑源区。刘伟明等[55]通过古近系碎屑岩的碎屑组成、岩屑成分、重矿物组合特征和ZTR指数分析认为冷湖七号地区的物源主要来自于赛什腾山东段,碎屑组分以较高含量的石英和长石为主,母岩类型主要为碎屑岩和酸性岩浆岩,然而古河道的方向指示物源也可能来自于祁连南山的吐尔根达坂山和嗷唠山[56],因此仍需要作进一步的研究。新生代喜马拉雅早期(古近纪—上新世早期),区域挤压作用较弱,构造运动微弱,柴北缘长期处于稳定沉积状态[57-58],结合稀土元素构造判别结果,可以认为冷湖七号下干柴沟组上段物源区构造环境偏稳定,主要为活动大陆边缘—大陆岛弧的构造背景,沉积物源主要来自上地壳长英质源区,源岩类型主要为沉积岩和花岗岩。

  • (1) 黏土矿物分析结果显示冷湖七号砂岩中伊利石、伊蒙混层和绿泥石相对占比分别为55%、25%和20%,呈高伊利石、较高伊蒙混层和绿泥石、少蒙脱石,缺失高岭石的分布特点,反映出下干柴沟组上段整体处于干旱的碱性环境。

    (2) 主量元素分析结果表明氧化物含量变化较大,并且表现为高Na+、K+和低Mg/Ca、TiO2、Al2O3/MgO的特征,说明冷湖七号下干柴沟组上段沉积时期环境变化相对频繁,整体较为寒冷干旱。ICV指数意味着沉积再循环作用对沉积物成分的影响较小;CIA指数说明经历了寒冷干燥气候条件下的弱化学风化作用。

    (3) 球粒陨石标准化的REE配分模式图显示轻稀土元素富集而重稀土元素亏损,Eu处明显负异常,Ce处轻微负异常。稀土元素特征值、K2O/Na2O-SiO2、La-Th-Sc和La/Yb-∑REE判别图解说明冷湖七号下干柴沟组上段物源区构造环境偏稳定,主要为活动大陆边缘—大陆岛弧的构造背景,沉积物源主要来自上地壳长英质源区,物源区岩性主要为沉积岩和花岗岩。

Reference (58)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return