[1] |
Wolf K H. Gradational sedimentary products of calcareous algae[J]. Sedimentology, 1965, 5(1): 1-37. |
[2] |
Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162. |
[3] |
Webb G E, Kamber B S. Trace element geochemistry as a tool for interpreting microbialites[M]//Golding S D, Glikson M. Earliest life on earth: Habitats, environments and methods of detection. Dordrecht: Springer, 2011: 127-170. |
[4] |
Shen Y F, Neuweiler F. Questioning the microbial origin of automicrite in Ordovician calathid-demosponge carbonate mounds[J]. Sedimentology, 2018, 65(1): 303-333. |
[5] |
戴永定,陈孟莪,王尧. 微生物岩研究的发展与展望[J]. 地球科学进展,1996,11(2):209-215. |
Dai Yongding, Chen Meng’e, Wang Yao. Development and perspective of research for microbolites[J]. Advance in Earth Sciences, 1996, 11(2): 2019-215. |
[6] |
王永标,童金南,王家生,等. 华南二叠纪末大绝灭后的钙质微生物岩及古环境意义[J]. 科学通报,2005,50(6):552-558. |
Wang Yongbiao, Tong Jinnan, Wang Jiasheng, et al. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance[J]. Chinese Science Bulletin, 2005, 50(6): 552-558. |
[7] |
杨浩. 华南二叠纪末大绝灭后的钙质微生物岩及古环境研究[D]. 武汉:中国地质大学(武汉),2006:1-61. |
Yang Hao. Calcimicrobialites after end-Permian mass extinction in South China and its implication of paleo-environment[D]. Wuhan: China University of Geosciences (Wuhan), 2006: 1-61. |
[8] |
梅冥相. 微生物碳酸盐岩分类体系的修订:对灰岩成因结构分类体系的补充[J]. 地学前缘,2007,14(5):222-234. |
Mei Mingxiang. Revised classification of microbial carbonates: Complementing the classification of limestones[J]. Earth Science Frontiers, 2007, 14(5): 222-234. |
[9] |
刘建波,江崎洋一,杨守仁,等. 贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征[J]. 古地理学报,2007,9(5):473-486. |
Liu Jianbo, Yoichi E, Yang Shouren, et al. Age and sedimentology of microbialites after the end-Permian mass extinction in Luodian, Guizhou province[J]. Journal of Palaeogeography, 2007, 9(5): 473-486. |
[10] |
史晓颖,张传恒,蒋干清,等. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质,2008,22(5):669-682. |
Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, et al. Microbial mats from the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon-generation[J]. Geoscience, 2008, 22(5): 669-682. |
[11] |
韩作振,陈吉涛,迟乃杰,等. 微生物碳酸盐岩研究:回顾与展望[J]. 海洋地质与第四纪地质,2009,29(4):29-38. |
Han Zuozhen, Chen Jitao, Chi Naijie, et al. Microbial carbonates: A review and perspectives[J]. Marine Geology & Quaternary Geology, 2009, 29(4): 29-38. |
[12] |
王月,沈建伟,杨红强,等. 微生物碳酸盐沉积及其研究意义[J]. 地球科学进展,2011,26(10):1038-1049. |
Wang Yue, Shen Jianwei, Yang Hongqiang, et al. Microbial carbonates and its research significance[J]. Advances in Earth Sciences, 2011, 26(10): 1038-1049. |
[13] |
李朋威,金廷福,王果谦,等. 微生物碳酸盐岩及其油气勘探意义[J]. 地质科技情报,2013,32(3):66-74. |
Li Pengwei, Jin Tingfu, Wang Guoqian, et al. Microbial carbonates and their significance in the petroleum exploration[J]. Geological Science and Technology Information, 2013, 32(3): 66-74. |
[14] |
罗平,王石,李朋威,等. 微生物碳酸盐岩油气储层研究现状与展望[J]. 沉积学报,2013,31(5):807-823. |
Luo Ping, Wang Shi, Li Pengwei, et al. Review and prospectives of microbial carbonate reservoirs[J]. Acta Sedimentologica Sinica, 2013, 31(5): 807-823. |
[15] |
吴亚生,姜红霞,虞功亮,等. 微生物岩的概念和重庆老龙洞剖面P-T界线地层微生物岩成因[J]. 古地理学报,2018,20(5):737-775. |
Wu Yasheng, Jiang Hongxia, Yu Gongliang, et al. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong, Chongqing, China[J]. Journal of Palaeogeography, 2018, 20(5): 737-775. |
[16] |
闫振,刘建波. 灰泥丘研究综述:基于内蒙古石炭纪一二叠纪灰泥丘的思考[J]. 地层学杂志,2016,40(4):429-438. |
Yan Zhen, Liu Jianbo. A review of carbonate mud-mounds and some thoughts on Carboniferous-Permian carbonate mud-mounds from Inner Mongolia[J]. Journal of Stratigraphy, 2016, 40(4): 429-438. |
[17] |
刘静江,李伟,张宝民,等. 上扬子地区震旦纪沉积古地理[J]. 古地理学报,2015,17(6):735-753. |
Liu Jingjiang, Li Wei, Zhang Baomin, et al. Sedimentary palaeogeography of the Sinian in Upper Yangtze region[J]. Journal of Palaeogeography, 2015, 17(6): 735-753. |
[18] |
戴永定,刘铁兵,沈继英. 生物成矿作用与生物矿化作用[J]. 古生物学报,1994,33(5):575-592. |
Dai Yongding, Liu Tiebing, Shen Jiying. Bio-ore Formation and biomineralization[J]. Acta Palaeontologica Sinica, 1994, 33(5): 575-592. |
[19] |
梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评,2012,58(5):937-951. |
Mei Mingxiang. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5): 937-951. |
[20] |
汤冬杰,史晓颖,蒋干清,等. 中元古代微指状叠层石:超微组构和有机矿化过程[J]. 地质论评,2012,58(6):1001-1016. |
Tang Dongjie, Shi Xiaoying, Jiang Ganqing, et al. Mesoproterozoic microdigitate stromatolites: Ultra-fabrics and organomineralization[J]. Geological Review, 2012, 58(6): 1001-1016. |
[21] |
Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. PALAIOS, 1987, 2(3): 241-254. |
[22] |
Bourque P A. Paleozoic finely crystalline carbonate mounds: Cryptic communities, petrogenesis and ecological zonation[J]//Neuweller F, Reitner J, Monty C. Biosedimentology of microbial buildups. IGCP project No. 380, proceedings of 2nd meeting, Göttingen/Germany 1996.[Facies, 1997, 36: 250-253.] |
[23] |
Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557-1565. |
[24] |
Folk R L. Practical petrographic classification of limestones[J]. AAPG Bulletin, 1959, 43(1): 1-38. |
[25] |
Leighton M W, Pendexter C. Carbonate rock types[M]//Ham W E. Classification of carbonate rocks—a symposium. Tulsa: American Association of Petroleum Geologists, 1962: 33-61. |
[26] |
Bosellini A. Stratigrafia, petrografia, e sedimentologia delle facies carbonatiche al limite permiano-trias nelle dolomiti occidentali[J]. Memorie del Museo di Storia Naturale della Venetia Tridentina, 1964, 15(2): 59-160. |
[27] |
Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Berlin: Springer Science and Business Media, 2010: 1-984. |
[28] |
James N P, Jones J. Origin of carbonate sedimentary rocks[M]. Chichester: John Wiley & Sons, 2015: 1-446. |
[29] |
Reitner J. Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) Formation and concepts[J]. Facies, 1993, 29(1): 3-39. |
[30] |
Neuweiler F. Development of Albian microbialites and microbialite reefs at marginal platform areas of the Vasco-Cantabrian Basin (Soba reef area, Cantabria, N. Spain)[J]. Facies, 1993, 29(1): 231-249. |
[31] |
Reitner J, Neuweiler F. Mud mounds: A polygenetic spectrum of fine-grained carbonate buildups[J]. Facies, 1995, 32(1): 1-70. |
[32] |
Reitner J, Gautret P, Marin F, et al. Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia)[J]. Bull Inst Océanogr Monaco Spec, 1995, 14(2): 237-263. |
[33] |
Gautret P, Camoin G, Golubic S, et al. Biochemical control of calcium carbonate precipitation in modern lagoonal microbialites, Tikehau atoll, French Polynesia[J]. Journal of Sedimentary Research, 2004, 74(4): 462-478. |
[34] |
Gautret P, Trichet J. Automicrites in modern cyanobacterial stromatolitic deposits of Rangiroa, Tuamotu Archipelago, French Polynesia: Biochemical parameters underlaying their Formation[J]. Sedimentary Geology, 2005, 178(1/2): 55-73. |
[35] |
Cozar P, Izart A, Somerville I D, et al. Environmental controls on the development of Mississippian microbial carbonate mounds and platform limestones in southern Montagne noire (France)[J]. Sedimentology, 2019, 66(6): 2392-2424. |
[36] |
Monty C L V, Bosence D W J, Bridges P H, et al. Carbonate mud-mounds: Their origin and evolution[M]. Oxford, Blackwell Science Ltd, 1995: 1-537. |
[37] |
Neuweiler F, Reitner J, Monty C, et al. Biosedimentology of microbial buildups IGCP Project No. 380 proceedings of 2nd meeting, Göttingen/Germany[J]. Facies, 1997, 36(1): 195-284. |
[38] |
Neuweiler F, Gautret P, Thiel V, et al. Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): Insights into organomineralic deposits of the geological record[J]. Sedimentology, 1999, 46(5): 837-859. |
[39] |
Neuweiler F, Rutsch, Geipel G, et al. Soluble humic substances from in situ precipitated microcrystalline calcium carbonate, internal sediment, and spar cement in a Cretaceous carbonate mud-mound[J]. Geology, 2000, 28(9): 851-854. |
[40] |
Neuweiler F, D’Orazio V, Immenhauser A, et al. Fulvic acid-like organic compounds control nucleation of marine calcite under suboxic conditions[J]. Geology, 2003, 31(8): 681-684. |
[41] |
Neuweiler F, Daoust I, Bourque P A, et al. Degradative calcification of a modern siliceous sponge from the great Bahama bank, the Bahamas: A guide for interpretation of ancient sponge-bearing limestones[J]. Journal of Sedimentary Research, 2007, 77(7): 552-563. |
[42] |
Delecat S, Peckmann J, Reitner J. Non-rigid cryptic sponges in oyster patch reefs (Lower Kimmeridgian, Langenberg/Oker, Germany)[J]. Facies, 2001, 45(1): 231-254. |
[43] |
Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58(1/2): 163-231. |
[44] |
Neuweiler F, Bernoulli D. Mesozoic (Lower Jurassic) red stromatactis limestones from the southern Alps (Arzo, Switzerland): Calcite mineral authigenesis and syneresis-type deformation[J]. International Journal of Earth Sciences, 2005, 94(1): 130-146. |
[45] |
Desrochers A, Bourque P A, Neuweiler F. Diagenetic versus biotic accretionary mechanisms of bryozoan-sponge buildups (Lower Silurian, Anticosti Island, Canada)[J]. Journal of Sedimentary Research, 2007, 77(7): 564-571. |
[46] |
Vescogni A, Guido A, Mastandrea A, et al. Microbialite-Vermetid community (Salento Peninsula, southern Italy): A Late Miocene example of automicrite deposition[M]. Berlin: Springer, 2011: 321-329. |
[47] |
Floquet M, Neuweiler F, Léonide P. The impact of depositional events and burial rate on carbonate-silica diagenesis in a Middle Jurassic Stromatactis Carbonate Mud Mound, Sainte-Baume Massif, Se France[J]. Journal of Sedimentary Research, 2012, 82(7): 521-539. |
[48] |
Kolodziej B, Ivanov M, Idakieva V. Prolific development of pachythecaliines in Late Barremian, Bulgaria: Coral taxonomy and sedimentary environment[J]. Annales Societatis Geologorum Poloniae, 2012, 82(4): 291-330. |
[49] |
Kolodziej B, Salamon K, Morycowa E, et al. Platy corals from the Middle Triassic of Upper Silesia, Poland: Implications for photosymbiosis in the first scleractinians[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490(1): 533-545. |
[50] |
Larmagnat S, Neuweiler F. Taphonomic filtering in Ordovician bryozoan carbonate mounds, Trenton group, Montmorency Falls, Québec, Canada[J]. PALAIOS, 2015, 30(3): 169-180. |
[51] |
Sánchez-Beristain F, Reitner J. Palaeoecology of new fossil associations from the Cipit boulders, St. Cassian Formation (Ladinian-Carnian, Middle-Upper Triassic; Dolomites, NE Italy)[J]. PalZ, 2016, 90(2): 243-269. |
[52] |
Gale L, Peybernes C, Celarc B, et al. Biotic composition and microfacies distribution of Upper Triassic build-ups: New insights from the Lower Carnian limestone of Lesno Brdo, central Slovenia[J]. Facies, 2018, 64(3): 17. |
[53] |
Guido A, Gerovasileiou V, Russo F, et al. Dataset of biogenic crusts from submarine caves of the Aegean Sea: An example of sponges vs microbialites competition in cryptic environments[J]. Data in Brief, 2019, 27: 104745. |
[54] |
Guido A, Kershaw S, Russo F, et al. Application of Raman spectroscopy in comparison between cryptic microbialites of recent marine caves and Triassic patch reefs[J]. PALAIOS, 2019, 34(8): 393-403. |
[55] |
Hüeter A, Huck S, Bodin S, et al. Central Tethyan platform-top hypoxia during Oceanic Anoxic Event 1a[J]. Climate of the Past, 2019, 15(4): 1327-1344. |
[56] |
Zhou K, Pratt B R. Composition and origin of stromatactis-bearing mud-mounds (Upper Devonian, Frasnian), southern Rocky Mountains, western Canada[J]. Sedimentology, 2019, 66(6): 2455-2489. |
[57] |
Beauchamp B, Harrison J C, Nassichuk W W, et al. Cretaceous cold-seep communities and methane-derived carbonates in the Canadian Arctic[J]. Science, 1989, 244(4900): 53-56. |
[58] |
Reitner J, Blumenberg M, Walliser E O, et al. Methane-derived carbonate conduits from the Late Aptian of Salinac (Marne Bleues, Vocontian Basin, France): Petrology and biosignatures[J]. Marine and Petroleum Geology, 2015, 66(3): 641-652. |
[59] |
Nelson C S, Campbell K A, Nyman S L, et al. Genetic link between Miocene seafloor methane seep limestones and underlying carbonate conduit concretions at Rocky Knob, Gisborne, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 2019, 62(3): 318-340. |
[60] |
Fouke B W. Hot-spring Systems Geobiology: Abiotic and biotic influences on travertine Formation at Mammoth Hot Springs, Yellowstone National Park, USA[J]. Sedimentology, 2011, 58(1): 170-219. |
[61] |
Barker S L L, Cox S F. Oscillatory zoning and trace element incorporation in hydrothermal minerals: Insights from calcite growth experiments[J]. Geofluids, 2011, 11(1): 48-56. |
[62] |
Malone V S. Geochemical cycling and organomineralization in a thermal microbial community in big spring, Thermopolis, Wyoming[C]//University of Wyoming Undergraduate Research Day, Laramie, Wyoming, 2011. |
[63] |
Caruso C, Giannandrea P, Perri E. Preliminary observations on continental carbonate clasts in alluvial/volcanoclastic deposits (Pleistocene, Venosa Basin, southern Italy)[C]// Rendiconti Online Societa Geologica Italiana, Roma, 2012: 1035-1037. |
[64] |
Gandin A, Capezzuoli E, Pedley M. Travertine: Distinctive depositional fabrics of carbonates from thermal spring systems[J]. Sedimentology, 2014, 61(1): 264-290. |
[65] |
Riding R. Calcified cyanobacteria[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Heidelberg: Springer, 2011: 211-223. |
[66] |
Neuweiler F, Reitner J, Arp G. Controlling factors and environmental significance of organomicrite production and buildup development[M]//Reitner J, Neuweiler F, Gunkel F. Globale und regionale Steuerungsfaktoren biogener sedimentation. Göttingen: Geologisches Institut der Georg-August-Universität Göttingen, 1996: 185-192. |
[67] |
Russo F, Neri C, Mastandrea A, et al. The mud mound nature of the Cassian platform margins of the dolomites a case history: The Cipit Boulders from Punta Grohmann (Sasso Piatto Massif, northern Italy)[J]. Facies, 1997, 36(1): 25-36. |
[68] |
Dupraz C, Strasser A. Microbialites and micro-encrusters in shallow coral bioherms (Middle to Late Oxfordian, Swiss Jura Mountains)[J]. Facies, 1999, 40(1): 101-130. |
[69] |
Fischer R, Pernet B, Reitner J. Organomineralization of cirratulid annelid tubes-fossil and recent examples[J]. Facies, 2000, 42(1): 35-49. |
[70] |
Lees A, Miller J. Waulsortian banks[M]//Monty C L V, Bosence D W J, Bridges P H, et al. Carbonate mud‐mounds: Their origin and evolution. Oxford: Wiley-Blackwell, 1995: 191-271. |
[71] |
Bourque P-A, Neuweiler F, Boulvain F. The mud-mound system: Products and processes[C]//Florence: 32nd international geological congress, 2004. |
[72] |
Keim L, Schlager W. Automicrite facies on steep slopes (Triassic, Dolomites, Italy)[J]. Facies, 1999, 41(1): 15-25. |
[73] |
Pomar L, Hallock P. Carbonate factories: A conundrum in sedimentary geology[J]. Earth-Science Reviews, 2008, 87(3/4): 134-169. |
[74] |
Schlager W. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems[J]. Geological Society, London, Special Publications, 2000, 178(1): 217-227. |
[75] |
Schlager W. Benthic carbonate factories of the Phanerozoic[J]. International Journal of Earth Sciences, 2003, 92(4): 445-464. |
[76] |
Li F, Gong Q L, Burne R V, et al. Ooid factories operating under hothouse conditions in the earliest Triassic of South China[J]. Global and Planetary Change, 2019, 172: 336-354. |
[77] |
Michel J, Laugié M, Pohl A, et al. Marine carbonate factories: A global model of carbonate platform distribution[J]. International Journal of Earth Sciences, 2019, 108(6): 1773-1792. |
[78] |
《沉积地球化学应用》讲座编写组. 《沉积地球化学应用》讲座(八) 第八讲 微量元素研究在沉积学中的应用(2)[J]. 岩相古地理,1988(5):56-63. |
Lecture Writing Group of "Application of Sedimentary Geochemistry". Lecture 8 of "Application of Sedimentary Geochemistry", Lecture 8: Application of trace elements research in sedimetology (2)[J]. Sedimentary Geology and Tethyan Geology, 1988(5): 56-63. |
[79] |
朱士兴. 原地微晶灰岩的成因,分类和形成环境[J]. 国外前寒武纪地质,1996(4):1-7. |
Zhu Shixing. Origin, classification and Formation environment of in-situ microcrystalline limestone[J]. Geological Survey and Research, 1996(4): 1-7. |
[80] |
埃里克·弗吕格尔. 碳酸盐岩微相:分析、解释及应用[M]. 马永生,译. 北京:地质出版社,2006:69-161. |
Flügel E. Microfacies of carbonate rocks[M]. Ma Yongsheng, trans. Beijing: Geological Publishing House, 2006: 69-161. |
[81] |
埃里克·弗吕格尔. 碳酸盐岩微相:分析、解释及应用[M]. 马永生,刘波,郭荣涛,译. 2版. 北京:地质出版社,2016:69-161. |
Flügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. Ma Yongsheng, Liu Bo, Guo Rongtao, trans. 2nd ed. Beijing: Geological Publishing House, 2016: 69-161. |
[82] |
贾志鑫. 湖北宜昌九龙湾剖面震旦系陡山沱组盖帽碳酸盐岩微相研究[D]. 西安:西北大学,2009:1-50. |
Jia Zhixin. The microfacies of the cap carbonate from the Sinian Doushantuo Formation at the Jiulongwan section, Yichang, Hubei[D]. Xi’an: Northwest University, 2009: 1-50. |
[83] |
梅冥相. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系[J]. 地质论评,2011,57(3):419-436. |
Mei Mingxiang. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks[J]. Geological Review, 2011, 57(3): 419-436. |
[84] |
梅冥相,郭荣涛,胡媛. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构[J]. 岩石学报,2011,27(8):2473-2486. |
Mei Mingxiang, Guo Rongtao, Hu Yuan. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing[J]. Acta Petrologica Sinica, 2011, 27(8): 2473-2486. |
[85] |
梅冥相,刘丽,胡媛. 北京西郊寒武系凤山组叠层石生物层[J]. 地质学报,2015,89(2):440-460. |
Mei Mingxiang, Liu Li, Hu Yuan. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing, North China[J]. Acta Geologica Sinica, 2015, 89(2): 440-460. |
[86] |
杨勇强. 济阳坳陷湖相碳酸盐岩优质储层成因机理[D]. 青岛:中国石油大学(华东),2015:25-27. |
Yang Yongqiang. The research on genesis mechanism of high quality lacustrine carbonate reservoir in Jiyang Depression[D]. Qingdao: China University of Petroleum (East China), 2015: 25-27. |
[87] |
杜翔. 川东晚二叠世生物礁系统演化[D]. 成都:西南石油大学,2016:26-37. |
Du Xiang. Evolution of Late Permian organic reef system in eastern Sichuan[D]. Chengdu: Southwest Petroleum University, 2016: 26-37. |
[88] |
杨巍. 四川盆地东部晚二叠世海洋底栖动物群演化及其动力学机制研究[D]. 成都:西南石油大学,2016:41-51. |
Yang Wei. The evolution and dynamics mechanism of paleocean benthonic faunas during Late Permian in the eastern Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2016: 41-51. |
[89] |
Neuweiler F, 2017: 非微生物成因微晶碳酸钙有机矿化作用:来自奥陶系瓶筐石—海绵碳酸盐岩丘的启示[J]. , , -.
|
Shen Yuefeng, Neuweiler F, Yu Bingsong. Organomineralization of non-microbial microcrystalline calcium carbonate-Enlightenment from Ordovician calathid-sponge carbonate mounds[C]//Proceedings of the 6th national congress of sedimentology. Nanjing: Zhongshan Hotel in Nanjing, 2017. |
[90] |
陈百兵. 豫西宜阳地区寒武系馒头组鲕粒及鲕粒灰岩特征及演化[D]. 焦作:河南理工大学,2018:39-48. |
Chen Baibing. The features and evolution of ooids and oolitic limestones from the Mantou Formation (Cambrian) of western Henan[D]. Jiaozuo: Henan Polytechnic University, 2018: 39-48. |
[91] |
Konhauser K O, Urrutia M M. Bacterial clay authigenesis: A common biogeochemical process[J]. Chemical Geology, 1999, 161(4): 399-413. |
[92] |
王龙. 太行山中南部及其邻区寒武系微生物碳酸盐岩主导的生物丘研究[D]. 北京:中国地质大学(北京),2019:1-140. |
Wang Long. Cambrian bioherms dominated by microbial carbonates in the south-central Taihang mountains and their adjacent areas of North China[D]. Beijing: China University of Geosciences (Beijing), 2019: 1-140. |
[93] |
Hardie L A. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 m.y.[J]. Geology, 1996, 24(3): 279-283. |
[94] |
Stanley S M, Hardie L A. Hypercalcification: Paleontology links plate tectonics and geochemistry to sedimentology[J]. GSA Today, 1999, 9(2): 1-7. |
[95] |
Ries J B. Effect of ambient Mg/Ca ratio on Mg fractionation in calcareous marine invertebrates: A record of the oceanic Mg/Ca ratio over the Phanerozoic[J]. Geology, 2004, 32(11): 981-984. |
[96] |
Porter S M. Seawater chemistry and early carbonate biomineralization[J]. Science, 2007, 316(5829): 1302. |
[97] |
Porter S M. Calcite and aragonite seas and the de novo acquisition of carbonate skeletons[J]. Geobiology, 2010, 8(4): 256-277. |
[98] |
Balthasar U, Cusack M. Aragonite-calcite seas-Quantifying the gray area[J]. Geology, 2015, 43(2): 99-102. |
[99] |
Bathurst R G C. Essai de caractérisation sédimentologique des dépôts carbonatés. Eléments d'analyse. (An Attempt at Sedimentological Characterisation of Carbonate Deposits. Analytic Elements): ELF-Aquitaine, Centre de Recherches de Boussens et de Pau, 1975, 173 pp. £7.00[J]. Sedimentary Geology, 1976, 16(4): 319-320. |
[100] |
Dunham R J. Classification of carbonate rocks according to depositional texture[M]//Ham W E. Classification of carbonate rocks-a symposium. Tulsa: American Association of Petroleum Geologists, 1962: 108-121. |
[101] |
Bosellini A. Nuovi affioramenti miocenici nei lessini orientali[J]. Servizio Geologico D’Italia, 1964, 85: 35-40. |
[102] |
Folk R L. The natural history of crystalline calcium carbonate: Effect of magnesium content and salinity[J]. Journal of Sedimentary Petrology, 1974, 44(1): 40-53. |
[103] |
Bernier P. For a reinstatement of “lithographic”, a precise word to define a precise limestone[J]. Geobios, 1994, 27(S1): 307-311. |
[104] |
Défarge C, Trichet J, Jaunet A M, et al. Texture of microbial sediments revealed by cryo-scanning electron microscopy[J]. Journal of Sedimentary Research, 1996, 66(5): 935-947. |
[105] |
Trichet J, Défarge C, Tribble J, et al. Christmas Island lagoonal lakes, models for the deposition of carbonate-evaporite-organic laminated sediments[J]. Sedimentary Geology, 2001, 140(1/2): 177-189. |
[106] |
Van Gijzel P. Manual of the techniques and some geological applications of fluorescence microscopy[C]//Annual meeting workshop. Dallas: American Association of Stratigraphic Palynologists, 1979: 55. |
[107] |
Dravis J J, Yurewicz D A. Enhanced carbonate petrography using fluorescence microscopy[J]. Journal of Sedimentary Petrology, 1985, 55(6): 795-804. |
[108] |
Machel H G, Mason R A, Mariano A N, et al. Causes and emission of luminescence in calcite and dolomite[M]//Barker C E, Burruss R C, Kopp O C, et al. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Tulsa: SEPM, 1991: 9-25. |
[109] |
Guido A, Jacob J, Gautret P, et al. Molecular fossils and other organic markers as palaeoenvironmental indicators of the Messinian Calcare di base Formation: Normal versus stressed marine deposition (Rossano Basin, northern Calabria, Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 255(3/4): 265-283. |
[110] |
Guido A, Papazzoni C A, Mastandrea A, et al. Automicrite in a 'nummulite bank' from the Monte Saraceno (southern Italy): Evidence for synsedimentary cementation[J]. Sedimentology, 2011, 58(4): 878-889. |
[111] |
Guido A, Vescogni A, Mastandrea A, et al. Characterization of the micrites in the Late Miocene vermetid carbonate bioconstructions, Salento Peninsula, Italy: Record of a microbial/metazoan association[J]. Sedimentary Geology, 2012, 263-264: 133-143. |
[112] |
Guido A, Mastandrea A, Demasi F, et al. Organic matter remains in the laminated microfabrics of the Kess-Kess mounds (Hamar Laghdad, Lower Devonian, Morocco)[J]. Sedimentary Geology, 2012, 263-264: 194-201. |
[113] |
Guido A, Heindel K, Birgel D, et al. Pendant bioconstructions cemented by microbial carbonate in submerged marine caves (Holocene, SE Sicily)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 166-180. |
[114] |
Guido A, Mastandrea A, Rosso A, et al. Commensal symbiosis between agglutinated polychaetes and sulfate-reducing bacteria[J]. Geobiology, 2014, 12(3): 265-275. |
[115] |
Guido A, Rosso A, Sanfilippo R, et al. Frutexites from microbial/metazoan bioconstructions of recent and Pleistocene marine caves (Sicily, Italy)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 453: 127-138. |
[116] |
Guido A, Rosso A, Sanfilippo R, et al. Microbial biomineralization in biotic crusts from a Pleistocene marine cave (NW Sicily, Italy)[J]. Geomicrobiology Journal, 2017, 34(10): 864-872. |
[117] |
Guido A, Jimenez C, Achilleos K, et al. Cryptic serpulid-microbialite bioconstructions in the Kakoskali submarine cave (Cyprus, eastern Mediterranean)[J]. Facies, 2017, 63(3): 21. |
[118] |
Gomez F J, Kah L C, Bartley J K, et al. Microbialites in a high-altitude Andean Lake: Multiple controls on carbonate precipitation and lamina accretion[J]. PALAIOS, 2014, 29(6): 233-249. |
[119] |
Tang D J, Shi X Y, Shi Q, et al. Organomineralization in Mesoproterozoic giant ooids[J]. Journal of Asian Earth Sciences, 2015, 107: 195-211. |
[120] |
Li Q J, Li Y, Zhang Y D, et al. Dissecting Calathium-microbial frameworks: The significance of calathids for the Middle Ordovician reefs in the Tarim Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 66-78. |
[121] |
Pace A, Bourillot R, Bouton A, et al. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites[J]. Scientific Reports, 2016, 6(1): 31495. |
[122] |
Machel H G. Cathodoluminescence in calcite and dolomite and its chemical interpretation[J]. Geoscience Canada, 1985, 12(4): 139-147. |
[123] |
Marshall D J. Cathodoluminescence of geological materials[M]. Boston: Unwin Hyman, 1988: 129-138. |
[124] |
Barker C E, Kopp O C. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications[M]. Tulsa: Society for Sedimentary Geology, 1991: 25-195. |
[125] |
Solomon S T, Walkden G M. The application of cathodoluminescence to interpreting the diagenesis of an ancient calcrete profile[J]. 1985, 32(6): 877-896. |
[126] |
Hemming N G, Meyers W J, Grams J C. Cathodoluminescence in diagenetic calcites: The roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements[J]. Journal of Sedimentary Petrology, 1989, 59(3): 404-411. |
[127] |
Amieux P, Bernier P, Dalongeville R, et al. Cathodoluminescence of carbonate-cemented Holocene beachrock from the Togo coastline (West Africa): An approach to early diagenesis[J]. Sedimentary Geology, 1989, 65(3/4): 261-272. |
[128] |
Miller J. Cathodoluminescence microscopy[M]//Tucker M. Techniques in Sedimentology. Oxford: Blackwell Scientific Publications, 1988: 174-190. |
[129] |
Richter D K, Götte T, Götze J, et al. Progress in application of cathodoluminescence (CL) in sedimentary petrology[J]. Mineralogy and Petrology, 2003, 79(3): 127-166. |
[130] |
Meyers W J. Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian) Sacramento Mountains, New Mexico[J]. Journal of Sedimentary Petrology, 1974, 44(3): 837-861. |
[131] |
Meyers W J. Calcite cement stratigraphy: An overview[M]//Barker C E, Burruss R C, Kopp O C, et al. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Tulsa: SEPM, 1991: 51-54. |
[132] |
Kaufman J, Cander H S, Daniels L D, et al. Calcite cement stratigraphy and cementation history of the Burlington-Keokuk Formation (Mississippian), Illinois and Missouri[J]. Journal of Sedimentary Petrology, 1988, 58(2): 312-326. |
[133] |
Goldstein R H. Practical aspects of cement stratigraphy with illustrations from Pennsylvanian limestone and sandstone, New Mexico and Kansas[M]//Barker C E, Kopp O C. Luminescence microscopy: Quantitative and qualitative aspects. Tulsa: SEPM, 1991: 123-131. |
[134] |
Bruckschen P, Neuser R D, Richter D K. Cement stratigraphy in Triassic and Jurassic limestones of the Weserbergland (northwestern Germany)[J]. Sedimentary Geology, 1992, 81(3/4): 195-214. |
[135] |
Machel H G. Application of cathodoluminescence to carbonate diagenesis[M]//Pagel M, Blanc P, Ohnenstetter D. Cathodoluminescence in geoscience. Berlin: Springer, 2000: 271-301. |
[136] |
Bourque P A. Mud-mounds: Do they still constitute an enigma?[J]. Geologie Mediterraneenne, 2001, 28(1): 27-32. |
[137] |
Carlson R C, Goldstein R H, Enos P. Effects of subaerial exposure on porosity evolution in the Carboniferous Lisburne Group, northeastern Brooks Range, Alaska, U.[S.A.[M]//Ahr W M, Harris P M, Morgan W A. Permo-Carboniferous carbonate platforms and reefs. Tulsa: Society for Sedimentary Geology, 2003: 269-290.] |
[138] |
Nielsen P, Swennen R, Keppens E. Multiple-step recrystallisation within massive ancient dolomite units: An example from the Dinantian of Belgium[J] Sedimentology, 1994, 41(3): 567-584. |
[139] |
Reinhold C. Multiple episodes of dolomitization and dolomite recrystallization during shallow burial in Upper Jurassic shelf carbonates: Eastern Swabian Alb, southern Germany[J]. Sedimentary Geology, 1998, 121(1/2): 71-95. |
[140] |
Boggs S. Principles of sedimentology and stratigraphy[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2001: 1-608. |
[141] |
Granier B, Staffelbach C. Quick look cathodoluminescence analyses and their impact on the interpretation of carbonate reservoirs. Case study of mid-Jurassic oolitic reservoirs in the Paris Basin[R]. Carnets de Géologie/Notebooks on Geology. Brest, Madrid, 2009: 14p. |
[142] |
Amano K, Jenkins R G, Sako Y, et al. A Paleogene deep-sea methane-seep community from Honshu, Japan[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387: 126-133. |
[143] |
Yang R C, Fan A P, Han Z Z, et al. Characteristics and genesis of microbial lumps in the Maozhuang Stage (Cambrian Series 2), Shandong province, China[J]. Science China Earth Sciences, 2013, 56(3): 494-503. |
[144] |
Granier B, Barbin V, Charollais J. Significance of partial leaching in calcareous ooids: The case study of Hauterivian oolites in switzerland[J]. Carnets de Géologie, 2014, 14(22): 471-481. |
[145] |
Hiatt E E, Pufahl P K. Cathodoluminescence petrography of carbonate rocks: A review of applications for understanding diagenesis, reservoir quality, and pore system evolution[M]//Coulson I. Cathodoluminescence and its application to geoscience. Wolfville: Mineralogical Association of Canada, 2014: 75-96. |
[146] |
Immenhauser A, Kenter J A M, Ganssen G, et al. Origin and significance of isotope shifts in Pennsylvanian carbonates (Asturias, NW Spain)[J]. Journal of Sedimentary Research, 2002, 72(1): 82-94. |
[147] |
Coimbra R, Immenhauser A, Olóriz F. Matrix micrite δ13C and δ18O reveals synsedimentary marine lithification in Upper Jurassic Ammonitico Rosso limestones (Betic Cordillera, SE Spain)[J]. Sedimentary Geology, 2009, 219(1/2/3/4): 332-348. |
[148] |
Coimbra R, Olóriz F. Geochemical evidence for sediment provenance in mudstones and fossil-poor wackestones (Upper Jurassic, Majorca Island)[J]. Terra Nova, 2012, 24(6): 437-445. |
[149] |
Braithwaite C J R. Cathodoluminescence in Quaternary carbonate deposits[J]. Sedimentary Geology, 2016, 337: 29-35. |
[150] |
Machel H G, Burton E A. Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis[M]//Barker C E, Burruss R C, Kopp O C, et al. Luminescence microscopy and spectroscopy: Qualitative and quantitative applications. Tulsa: Society for Sedimentary Geology, 1991: 37-57. |
[151] |
Bodin S, Rose J C. Hydrocarbon-seep carbonates associated with Mesozoic environmental perturbations: Example from the Lower Bajocian of morocco[J]. Sedimentary Geology, 2018, 374: 53-68. |
[152] |
Rincón-Tomás B, Duda J P, Somoza L, et al. Cold-water corals and hydrocarbon-rich seepage in Pompeia province (Gulf of Cádiz)-Living on the edge[J]. Biogeosciences, 2019, 16(7): 1607-1627. |
[153] |
Szulc J, Gradziński M, Lewandowska A, et al. The Upper Triassic crenogenic limestones in Upper Silesia (southern Poland) and their paleoenvironmental context[M]//Alonso-Zarza A M, Tanner L H. Paleoenvironmental record and applications of calcretes and palustrine carbonates. Boulder, Colo: Geological Society of America, 2006: 1-239. |
[154] |
Schütt B. Holocene paleohydrology of playa lakes in northern and central Spain: A reconstruction based on the mineral composition of lacustrine sediments[J]. Quaternary International, 2000, 73-74: 7-27. |
[155] |
Pacton M, Sorrel P, Bevillard B, et al. Sedimentary facies analyses from nano-to millimetre scale exploring past microbial activity in a high-altitude lake (Lake Son Kul, Central Asia)[J]. Geological Magazine, 2015, 152(5): 902-922. |
[156] |
Zeng L Q, Yi H S, Xia G Q, et al. Palaeoenvironmental setting of lacustrine stromatolites in the Miocene Wudaoliang Group, northern Tibetan Plateau[J]. Journal of Palaeogeography, 2019, 8(3): 18. |
[157] |
Lowenstam H A, Weiner S. On biomineralization[M]. New York: Oxford University Press, 1989: 1-324. |
[158] |
Dalrymple D W. Calcium carbonate deposition associated with blue-green algal mats, Baffin Bay, Texas[M]. Virginia: Institute of Marine Science Publication, 1965: 187-200. |
[159] |
Horodyski R J, Vonder Haar S P. Recent calcareous stromatolites from Laguna Mormona (Baja California), Mexico[J]. Journal of Sedimentary Petrology, 1975, 45(4): 894-906. |
[160] |
Monty C L V. The origin and development of cryptalgal fabrics[J]. Developments in Sedimentology, 1976, 20: 193-249. |
[161] |
Friedman G M, Amiel A J, Braun M, et al. Generation of carbonate particles and laminites in algal mats-example from sea-marginal hypersaline pool, Gulf of Aqaba, Red Sea[J]. AAPG Bulletin, 1973, 57(3): 541-557. |
[162] |
Gerdes G, Krumbein W E. Biolaminated deposits[M]. Berlin: Springer, 1987: 13-140. |
[163] |
Merz-Preiss M. Calcification in cyanobacteria[M]//Riding R E, Awramik S M. Microbial sediments. Berlin: Springer, 2000: 50-56. |
[164] |
Kaźmierczak J, Coleman M L, Gruszczyński M, et al. Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas[J]. Acta Palaeontologica Polonica, 1996, 41(4): 319-338. |
[165] |
Kaźmierczak J, Iryu Y. Cyanobacterial origin of microcrystalline cements from Pleistocene rhodoliths and coralline algal crusts of Okierabu-jima, Japan[J]. Acta Palaeontologica Polonica, 1999, 44(2): 117-130. |
[166] |
Kempe S, Kazmierczak J, Landmann G, et al. Largest known microbialites discovered in Lake Van, Turkey[J]. Nature, 1991, 349(6310): 605-608. |
[167] |
Buczynski C, Chafetz H S. Habit of bacterially induced precipitates of calcium carbonate: Examples from laboratory experiments and recent sediments[M]//Rezak R, Lavoie D L. Carbonate microfabrics. New York: Springer, 1993: 105-116. |
[168] |
Trichet J, Défarge C. Non-biologically supported organomineralization[J]. Bulletin de l’Institut Océanographique de Monaco, 1995, 14(2): 203-236. |
[169] |
Degens E T. Why do organisms calcify?[J]. Chemical Geology, 1979, 25(3): 257-269. |
[170] |
Addadi L, Weiner S. Control and design principles in biological mineralization[J]. Angewandte Chemie, 1992, 31(2): 153-169. |
[171] |
Simkiss K, Wilbur K M. Biomineralization. Cell biology and mineral deposition[M]. San Diego: Academic Press, 1989: 1-337. |
[172] |
Lokier S W, Junaibi M A. The petrographic description of carbonate facies: Are we all speaking the same language?[J]. Sedimentology, 2016, 63(7): 1843-1885. |
[173] |
陈永权,周新源. 塔里木盆地中寒武统-下奥陶统泥晶灰岩地球化学与古海洋学[J]. 海洋地质与第四纪地质,2009,29(1):47-52. |
Chen Yongquan, Zhou Xinyuan. Geochemial characteristics of Middle Cambrian-Early Ordovician limestone and paleo-ocean reconstruction based on δ18OSMOW, 87Sr/86Sr and rare earth elements, Tarim Basin[J]. Marine Geology & Quaternary Geology, 2009, 29(1): 47-52. |
[174] |
周长勇,张启跃,吕涛,等. 云南中三叠世罗平生物群产出地层的地球化学特征和沉积环境[J]. 地质论评,2014,60(2):285-298. |
Zhou Changyong, Zhang Qiyue, Tao Lü, et al. Geochemical characteristics and sedimentary environments of the fossiliferous layers of Middle Triassic Luoping biota, Yunnan province[J]. Geological Review, 2014, 60(2): 285-298. |
[175] |
赵平平,江茂生,李任伟. 扬子地区中-晚奥陶世转折期的碳同位素漂移事件及其成因探讨[J]. 沉积学报,2016,34(6):1021-1031. |
Zhao Pingping, Jiang Maosheng, Li Renwei. Carbon isotope excursions near the Middle-Late Ordovician transition in the Yangtze area and their possible genesis[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1021-1031. |
[176] |
Turpin M, Emmanuel L, Immenhauser A, et al. Geochemical and petrographical characterization of fine-grained carbonate particles along proximal to distal transects[J]. Sedimentary Geology, 2012, 281: 1-20. |
[177] |
Huck S, Wohlwend S, Coimbra R, et al. Disentangling shallow-water bulk carbonate carbon isotope archives with evidence for multi-stage diagenesis: An in-depth component-specific petrographic and geochemical study from Oman (Mid-Cretaceous)[J]. The Depositional Record, 2017, 3(2): 233-257. |
[178] |
van Smeerdijk Hood A, Planavsky N J, Wallace M W, et al. The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates[J]. Geochimica et Cosmochimica Acta, 2018, 232: 265-287. |
[179] |
Li F, Yan J X, Algeo T, et al. Paleoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China)[J]. Global and Planetary Change, 2013, 105: 102-120. |
[180] |
Coimbra R, Immenhauser A, Olóriz F, et al. New insights into geochemical behaviour in ancient marine carbonates (Upper Jurassic Ammonitico Rosso): Novel proxies for interpreting sea-level dynamics and palaeoceanography[J]. Sedimentology, 2015, 62(1): 266-302. |
[181] |
Andrès Y, Texier A C, Le Cloirec P. Rare earth elements removal by microbial biosorption: A review[J]. Environmental Technology, 2003, 24(11): 1367-1375. |
[182] |
Nothdurft L D, Webb G E, Kamber B S. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, western Australia: Confirmation of a seawater REE proxy in ancient limestones[J]. Geochimica et Cosmochimica Acta, 2004, 68(2): 263-283. |
[183] |
Takahashi Y, Chatellier X, Hattori K H, et al. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats[J]. Chemical Geology, 2005, 219(1/2/3/4): 53-67. |
[184] |
Olivier N, Boyet M. Rare earth and trace elements of microbialites in Upper Jurassic coral-and sponge-microbialite reefs[J]. Chemical Geology, 2006, 230(1/2): 105-123. |
[185] |
Kamber B S, Webb G E. Transition metal abundances in microbial carbonate: A pilot study based on in suit LA-ICP-MS analysis[J]. Geobiology, 2007, 5(4): 375-389. |
[186] |
Wilmsen M, Neuweiler F. Biosedimentology of the Early Jurassic post-extinction carbonate depositional system, central High Atlas Rift Basin, Morocco[J]. Sedimentology, 2008, 55(4): 773-807. |
[187] |
Frimmel H E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator[J]. Chemical Geology, 2009, 258(3/4): 338-353. |
[188] |
Allwood A C, Kamber B S, Walter M R, et al. Trace elements record depositional history of an Early Archean stromatolitic carbonate platform[J]. Chemical Geology, 2010, 270(1/2/3/4): 148-163. |
[189] |
Sánchez-Beristain F, Reitner J. Paleoecology of microencrusters and encrusting “coralline” sponges in Cipit boulders from the Cassian Formation (Upper Ladinian-Lower Carnian, Dolomites, northern Italy)[J]. Paläontologische Zeitschrift, 2012, 86(2): 113-133. |
[190] |
汤冬杰,史晓颖,裴云鹏,等. 华北中元古代陆表海氧化还原条件[J]. 古地理学报,2011,13(5):563-580. |
Tang Dongjie, Shi Xiaoying, Pei Yunpeng, et al. Redox status of the Mesoproterozoic epeiric sea in North China[J]. Journal of Palaeogeography, 2011, 13(5): 563-580. |
[191] |
Corkeron M, Webb G E, Moulds J, et al. Discriminating stromatolite Formation modes using rare earth element geochemistry: Trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation, northern Territory, Australia[J]. Precambrian Research, 2012, 212-213: 194-206. |
[192] |
Matyszkiewicz J, Kochman A, Duś A. Influence of local sedimentary conditions on development of microbialites in the Oxfordian carbonate buildups from the southern part of the Kraków-Częstochowa Upland (South Poland)[J]. Sedimentary Geology, 2012, 263-264: 109-132. |
[193] |
Loope G R, Kump L R, Arthur M A. Shallow water redox conditions from the Permian-Triassic boundary microbialite: The rare earth element and iodine geochemistry of carbonates from Turkey and South China[J]. Chemical Geology, 2013, 351: 195-208. |
[194] |
Kamber B S, Webb G E, Gallagher M. The rare earth element signal in Archaean microbial carbonate: Information on ocean redox and biogenicity[J]. Journal of the Geological Society, 2014, 171(6): 745-763. |
[195] |
Tosti F, Mastandrea A, Guido A, et al. Biogeochemical and redox record of mid-Late Triassic reef evolution in the Italian Dolomites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 399: 52-66. |
[196] |
Collin P Y, Kershaw S, Tribovillard N, et al. Geochemistry of post-extinction microbialites as a powerful tool to assess the oxygenation of shallow marine water in the immediate aftermath of the end-Permian mass extinction[J]. International Journal of Earth Sciences, 2015, 104(4): 1025-1037. |
[197] |
Della Porta G, Webb G E, McDonald L. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco)[J]. Chemical Geology, 2015, 400: 65-86. |
[198] |
van Smeerdijk Hood A, Wallace M W. Extreme ocean anoxia during the Late Cryogenian recorded in reefal carbonates of southern Australia[J]. Precambrian Research, 2015, 261: 96-111. |
[199] |
Tang D J, Shi X Y, Wang X Q, et al. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters[J]. Precambrian Research, 2016, 276: 145-157. |
[200] |
Sforna M C, Daye M, Philippot P, et al. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record[J]. Geobiology, 2017, 15(2): 259-279. |
[201] |
Eltom H A, Abdullatif O M, Babalola L O. Redox conditions through the Permian-Triassic transition in the Upper Khuff Formation, Saudi Arabia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 472: 203-215. |
[202] |
Li F, Yan J X, Burne R V, et al. Paleo-seawater REE compositions and microbial signatures preserved in laminae of Lower Triassic ooids[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 96-107. |
[203] |
Li F, Webb G E, Algeo T J, et al. Modern carbonate ooids preserve ambient aqueous REE signatures[J]. Chemical Geology, 2019, 509: 163-177. |
[204] |
Wallace M W, van Smeerdijk Hood A, Shuster A, et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants[J]. Earth and Planetary Science Letters, 2017, 466: 12-19. |
[205] |
Kalvoda J, Kumpan T, Holá M, et al. Fine-scale LA-ICP-MS study of redox oscillations and REEY cycling during the latest Devonian Hangenberg Crisis (Moravian Karst, Czech Republic)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493: 30-43. |
[206] |
Keith M L, Weber J N. Carbon and oxygen isotopic composition of selected limestones and fossils[J]. Geochimica et Cosmochimica Acta, 1964, 28 (10/11): 1787-1816. |
[207] |
Keupp H, Jenisch A, Herrmann R, et al. Microbial carbonate crusts-a key to the environmental analysis of fossil spongiolites?[J]. Facies, 1993, 29(1): 41-54. |
[208] |
Leinfelder R R, Nose M, Schmid D U, et al. Microbial crusts of the Late Jurassic: Composition, palaeoecological significance and importance in reef construction[J]. Facies, 1993, 29(1): 195-229. |
[209] |
Warnke K. Microbial carbonate production in a Starved Basin: The crenistria limestone of the Upper viséan German Kulm facies[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130(1/2/3/4): 209-225. |
[210] |
Tomescu A M F, Klymiuk A A, Matsunaga K K S, et al. Microbes and the fossil record: Selected topics in paleomicrobiology[M]//Hurst C J. Their world: A diversity of microbial environments. Cham, Switzerland: Springer International Publishing, 2016: 69-169. |
[211] |
Wang T, Burne R V, Yuan A H, et al. The evolution of microbialite forms during the Early Triassic transgression: A case study in Chongyang of Hubei province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 519: 209-220. |
[212] |
Stephens N P, Sumner D Y. Renalcids as fossilized biofilm clusters[J]. PALAIOS, 2002, 17(3): 225-236. |
[213] |
Krause F F. Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA: Ordovician limestone with submarine frost heave structures-a possible response to gas clathrate hydrate evolution[J]. Sedimentary Geology, 2001, 145(3/4): 189-213. |
[214] |
Murillo-Muñetón G, Dorobek S L. Controls on the evolution of carbonate mud mounds in the Lower Cretaceous Cupido Formation, northeastern Mexico[J]. Journal of Sedimentary Research, 2003, 73(6): 869-886. |
[215] |
Feng D, Chen D, Roberts H H. Sedimentary fabrics in the authigenic carbonates from Bush Hill: Implication for seabed fluid flow and its dynamic signature[J]. Geofluids, 2008, 8(4): 301-310. |
[216] |
Naehr T H, Birgel D, Bohrmann G, et al. Biogeochemical controls on authigenic carbonate Formation at the Chapopote “asphalt volcano”, Bay of Campeche[J]. Chemical Geology, 2009, 266(3/4): 390-402. |
[217] |
Beauchamp B, Savard M. Cretaceous chemosynthetic carbonate mounds in the Canadian Arctic[J]. PALAIOS, 1992, 7(4): 434-450. |
[218] |
Hendry J P. Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates[J]. Sedimentology, 1993, 40(1): 87-106. |
[219] |
Pinti D L, Hashizume K. Early life record from nitrogen isotopes[M]//Golding S D, Glikson M. Earliest life on earth: Habitats, environments and methods of detection. Dordrecht, Netherlands: Springer, 2011: 183-205. |
[220] |
Diaz M R, Swart P K, Eberli G P, et al. Geochemical evidence of microbial activity within ooids[J]. Sedimentology, 2015, 62(7): 2090-2112. |
[221] |
Canfield D E, Habicht K S, Thamdrup B, et al. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466): 658-661. |
[222] |
Canfield D E. The evolution of the Earth surface sulfur reservoir[J]. American Journal of Science, 2004, 304(10): 839-861. |
[223] |
Canfield D E, Stewar F J, Thamdrup B, et al. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean Coast[J]. Science, 2010, 330(6009): 1375-1378. |
[224] |
Farquhar J, Bao H M, Thiemens M. Atmospheric Influence of Earth's Earliest Sulfur Cycle[J]. Science, 2000, 289(5480): 756-758. |
[225] |
Farquhar J, Wing B A. Multiple sulfur isotopes and the evolution of the atmosphere[J]. Earth and Planetary Science Letters, 2003, 213(1/2): 1-13. |
[226] |
Farquhar J, Peters M, Johnston D T, et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry[J]. Nature, 2007, 449(7163): 706-709. |
[227] |
Farquhar J, Johnston D T, Wing B A, et al. Multiple sulphur isotopic interpretations of biosynthetic pathways: Implications for biological signatures in the sulphur isotope record[J]. Geobiology, 2003, 1(1): 27-36. |
[228] |
Shen Y N, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J]. Nature, 2001, 410(6824): 77-81. |
[229] |
Kampschulte A, Strauss H. The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates[J]. Chemical Geology, 2004, 204(3/4): 255-286. |
[230] |
Ono S, Wing B, Johnston D, et al. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles[J]. Geochimica et Cosmochimica Acta, 2006, 70(9): 2238-2252. |
[231] |
Johnston D T, Farquhar J, Habicht K S, et al. Sulphur isotopes and the search for life: Strategies for identifying sulphur metabolisms in the rock record and beyond[J]. Geobiology, 2008, 6(5): 425-435. |
[232] |
Zhang Y D, Munnecke A. Ordovician stable carbon isotope stratigraphy in the Tarim Basin, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 458: 154-175. |
[233] |
Zhang J, Zhang B M, Shan X Q. Review and significance of microbial carbonate reservoirs in China[J]. Acta Geologica Sinica, 2017, 91(S1): 157-158. |
[234] |
Burdett J W, Arthur M A, Richardson M. A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils[J]. Earth and Planetary Science Letters, 1989, 94(3/4): 189-198. |
[235] |
Present T M, Paris G, Burke A, et al. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata[J]. Earth and Planetary Science Letters, 2015, 432: 187-198. |
[236] |
Richardson J A, Newville M, Lanzirotti A, et al. Depositional and diagenetic constraints on the abundance and spatial variability of carbonate-associated sulfate[J]. Chemical Geology, 2019, 523: 59-72. |
[237] |
Leavitt W D, Halevy I, Bradley A S, et al. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11244-11249. |
[238] |
Sim M S, Bosak T, Ono S. Large sulfur isotope Fractionation does not require disproportionation[J]. Science, 2011, 333(6038): 74-77. |
[239] |
Broecker W S, Peng T H. Tracers in the sea[M]. New York: Eldigio Press, 1982: 1-689. |
[240] |
McArthur J M, Kennedy W J, Chen M, et al. Strontium isotope stratigraphy for Late Cretaceous time: Direct numerical calibration of the Sr isotope curve based on the US western Interior[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(1/2): 95-119. |
[241] |
Palmer M R, Elderfield H. Sr isotope composition of sea water over the past 75 Myr[J]. Nature, 1985, 314(6011): 526-528. |
[242] |
Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology, 1999, 161(1/2/3): 59-88. |
[243] |
Boulton S J, Robertson A H F, Ellam R M, et al. Strontium isotopic and micropalaeontological dating used to help redefine the stratigraphy of the neotectonic Hatay Graben, southern Turkey[J]. Turkish Journal of Earth Sciences, 2007, 16(2): 141-179. |
[244] |
Kamber B S, Bolhar R, Webb G E. Geochemistry of Late Archaean stromatolites from Zimbabwe: Evidence for microbial life in restricted epicontinental seas[J]. Precambrian Research, 2004, 132(4): 379-399. |
[245] |
Tostevin R, Shields G A, Tarbuck G M, et al. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology, 2016, 438: 146-162. |
[246] |
Frei R, Gaucher C, Poulton S W, et al. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes[J]. Nature, 2009, 461(7261): 250-253. |
[247] |
Planavsky N J, Reinhard C T, Wang X L, et al. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals[J]. Science, 2014, 346(6209): 635-638. |
[248] |
Wang J P, Li Y, Zhang Y Y, et al. A Middle Ordovician (Darriwilian) Calathium reef complex on the carbonate ramp of the northwestern Tarim Block, Northwest China: A sedimentological approach[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 58-65. |
[249] |
Bonnand P, James R H, Parkinson I J, et al. The chromium isotopic composition of seawater and marine carbonates[J]. Earth and Planetary Science Letters, 2013, 382: 10-20. |
[250] |
Pereira N S, Voegelin A R, Paulukat C, et al. Chromium-isotope signatures in scleractinian corals from the Rocas Atoll, Tropical South Atlantic[J]. Geobiology, 2016, 14(1): 54-67. |
[251] |
Holmden C, Jacobson A D, Sageman B B, et al. Response of the Cr isotope proxy to Cretaceous Ocean Anoxic Event 2 in a pelagic carbonate succession from the western Interior Seaway[J]. Geochimica et Cosmochimica Acta, 2016, 186: 277-295. |
[252] |
Farkaš J, Frýda J, Paulukat C, et al. Chromium isotope fractionation between modern seawater and biogenic carbonates from the Great Barrier Reef, Australia: Implications for the paleo-seawater δ53Cr reconstruction[J]. Earth and Planetary Science Letters, 2018, 498: 140-151. |
[253] |
Frei R, Paulukat C, Bruggmann S, et al. A systematic look at chromium isotopes in modern shells-implications for paleo-environmental reconstructions[J]. Biogeosciences, 2018, 15: 4905-4922. |
[254] |
Flüger A, Bruggmann S, Frei R, et al. The role of pH on Cr(VI) partitioning and isotopic fractionation during its incorporation in calcite[J]. Geochimica et Cosmochimica Acta, 2019, 265: 520-532. |
[255] |
王相力,卫炜. 铬稳定同位素地球化学[J]. 地学前缘,2020,27(3):78-103. |
Wang Xiangli, Wei Wei. Stable chromium isotope geochemistry[J]. Earth Science Frontiers, 2020, 27(3): 78-103. |
[256] |
方子遥. 碳酸盐岩铬同位素反演古环境氧化还原程度的机制探究与实际应用[D]. 合肥:中国科学技术大学,2020:1-130. |
Fang Ziyao. Mechanism and application of chromium isotopes in carbonates as a paleo-redox proxy[D]. Hefei: University of Science and Technology of China, 2020: 1-130. |
[257] |
徐林刚. 238U/235U分馏及其地质应用[J]. 矿床地质,2014,33(3):497-510. |
Xu Lingang. 238U/235U isotope fractionation in nature and its geological applications[J]. Mineral Deposits, 2014, 33(3): 497-510. |
[258] |
Weyer S, Anbar A D, Gerdes A, et al. Natural fractionation of 238U/235U[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 345-359. |
[259] |
Jenkyns H C. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03004. |
[260] |
Andersen M B, Stirling C H, Zimmermann B, et al. Precise determination of the open ocean 234U/238U composition[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(12): Q12003. |
[261] |
Andersen M B, Romaniello S, Vance D, et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox[J]. Earth and Planetary Science Letters, 2014, 400: 184-194. |
[262] |
Chen X M, Romaniello S J, Herrmann A D, et al. Uranium isotope fractionation during coprecipitation with aragonite and calcite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 189-207. |
[263] |
沈安江,张友,冯子辉,等. 塔东古城地区碳酸盐岩储层地质认识与勘探领域[J]. 中国石油勘探,2020,25(3):96-106. |
Shen Anjiang, Zhang You, Feng Zihui, et al. Geological understandings and exploration prospects of carbonate reservoirs in Gucheng area, Tadong, Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3): 96-106. |
[264] |
Reitner J, Arp G, Thiel V, et al. Organic matter in Great Salt Lake ooids (Utah, USA) first approach to a Formation via organic matrices[J]. Facies, 1997, 36: 210-219. |
[265] |
James N P, Wood R. Reefs[M]//James N P, Dalrymple R W. Facies models 4. GEOtext 6, Geological Association of Canada, 2010: 421-447. |
[266] |
Folk R L. Spectral subdivision of limestone types[M]//Ham W E. Classification of carbonate rocks-a symposium. Tulsa, Oklahoma: American Association of Petroleum Geologists, 1962: 62-84. |
[267] |
Bramkamp R A, Powers R W. Classification of Arabian carbonate rocks[J]. GSA Bulletin, 1958, 69(10): 1305-1318. |
[268] |
Nelson H F, Brown C W, Brineman J H. Skeletal limestone classification[M]//Ham W E. Classification of carbonate rocks-a symposium. Tulsa: American Association of Petroleum Geologists, 1962: 224-252. |
[269] |
Ham W E. Classification of carbonate rocks-a symposium[M]. Tulsa: American Association of Petroleum Geologists, 1962: 1-282. |
[270] |
Todd T W. Petrogenetic classification of carbonate rocks[J]. Journal of Sedimentary Petrology, 1966, 36(2): 317-340. |
[271] |
Embry A F, Klovan J E. A Late Devonian reef tract on northeastern Banks Island, N.W.T.[J]. Bulletin of Canadian Petroleum Geology, 1971, 19(4): 730-781. |
[272] |
Tsien H H. Ancient reefs and reef carbonates[M]//Gomez C E, Birkeland R W, Buddemeier R E, et al. International coral reef symposium. Manila: Marine Sciences Center, University of the Philippines, 1981: 601-609. |
[273] |
Cuffey R J. Expanded reef-rock textural classification and the geologic history of bryozoan reefs[J]. Geology, 1985, 13(4): 307-310. |
[274] |
Wright V P. A revised classification of limestones[J]. Sedimentary Geology, 1992, 76(3/4): 177-185. |
[275] |
Insalaco E. The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs[J]. Sedimentary Geology, 1998, 118(1/2/3/4): 159-186. |
[276] |
Hallsworth C R, Knox R W O B. Classification of sediments and sedimentary rocks[R]. Nottingham: British Geological Survey, 1999. |
[277] |
Lucia F J. Carbonate reservoir characterization: An integrated approach[M]. Berlin: Springer, 2007: 1-348. |
[278] |
Reijmer J J G, Swart P K, Bauch T, et al. A re-evaluation of facies on Great Bahama Bank I: New facies maps of western Great Bahama Bank[M]//Swart P K, Eberli G P, McKenzie J A, Perspectives in Carbonate Geology: A Tribute to the Career of Robert Nathan Ginsburg. Oxford: Blackwell Publishing Ltd. Int. Assoc. Sedimentol. Spec. Publ., 2009, 41: 29-46. |
[279] |
Wood R. Are reefs and mud mounds really so different?[J]. Sedimentary Geology, 2001, 145(3/4): 161-171. |
[280] |
Bosence D W J, Bridges P H. A review of the origin and evolution of carbonate mud-mounds[M]//Monty C L V, Bosence D W J, Bridges P H, et al. Carbonate mud-mounds: Their origin and evolution. Oxford: Wiley. Int. Assoc. Sedimentol. Spec. Publ., 1995, 23: 3-9. |
[281] |
James N P, Bourque P A. Reefs and mounds[M]//Walker R G, James N P. Facies models, response to sea level change. Ottawa: Geological Association of Canada, 1992: 323-347. |
[282] |
Riding R, Virgone A. Hybrid carbonates: In situ abiotic, microbial and skeletal co-precipitates[J]. Earth-Science Reviews, 2020, 208: 103300. |
[283] |
Boquet E, Boronat A, Ramos-Cormenzana A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon[J]. Nature, 1973, 246(5434): 527-529. |
[284] |
DeJong J T, Fritzges M B, Nüsslein K. Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392. |
[285] |
De Muynck W, De Belie N, Verstraete W. Microbial carbonate precipitation in construction materials: A review[J]. Ecological Engineering, 2010, 36(2): 118-136. |
[286] |
荣辉,钱春香,李龙志. 微生物水泥胶结机理[J]. 硅酸盐学报,2013,41(3):314-319. |
Rong Hui, Qian Chunxiang, Li Longzhi. Cementation mechanism of microbe cement[J]. Journal of the Chinese Ceramic Society, 2013, 41(3): 314-319. |
[287] |
Achal V, Mukherjee A. A review of microbial precipitation for sustainable construction[J]. Construction and Building Materials, 2015, 93: 1224-1235. |
[288] |
Shahrokhi-Shahraki R, Zomorodian S M A, Niazi A, et al. Improving sand with microbial-induced carbonate precipitation[J]. Proceedings of the Institution of Civil Engineers Ground Improvement, 2015, 168(GI3): 217-230. |
[289] |
张海丽,徐品品,冷立健,等. 微生物诱导碳酸钙沉积研究与应用[J]. 生物学杂志,2020,37(1):86-91. |
Zhang Haili, Xu Pinpin, Leng Lijian, et al. Review on research and application of microbial induced calcium carbonate precipitation[J]. Journal of Biology, 2020, 37(1): 86-91. |
[290] |
Achal V, Mukherjee A, Reddy M S. Effect of calcifying bacteria on permeation properties of concrete structures[J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(9): 1229-1234. |
[291] |
Achal V, Pan X L, Zhang D Y. Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.[J]. Chemosphere, 2012, 89(6): 764-768. |
[292] |
Kumari D, Pan X L, Lee D J, et al. Immobilization of cadmium in soil by microbially induced carbonate precipitation with Exiguobacterium undae at low temperature[J]. International Biodeterioration & Biodegradation, 2014, 94: 98-102. |
[293] |
王茂林,吴世军,杨永强,等. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究,2018,31(2):206-214. |
Wang Maolin, Wu Shijun, Yang Yongqiang, et al. Microbial induced carbonate precipitation and its application for immorbilization of heavy metals: A review[J]. Research of Environmental Sciences, 2018, 31(2): 206-214. |
[294] |
Westall F, Steele A, Toporski J, et al. Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial samples[J]. Journal of Geophysical Research, 2000, 105(E10): 24511-24527. |
[295] |
Reitner J. Organomineralization: A clue to the understanding of meteorite-related “bacteria-shaped” carbonate particles[M]//Seckbach J. Origins. Genesis, evolution and diversity of life. Dordrecht: Kluwer Academic Publishers, 2004: 195-212. |
[296] |
Kirkland B L, Lynch F L, Rahnis M A, et al. Alternative origins for nannobacteria-like objects in calcite[J]. Geology, 1999, 27(4): 347-350. |
[297] |
Rodríguez-Martínez M. Waulsortian mud mounds[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Berlin: Springer, 2011: 667-675. |
[298] |
Kaufmann B. Diagenesis of Middle Devonian carbonate mounds of the Mader Basin (eastern Anti-Atlas, Morocco)[J]. Journal of Sedimentary Research, 1997, 67(5): 945-956. |
[299] |
Bełka Z. Early Devonian Kess-Kess carbonate mud mounds of the eastern Anti-Atlas (Morocco), and their relation to submarine hydrothermal venting[J]. Journal of Sedimentary Research, 1998, 68(3): 368-377. |
[300] |
Roberts H H, Aharon P, Carney R, et al. Sea floor responses to hydrocarbon seeps, Louisiana continental slope[J]. Geo-Marine Letters, 1990, 10(4): 232-243. |
[301] |
Gaillard C, Bourseau J P, Boudeulle M, et al. Les pseudo-biohermes de Beauvoisin (Drôme): Un site hydrotermal sur la marge téthysienne à l’Oxfordien?[J]. Bulletin De La Société Géologique de France, 1985, 8: 9-78. |
[302] |
Moore C H, Wade W J. Carbonate reservoirs: Porosity and diagenesis in a sequence stratigraphic framework[M]. 2nd ed. Amsterdam, Netherland: Elsevier, 2013: 1-392. |
[303] |
Moore C H. Carbonate reservoirs: Porosity evolution and diagenesis in a sequence stratigraphic framework[M]. Amsterdam: Elsevier Scence, 2001: 1-460. |
[304] |
Mancini E A, Llinás J C, Parcell W C, et al. Upper Jurassic thrombolite reservoir play, northeastern Gulf of Mexico[J]. AAPG Bulletin, 2004, 88(11): 1573-1602. |
[305] |
Ahr W M. Microbial carbonates as hydrocarbon reservoirs[C]. 2009 Annual Convention and Exhibition, Denver, Colorado, 2009: AAPG Search and Discovery Article #90090. |