Advanced Search
Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents

DONG DaZhong, QIU Zhen, ZHANG LeiFu, LI ShuXin, ZHANG Qin, LI XingTao, ZHANG SuRong, LIU HanLin, WANG YuMan. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. doi: 10.14027/j.issn.1000-0550.2021.002
Citation: DONG DaZhong, QIU Zhen, ZHANG LeiFu, LI ShuXin, ZHANG Qin, LI XingTao, ZHANG SuRong, LIU HanLin, WANG YuMan. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. doi: 10.14027/j.issn.1000-0550.2021.002

Progress on sedimentology of transitional facies shales and new discoveries of shale gas

doi: 10.14027/j.issn.1000-0550.2021.002
Funds:

Science and Technology Major Projects of PetroChina 2020E-31

  • Received Date: 2020-09-18
  • Publish Date: 2021-02-06
  • The successful scale-beneficial exploitation of marine shale gas in the Sichuan Basin has made China's shale gas step into the fast development lane,and establish the important strategic position in China's energy security. China's marine-continental transitional facies shale gas resources are abundant, which are expected to be the real field in terms of increasing the reserves and enhancing the production of China's shale gas. To date,the exploration and development of transitional shale gas and the study of its geological evaluation are still in the initial stage,and studies regarding unconventional petroleum sedimentology such as the development characteristics and distribution pattern of organic-rich shales, the sedimentary model of transitional shales, and organic matter enrichment mechanism, require further investigation. By defining the relevant concepts and characteristics of transition facies,typical transitional shale gas layers at home and abroad are reviewed, and the research status and new progress of transitional shale sedimentology are summarized, revealing the favorable environment for transitional facies organic-rich shales, sedimentary model, and the fundamental shale gas reservoir characteristics. The breakthroughs and new discoveries of transitional shale gas in several basins including the Ordos Basin,Sichuan Basin,Bohai Bay Basin and so on are systematically discussed,demonstrating the good prospects of the transitional facies shale gas exploration and development. Considering the transitional facies shales are often interlayered with coals,it is indicated that shale gas,coalbed methane could be developed in a collective manner,the “volume development” of transitional facies layers could be applied,so as to effectively promote the high quality development of the natural gas industry in China.
  • [1] 邹才能,翟光明,张光亚,等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发,2015,42(1):13-25.

    Zou Caineng, Zhai Guangming, Zhang Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25.
    [2] 董大忠,王玉满,李新景,等. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业,2016,36(1):19-32.

    Dong Dazhong, Wang Yuman, Li Xinjing, et al. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32.
    [3] 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业,2018,38(10):11-18.

    Guo Xusheng, Hu Dongfeng, Liu Ruobing, et al. Geological conditions and exploration potential of Permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 11-18.
    [4] 匡立春,董大忠,何文渊,等. 鄂尔多斯盆地东缘海陆过渡相页岩气地质特征及勘探开发前景[J]. 石油勘探与开发,2020,47(3):435-446.

    Kuang Lichun, Dong Dazhong, He Wenyuan, et al. Geological characteristics and development potential of transitional shale gas in the east margin of the Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(3): 435-446.
    [5] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [6] Qiu Z, Zou C N. Controlling factors on the formation and distribution of “Sweet-Spot areas” of marine gas shales in South China and a preliminary discussion on unconventional petroleum sedimentology[J]. Journal of Asian Earth Sciences, 2020, 194: 103989.
    [7] 何幼斌,王文广. 沉积岩与沉积相[M]. 北京:石油工业出版社,2007.

    He Youbin, Wang Wenguang. Sedimentary rocks and sedimentary facies[M]. Beijing: Petroleum Industry Press, 2007.
    [8] 朱筱敏. 沉积岩石学[M]. 4版. 北京:石油工业出版社,2008.

    Zhu Xiaomin. Sedimentary petrology[M]. 4th ed. Beijing: Petroleum Industry Press, 2008.
    [9] 姜在兴. 沉积学[M]. 2版. 北京:石油工业出版社,2010.

    Jiang Zaixing. Sedimentology[M]. 2nd ed. Beijing: Petroleum Industry Press, 2010.
    [10] 林春明. 沉积岩石学[M]. 北京:科学出版社,2019. 北京.

    Lin Chunming. Sedimentary petrology[M]. Beijing: Science Press, 2019.
    [11] 冯增昭. 沉积相的一些术语定义的评论[J]. 古地理学报,2020,22(2):207-220.

    Feng Zengzhao. A review on the definitions of terms of sedimentary facies[J]. Journal of Palaeogeography, 2020, 22(2): 207-220.
    [12] Boggs S, Jr. Principles of sedimentology and stratigraphy[M]. 5th ed. Boston: Pearson India, 2012.
    [13] Boyd R, Dalrymple R, Zaitlin B A. Classification of clastic coastal depositional environments[J]. Sedimentary Geology, 1992, 80(3/4): 139-150.
    [14] Galloway W E. Clastic depositional systems and sequences: Applications to reservoir prediction, delineation, and characterization[J]. The Leading Edge, 1998, 17(2): 173-180.
    [15] Harraz H Z. Introduction to sedimentary ore deposits[J]. Online Presentation, 2013, doi: 10.13140/RG.2.1.1035.8640.
    [16] Reineck H E. German North Sea tidal flats[M]//Ginsburg R N. Tidal deposits: A casebook of recent examples and fossil counterparts. Berlin Heidelberg: Springer, 1975.
    [17] 冯增昭. 中国沉积学[M]. 2版. 北京:石油工业出版社,2013.

    Feng Zengzhao. Sedimentology of China[M]. 2nd ed. Beijing: Petroleum Industry Press, 2013.
    [18] Anna L O. Chapter1. Geologic assessment of undiscovered oil and gas in the Powder River Basin province, Wyoming and Montana[M]//Anna L O, Klett T R, Le P A. Total petroleum systems and geologic assessment of oil and gas resources in the Powder River Basin province, Wyoming and Montana.

    Geological Survey U.S., 2009.
    [19] Energy Information Administration U.S.. Review of emerging resources: US shale gas and shale oil plays[R]. Washington, DC:

    U.S. Energy Information Administration, 2011.
    [20] Liang Q S, Zhang X, Tian J C, et al. Geological and geochemical characteristics of marine-continental transitional shale from the Lower Permian Taiyuan Formation, Taikang Uplift, southern North China Basin[J]. Marine and Petroleum Geology, 2018, 98: 229-242.
    [21] He J, Ding W, Jiang Z, et al. Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: A case study from the Es3Lshale in the Jiyang Depression, Bohai Bay Basin, eastern China[J]. Journal of Petroleum Science and Engineering, 2016, 145: 238-255.
    [22] 鄢继华,常嘉,陈世悦,等. 秦皇岛地区上古生界沉积特征与沉积演化[J]. 古地理学报,2019,21(5):743-756.

    Yan Jihua, Chang Jia, Chen Shiyue, et al. Sedimentary characteristics and evolution of the Upper Paleozoic strata in Qinhuangdao area[J]. Journal of Palaeogeography, 2019, 21(5): 743-756.
    [23] Luo W, Hou M C, Liu X C, et al. Geological and geochemical characteristics of marine-continental transitional shale from the Upper Permian Longtan Formation, northwestern Guizhou, China[J]. Marine and Petroleum Geology, 2018, 89: 58-67.
    [24] Liu S X, Wu C F, Li T, et al. Multiple geochemical proxies controlling the organic matter accumulation of the marine-continental transitional shale: A case study of the Upper Permian Longtan Formation, western Guizhou, China[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 152-165.
    [25] 闫德宇,黄文辉,陆小霞,等. 下扬子区海陆过渡相不同沉积环境页岩气成藏条件对比[J]. 煤炭学报,2016,41(7):1778-1787.

    Yan Deyu, Huang Wenhui, Lu Xiaoxia, et al. Contrast of reservoir-forming conditions of marine-continental transitional shale gas in different sedimentary environments in the Lower Yangtze area of China[J]. Journal of China Coal Society, 2016, 41(7): 1778-1787.
    [26] 顾志翔,彭勇民,何幼斌,等. 湘中坳陷二叠系海陆过渡相页岩气地质条件[J]. 中国地质,2015,42(1):288-299.

    Gu Zhixiang, Peng Yongmin, He Youbin, et al. Geological conditions of Permian sea-land transitional facies shale gas in the Xiangzhong Depression[J]. Geology in China, 2015, 42(1): 288-299.
    [27] 包书景,林拓,聂海宽,等. 海陆过渡相页岩气成藏特征初探:以湘中坳陷二叠系为例[J]. 地学前缘,2016,23(1):44-53.

    Bao Shujing, Lin Tuo, Nie Haikuan, et al. Preliminary study of the transitional facies shale gas reservoir characteristics: Taking Permian in the Xiangzhong Depression as an example[J]. Earth Science Frontiers, 2016, 23(1): 44-53.
    [28] 杨滔,曾联波,聂海宽,等. 湘中坳陷海陆过渡相页岩吸附能力及控制因素[J]. 岩性油气藏,2019,31(2):105-114.

    Yang Tao, Zeng Lianbo, Nie Haikuan, et al. Adsorption capacity and controlling factors of marine-continental transitional shale in Xiangzhong Depression[J]. Lithologic Reservoirs, 2019, 31(2): 105-114.
    [29] 邓运华. 试论中国近海两个坳陷带油气地质差异性[J]. 石油学报,2009,30(1):1-8.

    Deng Yunhua. Analysis on differences of petroleum type and geological conditions between two Depression Belts in China offshore[J]. Acta Petrolei Sinica, 2009, 30(1): 1-8.
    [30] 邓运华,兰蕾,李友川,等. 论三角洲对南海海相油气田分布的控制作用[J]. 石油学报,2019,40(增刊2):1-12.

    Deng Yunhua, Lan Lei, Li Youchuan, et al. On the control effect of deltas on the distribution of marine oil and gas fields in the South China Sea[J]. Acta Petrolei Sinica, 2019, 40(Suppl. 2): 1-12.
    [31] Australia Geoscience. Carnarvon Basin[EB/OL]. 2017. http://www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/offshore-northwest-australia/canarvon.
    [32] 侯宇光,何生,杨香华,等. 澳大利亚波拿巴盆地大陆边缘裂陷期海陆过渡相烃源岩地球化学特征与发育模式[J]. 石油实验地质,2015,37(3):374-382.

    Hou Yuguang, He Sheng, Yang Xianghua, et al. Geochemical characteristics and development model of transitional source rocks during the continental margin rifting stage, Bonaparte Basin, Australia[J]. Petroleum Geology & Experiment, 2015, 37(3): 374-382.
    [33] Gentzis T. A review of the thermal maturity and hydrocarbon potential of the Mancos and Lewis shales in parts of New Mexico, USA[J]. International Journal of Coal Geology, 2013, 113: 64-75.
    [34] Pyles D R, Slatt R M. Applications to understanding shelf edge to base-of-slope changes in stratigraphic architecture of prograding basin margins: Stratigraphic evolution of the Upper Cretaceous Lewis Shale, southern Wyoming, USA [M] // Nilsen T H, Shew R D, Steffens G S, et al. Atlas of Deep Water Outcrops: AAPG Studies in Geology 56. Tulsa: AAPG, 2007, 1-19.
    [35] Soyinka O A, Slatt R M. Identification and micro-stratigraphy of hyperpycnites and turbidites in Cretaceous Lewis Shale, Wyoming[J]. Sedimentology, 2008, 55(5): 1117-1133.
    [36] Pyles D R, Syvitski J P M, Slatt R M. Defining the concept of stratigraphic grade and applying it to stratal (reservoir) architecture and evolution of the slope-to-basin profile: An outcrop perspective[J]. Marine and Petroleum Geology, 2011, 28(3): 675-697.
    [37] 焦方正. 页岩气"体积开发"理论认识、核心技术与实践[J]. 天然气工业,2019,39(5):1-14.

    Jiao Fangzheng. Theoretical insights, core technologies and practices concerning "volume development" of shale gas in China[J]. Natural Gas Industry, 2019, 39(5): 1-14.
    [38] 陈洪德,李洁,张成弓,等. 鄂尔多斯盆地山西组沉积环境讨论及其地质启示[J]. 岩石学报,2011,27(8):2213-2229.

    Chen Hongde, Li Jie, Zhang Chenggong, et al. Discussion of sedimentary environment and its geological enlightenment of Shanxi Formation in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2213-2229.
    [39] Ding W L, Zhu D W, Cai J J, et al. Analysis of the developmental characteristics and major regulating factors of fractures in marine⁃continental transitional shale-gas reservoirs: A case study of the Carboniferous⁃Permian strata in the southeastern Ordos Basin, central China[J]. Marine and Petroleum Geology, 2013, 45: 121-133.
    [40] 唐玄,张金川,丁文龙,等. 鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J]. 地学前缘,2016,23(2):147-157.

    Tang Xuan, Zhang Jinchuan, Ding Wenlong, et al. The reservoir property of the Upper Paleozoic marine-continental transitional shale and its gas-bearing capacity in the Southeastern Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2): 147-157.
    [41] Yang C, Zhang J C, Wang X Z, et al. Nanoscale pore structure and fractal characteristics of a marine-continental transitional shale: A case study from the Lower Permian Shanxi Shale in the southeastern Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 88: 54-68.
    [42] 侯中帅,陈世悦,王越,等. 鄂尔多斯盆地东缘保德地区上古生界层序地层与沉积相特征[J]. 古地理学报,2018,20(2):231-243.

    Hou Zhongshuai, Chen Shiyue, Wang Yue, et al. Characteristics of sequence stratigraphy and sedimentary facies of the Upper Paleozoic in Baode area, eastern margin of Ordos Basin[J]. Journal of Palaeogeography, 2018, 20(2): 231-243.
    [43] 沈玉林,秦勇,申建,等. 鄂尔多斯盆地东缘上古生界煤系叠置含气系统发育的沉积控制机理[J]. 天然气工业,2017,37(11):29-35.

    Shen Yulin, Qin Yong, Shen Jian, et al. Sedimentary control mechanism of the superimposed gas bearing system development in the Upper Palaeozoic coal measures along the eastern margin of the Ordos Basin[J]. Natural Gas Industry, 2017, 37(11): 29-35.
    [44] 苏东旭,于兴河,李胜利,等. 鄂尔多斯盆地东南部本溪组障壁海岸沉积特征与展布规律[J]. 天然气工业,2017,37(9):48-56.

    Su Dongxu, Yu Xinghe, Li Shengli, et al. Sedimentary characteristics and distribution laws of Benxi Fm barrier coast in SE Ordos Basin[J]. Natural Gas Industry, 2017, 37(9): 48-56.
    [45] 薛纯琦,吴建光,钟建华,等. 海陆交互相沉积泥页岩发育特征研究:以鄂尔多斯盆地临兴地区太原组为例[J]. 中国矿业大学学报,2019,48(4):870-881.

    Xue Chunqi, Wu Jianguang, Zhong Jianhua, et al. Characteristics of the marine-terrigenous interdepositional shale: A case study of Taiyuan Formation in Linxing area of Ordos Basin[J]. Journal of China University of Mining & Technology, 2019, 48(4): 870-881.
    [46] 邵龙义,张超,闫志明,等. 华南晚二叠世层序-古地理及聚煤规律[J]. 古地理学报,2016,18(6):905-919.

    Shao Longyi, Zhang Chao, Yan Zhiming, et al. Sequence-palaeogeography and coal accumulation of the Late Permian in South China[J]. Journal of Palaeogeography, 2016, 18(6): 905-919.
    [47] 童晓光,关增淼. 世界石油勘探开发图集:亚洲太平洋地区分册[M]. 北京:石油工业出版社,2001.

    Tong Xiaoguang, Guan Zengmiao. Atlas of world petroleum exploration and development[M].Beijing: Petroleum Industry Press, 2001.
    [48] 刘焕杰,贾玉如,龙耀珍,等. 海相成煤论进展[J]. 沉积学报,1992,10(3):47-56.

    Liu Huanjie, Jia Yuru, Long Yaozhen, et al. Progress in coal-forming theory of marine facies[J]. Acta Sedimentologica Sinica, 1992, 10(3): 47-56.
    [49] 邵龙义,张鹏飞,刘钦甫,等. 湘中下石炭统测水组沉积层序及幕式聚煤作用[J]. 地质论评,1992,38(1):52-59.

    Shao Longyi, Zhang Pengfei, Liu Qinfu, et al. The Lower carboniferous Ceshui Formation in central Hunan, South China: Depositional sequences and episodic coal accumulation[J]. Geological Review, 1992, 38(1): 52-59.
    [50] 李从先,陈刚,王平. 我国沿岸晚第四纪砂坝-泻湖体系的沉积模式[J]. 沉积学报,1991,9(4):12-19.

    Li Congxian, Chen Gang, Wang Ping. The stratigraphic model of the Late-Quaternary Barrier-Lagoon Depositional systems along the coast of China[J]. Acta Sedimentologica Sinica, 1991, 9(4): 12-19.
    [51] 刘焕杰. 潮汐沉积与含煤建造[J]. 沉积学报,1988,6(2):42-49.

    Liu Huanjie. Tidal deposits and coal-bearing formations[J]. Acta Sedimentologica Sinica, 1988, 6(2): 42-49.
    [52] Davis R A, Jr. Geology of Holocene barrier island systems[M]. Berlin Heidelberg: Springer-Verlag, 1994.
    [53] 李宝芳,刘光华,李祯,等. 豫西太原组、山西组中潮道沉积的类型和特征[J]. 沉积学报,1988,6(2):31-40.

    Li Baofang, Liu Guanghua, Li Zhen, et al. The types and characteristics of tidal channel deposits in western Henan province[J]. Acta Sedimentologica Sinica, 1988, 6(2): 31-40.
    [54] Steele J H, Thorpe S, Turekian K. Encyclopedia of ocean sciences[M]. 1st ed, Amsterdam: Elsevier, 2001: 1427-1438.
    [55] 蒋恕,唐相路,Osborne S,等. 页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例[J]. 地球科学,2017,42(7):44-52.

    Jiang Shu, Tang Xianglu, Osborne S, et al. Enrichment factors and current misunderstanding of shale oil and gas: Case study of shales in U.S., Argentina and China[J]. Earth Science, 2017, 42(7): 44-52.
    [56] 李新景,吕宗刚,董大忠,等. 北美页岩气资源形成的地质条件[J]. 天然气工业,2009,29(5):27-32.

    Li Xinjing, Zonggang Lü, Dong Dazhong, et al. Geologic controls on accumulation of shale gas in North America[J]. Natural Gas Industry, 2009, 29(5): 27-32.
    [57] Bowker K A. Barnett Shale gas production, Fort Worth Basin: Issues and discussion[J]. AAPG Bulletin, 2007, 91(4): 523-533.
    [58] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796.

    Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
    [59] Loucks R G, Ruppel S C. Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas[J]. AAPG Bulletin, 2007, 91(4): 579-601.
    [60] 董大啸,邵龙义,李明培. 华北地台晚石炭世—早二叠世含煤岩系聚煤规律研究[J]. 煤炭科学技术,2017,45(9):175-181,187.

    Dong Daxiao, Shao Longyi, Li Mingpei. Study on coal accumulating law of Late Carboniferous-Early Permian coal-bearing strata in North China Platform[J]. Coal Science and Technology, 2017, 45(9): 175-181, 187.
    [61] Shao L Y, Wang X T, Wang D D, et al. Sequence stratigraphy, paleogeography, and coal accumulation regularity of major coal-accumulating periods in China[J]. International Journal of Coal Science & Technology, 2020, 7(2): 240-262.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(4)

Article Metrics

Article views(1765) PDF downloads(380) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-09-18
  • Published:  2021-02-06

Progress on sedimentology of transitional facies shales and new discoveries of shale gas

doi: 10.14027/j.issn.1000-0550.2021.002
Funds:

Science and Technology Major Projects of PetroChina 2020E-31

Abstract: The successful scale-beneficial exploitation of marine shale gas in the Sichuan Basin has made China's shale gas step into the fast development lane,and establish the important strategic position in China's energy security. China's marine-continental transitional facies shale gas resources are abundant, which are expected to be the real field in terms of increasing the reserves and enhancing the production of China's shale gas. To date,the exploration and development of transitional shale gas and the study of its geological evaluation are still in the initial stage,and studies regarding unconventional petroleum sedimentology such as the development characteristics and distribution pattern of organic-rich shales, the sedimentary model of transitional shales, and organic matter enrichment mechanism, require further investigation. By defining the relevant concepts and characteristics of transition facies,typical transitional shale gas layers at home and abroad are reviewed, and the research status and new progress of transitional shale sedimentology are summarized, revealing the favorable environment for transitional facies organic-rich shales, sedimentary model, and the fundamental shale gas reservoir characteristics. The breakthroughs and new discoveries of transitional shale gas in several basins including the Ordos Basin,Sichuan Basin,Bohai Bay Basin and so on are systematically discussed,demonstrating the good prospects of the transitional facies shale gas exploration and development. Considering the transitional facies shales are often interlayered with coals,it is indicated that shale gas,coalbed methane could be developed in a collective manner,the “volume development” of transitional facies layers could be applied,so as to effectively promote the high quality development of the natural gas industry in China.

DONG DaZhong, QIU Zhen, ZHANG LeiFu, LI ShuXin, ZHANG Qin, LI XingTao, ZHANG SuRong, LIU HanLin, WANG YuMan. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. doi: 10.14027/j.issn.1000-0550.2021.002
Citation: DONG DaZhong, QIU Zhen, ZHANG LeiFu, LI ShuXin, ZHANG Qin, LI XingTao, ZHANG SuRong, LIU HanLin, WANG YuMan. Progress on sedimentology of transitional facies shales and new discoveries of shale gas[J]. Acta Sedimentologica Sinica, 2021, 39(1): 29-45. doi: 10.14027/j.issn.1000-0550.2021.002
  • 我国发育3类富有机质页岩:海相页岩、海陆过渡相页岩、陆相页岩[1]。目前海相页岩气已经实现规模高效开发,在四川盆地发现涪陵、长宁、威远、昭通等千亿方级大气田,在川南地区形成我国石油工业史上第一个10万亿方级天然气大气区。我国海陆过渡相页岩气资源丰富,资源量约19.8×1012 m3,占我国页岩气总资源量的25%,勘探开发潜力大[2]。近年来,中国石油、中国石化、自然资源部等针对海陆过渡相页岩气进行了积极探索,完钻页岩气井100余口,在石炭系、二叠系等多套页岩地层发现页岩气[34],展现出我国海陆过渡相页岩气良好的勘探开发前景。

    目前海陆过渡相页岩气地质研究处在初期阶段,已有研究集中在TOC含量、矿物组成、孔隙类型、含气量等页岩气储层特征方面,同时对海陆过渡相页岩沉积环境、沉积模式、优质岩相类型等方面也开展了较多研究[4],但目前仍缺少较为系统的非常规油气沉积学研究[5-6],如“海陆过渡相”究竟是指哪些沉积相还存在明显分歧、海陆过渡环境富有机质页岩发育特征与分布规律尚不清楚,以及富有机质页岩沉积模式认识不统一等。本文通过厘定海陆过渡相相关概念与主要特征,梳理国内外典型海陆过渡相页岩气层系,归纳海陆过渡相富有机质页岩沉积研究现状与新进展,明确海陆过渡相页岩气勘探新发现,为海陆过渡相页岩沉积基础研究提供参考,推动海陆过渡相页岩气快速发展。

  • 国内外沉积学界一般将沉积相划分为3大类,即陆相、海相、海陆过渡相/海陆交互相(图1)。海陆过渡相是海陆过渡环境的产物,在空间上处于海相环境与陆相环境的过渡带,兼受海洋营力和大陆营力作用。但是,对于海陆过渡相(transitional facies)的划分尚不完全一致(表1)。何幼斌等(2006)[7]认为海陆过渡相组包含2类沉积相:三角洲相和河口湾相。朱筱敏(2008) [8]认为海陆过渡相组包含5类沉积相:三角洲相、潟湖相、障壁岛相、潮坪相与河口湾相。姜在兴(2010) [9]认为海陆过渡相组包含5类沉积相:三角洲相、辫状河三角洲相、扇三角洲相、河口湾相与滨岸相。林春明(2019) [10]认为海陆过渡相组包含2类沉积相:三角洲相和河口湾相。冯增昭(2020) [11]认为海陆过渡相组包括2类沉积相:三角洲相和河口湾相,并认为只有三角洲相是公认的海陆过渡相;潟湖相、障壁岛相与潮坪相应归属于滨海相。Boggs(2012) [12]将沉积相划分为陆相、海相与边缘海相(marginal marine),“边缘海相发育于海相与陆相之间”,等同于常用的海陆过渡相,包括6大类沉积相:三角洲相、海滩相、障壁岛相、河口湾相、潟湖相与潮坪相。另外,北美部分学者还常用沉积体系(depositional system)概念来描述与沉积过程相关环境中形成的三维沉积体,与海陆过渡相相关的沉积体系包括:三角洲沉积体系和障壁海岸沉积体系[13-14]

    综合国内外海陆过渡相/环境的划分,充分考虑沉积学界共识和油气勘探开发实际需要,本文将海陆过渡相划分为5类(图1表1):三角洲相、河口湾相、潟湖相、障壁岛相与潮坪相。

    三角洲(delta)是河流入海时,由于坡度减缓,流速降低,形成的三角形态沉积体,在空间上位于海相环境和陆相环境的过渡地带,受河流营力和潮汐营力的共同作用,是公认的海陆过渡相。河口湾(estuary)是被海水淹没的河口,是河流水流与潮汐水流的汇合处,一般为向海扩展的漏斗状的狭长海湾,具有淡水、咸水混合的特征。潮坪是靠近海岸、周期性地遭受潮汐作用的陆地。一般认为,按照水动力强弱可将潮坪相划分为潮上带、潮间带与潮下带[16]。潮上带为低能带,水体滞留,泥质含量最多,发育水平层理;潮下带被波浪反复冲洗,能量较高,砂质含量最高,发育沙丘交错层理。潮汐层理是鉴定潮汐沉积的充分必要条件,鱼骨状双向交错层理是潮汐沉积最明显的标志[17]。潟湖是平行海/湖岸线,由障壁岛或者珊瑚礁隔挡而因此与海/湖水体隔离的区域,受气候与淡水供给控制。潟湖可分为淡水潟湖与咸化潟湖两类。当物源充足时,潟湖可转变为潮坪环境,二者不易区分。此外,潟湖又通常与障壁岛伴生发育,一般在障壁岛后的向陆一侧发育潟湖,因此常被合称为障壁岛—潟湖相。

    Figure 1.  Diagram showing the distribution of transitional facies (modified from reference[15])

    代表学者(发表时间) 沉积相类型
    何幼斌(2006)[7] 三角洲相 河口湾相
    林春明(2019)[10] 三角洲相 河口湾相
    冯增昭(2020)[11] 三角洲相 河口湾相
    朱筱敏(2008)[8] 三角洲相 河口湾相 障壁岛相 潟湖相 潮坪相
    姜在兴(2010)[11] 三角洲相 河口湾相 障壁岛相 潟湖相 潮坪相
    Boggs (2012)[12] 三角洲相 河口湾相 障壁岛相 潟湖相 潮坪相 海滩相
    Boyd et al.(1992)[13] Galloway (1998)[14] 三角洲沉积体系 障壁海岸沉积体系
    本文(2021) 三角洲相 河口湾相 障壁岛相 潟湖相 潮坪相

    Table 1.  Classification of transitional facies

  • 全球已知的页岩油气产层以海相页岩占绝对优势,海陆过渡相页岩报道相对较少[18-19],仅限于美国粉河、墨西哥湾、萨克拉门托、圣胡安与澳大利亚北卡那封、波拿巴等盆地中新生代页岩(表2[3-4,18-32]。粉河盆地中新生代海陆过渡相为页岩、灰岩、砂岩、煤层互层,以III型干酪根为主,煤层气资源量(0.17~1.1)×1012 m3,少量页岩油气[18-19]。墨西哥湾盆地、萨克拉门托盆地等中新生代盆地经历了海相、海陆过渡相、陆相的连续演化过程,以常规油气为主,局部发育页岩油气。美国圣胡安盆地、澳大利亚北卡那封盆地与波拿巴盆地是已知发现或潜在海陆过渡相页岩气的重要盆地。

  • 圣胡安盆地位于美国西部落基山地区的科罗拉多州西南部和新墨西哥州西北部,发现于1947年,面积19 425 km2,是美国煤层气和页岩气开发较成功的盆地,煤层气开采始于1850年代,页岩气开采始于1990年代,产层上白垩统Lewis页岩,是美国传统的五大页岩气产气层之一,资源量2.74×1012 m3[19],页岩气井单井产量2 831~5 663 m3。Lewis页岩厚60~90 m,埋深915~1 828 m,平均厚度425 m,有机质类型以III型为主,TOC含量0.45%~2.5%,平均1.3%,R o为68%~1.88%,孔隙度平均3.0%~5.5%,硅质含量平均56%,含气量0.42~1.27 m3/t,以吸附气为主[33]。由于III型干酪根反映有机质以陆源为主,该页岩层系被认为是典型的海陆过渡相页岩。近年来也有一些研究认为Lewis页岩为一套完整的三角洲—浅水陆棚—深水陆坡—深水盆地体系沉积,水深为40~450 m,陆棚相与陆坡相页岩是重要的页岩气储层,而三角洲相仅占很少比例[34-36]

  • 北卡那封盆地位于澳大利亚西北陆架的最南端,面积34.35×104 km2,地层最大厚度15 000 m,是澳大利亚重要的石油天然气盆地,也是世界上主要的富气盆地之一,发现了194个油气田,探明石油可采储量1 637×104 t,天然气可采储量3.6×1012 m3。该盆地三叠系—侏罗系发育多套烃源岩,其中上三叠统Mungaroo组页岩是主要烃源岩,品质最好,为碳质页岩和煤岩,干酪根类型为II—III型,TOC含量平均2.7%,被认为是海陆过渡相三角洲平原沼泽沉积[31]

    波拿巴盆地位于澳大利亚西北大陆边缘,面积27×104 km2,已发现多个油气藏,既产油又产气,烃源岩发育层位为中侏罗统Elang组、上侏罗统Frigate组碳质页岩与煤岩,干酪根类型为II—III型,TOC平均含量为1%~2%,为海陆过渡相三角洲平原和前三角洲沉积[32]

    盆地 页岩年代/层系 代表井/剖面 优势沉积相 平均厚度/m 总有机碳(TOC) 平均值/% 干酪根类型 参考文献
    鄂尔多斯 二叠系太原—山西组 大吉51井 潟湖、潮坪、三角洲 88.6 4.91 Ⅱ—Ⅲ [4]
    南华北 石炭—二叠系 太原—山西组 牟页1井 潟湖、三角洲 102.5 2.67 [20]
    渤海湾 石炭—二叠系 太原—山西组 秦皇岛剖面 潟湖、沼泽 35 3 Ⅱ—Ⅲ [21⁃22]
    四川 二叠系龙潭组 西页1井 东页深1井 潟湖、障壁岛 175 2.43 Ⅱ—Ⅲ [23⁃25]
    湘中 二叠系龙潭组—大隆组 2015H—D6井 湘页1井 潟湖、沼泽、滨海 65 2.63 Ⅱ—Ⅲ [26⁃28]
    柴达木 上石炭统 克鲁克组 柴页2井 石灰沟剖面 潟湖、潮坪、沼泽 576 3.46 Ⅱ—Ⅲ [3⁃4]
    沁水 石炭—二叠系 太原—山西组 柿状北306井 寿阳 Y01井 潟湖、潮坪、三角洲 38.5 3.72 Ⅱ—Ⅲ [3⁃4,20]
    琼东南 渐新统崖城组 YC13⁃2井 三角洲 2.43 [29⁃30]
    北卡那封 上三叠统 Mungaroo组 三角洲 [31]
    波拿巴 上侏罗统 Frigate组 三角洲 [32]

    Table 2.  Characteristics of main transitional shales

  • 尽管我国页岩气主要产自五峰组—龙马溪组海相页岩,但在鄂尔多斯、四川、渤海湾、柴达木等盆地已证实存在海陆过渡相页岩气。这些盆地的海陆过渡相页岩气层系主要为石炭系—二叠系页岩(表2)。

  • 鄂尔多斯盆地是我国大型含油气盆地之一,沉积岩厚度5 000~10 000 m,面积37×104 km2,油气勘探开发始于二十世纪初,已发现侏罗系、三叠系、二叠系、石炭系、奥陶系等多套产油气层系。近年来,二叠系太原组、山西组钻井不断发现页岩气流。目前对于鄂尔多斯盆地石炭—二叠系沉积相主要有陆相与海陆过渡相两种认识,多数学者认为鄂尔多斯盆地太原组—山西组整体为海陆过渡相沉积,但在不同地区分布存在差异[4,37]。近年来随着石油天然气勘探开发力度的不断加大,大量勘探资料与地球化学分析测试资料表明,鄂尔多斯盆地东缘山西组为一套陆表海沉积的页岩层系,发育多套海陆过渡相富有机质页岩(图2a,d),累计厚度43.5~187.3 m,平均厚度88.6 m,有机质类型以Ⅱ—Ⅲ型为主,富有机质页岩段TOC含量平均4.91%。太原组为障壁岛—碳酸盐台地相沉积,山西组以三角洲相、潟湖相沉积为主[4,38-41],本溪组为海陆过渡相障壁海岸—潟湖沉积体系[42-45],发育大套厚层灰岩及页岩地层(图2b,e)。

    Figure 2.  Outcrop, core and microscopic⁃scale characteristics of transitional shales

  • 南华北盆地位于华北古板块南缘,为中生界和古生界的叠合型盆地,面积13×104 km2,中牟凹陷为南华北盆地主要构造单元,石炭系—二叠系海陆过渡相富有机质页岩累计厚度22~370 m,埋深2 800~3 500 m。山西组页岩厚度43 m,以III型干酪根为主,平均TOC含量为1.49%~2.58%,R o为2.6%~3.4%,石英含量34%~68%,平均为50%,平均黏土矿物含量56%[20]。太原组页岩厚度30~175 m,平均TOC含量为2.67%,平均石英矿物含量为17%~53%,平均为45.6%。太原组、山西组页岩为潟湖相与三角洲平原相沉积[20]

  • 渤海湾盆地石炭—二叠系海陆过渡相页岩主要是太原组、山西组,太原组与山西组平均脆性矿物含量分别为45.4%与48.9%;TOC含量2%~4%;以III型和II2型干酪根为主,平面上由南向北逐渐降低;富有机质页岩单层厚度≤25 m,页岩连续累积厚度≥35 m,但侧向厚度变化较大[21]。太原组整体为潮坪—潟湖—障壁岛相,山西组整体为浅水三角洲相[22],富有机质页岩发育于潟湖相、沼泽相[22]

  • 龙潭组是我国南方地区一套重要的烃源岩层系,在四川盆地广泛发育和稳定分布,为一套海陆过渡相环境沉积,由深灰色—黑色页岩、灰质页岩及炭质页岩组成,普遍夹薄煤层。四川盆地川东地区龙潭组海陆过渡相主要为黑色页岩(图2c,f)与薄层粉砂岩、煤层互层。黑色页岩单层厚度5~40 m,累计厚度60~290 m,TOC含量平均为2.43%,有机质类型以II—III型为主。富有机质页岩主要发育于障壁岛—潟湖相、三角洲前缘相,其中障壁岛—潟湖相页岩规模最大[23-25]。川南地区龙潭组海陆过渡相页岩厚度55~157 m,TOC含量平均为5.34%,以III型干酪根为主,为潮坪—潟湖、沼泽、三角洲沉积[23-25]

  • 湘中盆地二叠系龙潭组-大隆组发育厚约80 m页岩[26-28]。涟源凹陷龙潭组页岩厚度为24 m,有机质类型主要为II—III型。大隆组中部发育富有机质的钙质页岩,厚度约50 m,有机质类型主要为II型。湘中凹陷大隆组—龙潭组页岩以硅质页岩为主,生物成因硅含量较高;以II型干酪根为主,TOC平均含量为2.63%。湘中盆地二叠系龙潭组—大隆组页岩整体为潟湖—沼泽—滨海沉积[26-28,46]

  • 海陆过渡相页岩主要发育于三角洲相、潟湖相、河口湾相与潮坪相,障壁岛相以砂岩为主。潮坪相由于水体较浅,受潮汐淘洗,氧化条件不利于有机质保存,一般认为不是富有机质页岩的发育相。富有机质页岩主要发育于三角洲相与潟湖相。

  • 三角洲相是典型的海陆过渡相(表1),沉积学界一般将三角洲相划分为三角洲平原亚相、三角洲前缘亚相、前三角洲亚相。三角洲前缘以河口坝等砂质沉积体为主,页岩较少发育。目前已在三角洲前缘砂岩中发现了大量的天然气,包括孟加拉湾恒河三角洲、澳大利亚西北大陆架、尼罗河三角洲等世界知名的产气区[47],其烃源岩均为三角洲平原亚相与前三角洲亚相页岩,III型干酪根生成了丰富的天然气。我国南海新生界已发现约340个油气田,油气主要富集于三角洲相—海相沉积体系中,三角洲平原是烃源岩发育的主要场所,干酪根类型以III型为主[29-30]。对南海深水区4个盆地的统计表明,三角洲平原烃源岩包括碳质页岩与暗色页岩,TOC平均含量分别为19.8%和1.58%[29-30]

    前三角洲环境中淡水与咸水混合,浮游生物大量繁殖,勃发时可造成前三角洲贫氧环境,整体有机质来源丰富、黏土含量高、沉积速率低、水动力弱,具备有机质保存的各种有效条件[17]。前三角洲厚层页岩由于有机质含量高,往往是油气勘探的重点关注对象。虽然目前尚未见到关于三角洲相页岩油气勘探开发的报道,但考虑到三角洲相页岩厚度大、分布面积广、有机质含量高,作为烃源岩的巨大生烃能力已被证实,未来有可能成为海陆过渡相页岩气的有利产区,其页岩油气资源潜力有待深入探索。

  • 潟湖是平行海/湖岸线,由障壁岛或者珊瑚礁隔挡而与海/湖水体隔离的区域,可分为障壁岛潟湖与珊瑚礁潟湖两种。在热带开放海地区可见珊瑚礁潟湖,但多数潟湖与障壁岛伴生发育,常称为障壁—潟湖相/障壁—潟湖体系。潟湖相发育于陆表海靠近古陆一侧,富有机质页岩以黑色页岩、粉砂质页岩为主,发育水平层理,生物扰动常见,Chondrites遗迹化石发育,常见菱铁矿结核。当潟湖发育到一定程度时,可出现水体双层结构,下部水体盐度、密度高,逐渐缺氧后细菌大量繁殖且产生H2S,易形成还原环境,黄铁矿发育,有利于有机质沉积富集与保存。在潮湿气候条件下,封闭的障壁岛—潮坪—潟湖体系亦可发育大套煤层,潮坪中平坦的泥坪是发育煤层的最佳场所[48]

    典型潟湖沉积可见于华北二叠系太原组—山西组、湘中下石炭统测水组、川东二叠系龙潭组等[17,37,48-49]。石炭纪—二叠纪,华北板块广泛发育陆表海沉积体系,障壁岛—潟湖环境分布范围大,富有机质页岩发育、厚度大、有机质丰度高[17,50-51]。南华北盆地太原组潟湖相黑色页岩TOC含量0.95%~8.04%,平均2.67%[20,46],鄂尔多斯盆地东缘山西组下部潟湖相页岩连续厚度约30~40 m,TOC含量1%~12%,平均3.6%(图3)。南方扬子板块二叠纪陆表海体系也广泛发育,二叠系龙潭组中障壁—潟湖相页岩TOC平均含量为3.57%,有机质转化系数A/C值为0.08~2.54,是最优势的页岩气富集段,页岩气聚集规模较大[25]。在二叠系龙潭组障壁—潟湖相页岩上部发育良好煤岩,有利于页岩气的保存,可进行煤层气与页岩气联合开采,实现“体积开发”[37]

    Figure 3.  Transitional facies DJ 3⁃4 well in the Shanxi Formation in the Daning⁃Jixian area, eastern Ordos Basin

  • 迄今,针对海陆过渡相富有机质页岩沉积模式的探索相对较少,本文以鄂尔多斯盆地东缘二叠系山西组海陆过渡相富有机质页岩为重点,提出了富有机质页岩沉积模式。

    鄂尔多斯盆地东缘大宁—吉县地区大吉3-4井钻遇本溪组、太原组与山西组(图3)。山西组山2段厚度50.5 m,其中黑色页岩累计厚度36 m,占比大于70%,粉砂岩、细砂岩、中—粗砂岩单层厚度小于3 m,累计厚度约10 m,占比小于30%。

    潟湖相页岩主要发育在上下两个层段2 135~2 145 m、2 155~2 165 m,连续厚度均为10 m左右,发育水平层理、菱铁矿结核;附近的乡宁剖面发现海相腕足类、放射虫等化石,反映了间歇性海水侵入。2 131~2 137 m发育中—细砂岩,底部见明显侵蚀面,砂岩发育双向交错层理,为潮道相沉积。高精度地球化学数据显示(图3),太原组灰岩Sr/Ba与Sr/Cu值高,显示明显的海相沉积特征。山西组页岩具有高TOC含量,与高Ni/Co、U/Th、Sr/Ba、Sr/Cu等比值,反映平静、半咸水—咸水弱还原水体、温暖湿润气候,指示为弱水动力、弱还原的潟湖沉积环境,有利于有机质沉积富集与保存。2 135~2 145 m页岩段TOC含量与Ni/Co、U/Th、Sr/Ba、Sr/Cu等比值均高于2 155~2 165 m页岩段,海水侵入的特征更明显,反映障壁岛潮道口环境受海水影响程度更大,海水通过潮道口进入潟湖,形成半咸水-咸水环境。

    综合岩相组合、沉积构造、地化参数、古生物特征等,认为鄂尔多斯盆地东缘大宁—吉县地区山西组为典型的障壁岛—潟湖沉积模式,垂向上整体以细粒成分为主,富有机质页岩连续厚度大,一般大于10 m,整体为潟湖相沉积。可识别出三种岩相组合(图3图4):1)障壁岛潮汐水道相砂岩+潟湖相页岩组合,2)三角洲河口坝相砂岩+潟湖相页岩组合,3)冲溢扇相砂岩+潟湖相页岩组合。其中,潮汐水道相砂岩为三套中—细砂岩叠置,单层厚度2~4 m,分别呈现向上变细韵律,砂体纯净、分选性好。砂岩中发育典型的鱼骨状双向交错层理,与下覆页岩突变接触,反映了潮汐环境下水体反复冲刷簸选。三角洲河口坝相为一套约3 m厚的细砂岩,单层厚度小于1 m,整体呈现明显的向上变厚、向上变粗韵律,发育块状层理、槽状交错层理,是一套典型的三角洲平原—河口坝沉积序列。冲溢扇相为厚约1 m的细砂岩,层理不明显,为暴风浪时海水越过障壁岛横冲向陆方的潟湖一侧而形成,分选中等,见贝壳碎屑,周边泥坪环境有利于煤层形成。

    Figure 4.  Sedimentary model for the organic⁃rich shales of transitional facies in eastern Ordos Basin (modified from reference [52])

    值得注意的是,障壁岛相、潮汐水道相与河道相、三角洲分流河道相具有相似的沉积学特征。例如,潮道沉积具有明显的侵蚀下切面,砂体发育交错、板状层理,整体呈现向上变细的韵律,多层潮沟砂岩叠置,厚度可达30~40 m[53]。考虑到障壁—潮坪—潟湖体系与河流—三角洲体系在岩性组合、沉积构造、古生物组合、遗迹化石、地球化学参数等多方面的相似性,障壁岛—潟湖体系有时被误认为河流—三角洲体系[17]。因此,在对石炭—二叠系海陆过渡相沉积研究时应重点注意。

    现代潟湖沉积研究表明:珊瑚礁潟湖水深一般不超过60 m,印度洋Mayotte岛潟湖的水深最大,为92 m。潟湖宽度最大100 km,平均20 km。障壁岛—潟湖一般为长条形,全球13%的海岸线发育障壁岛—潟湖体系[54]表3),潟湖面积可超过10×104 km2。美国东海岸约1/2的海岸线发育障壁—潟湖沉积体系,障壁岛连续长度达1 500 km,障壁岛后向陆方向发育一系列复合潟湖。潟湖沉积速率较大,美国Texas潟湖沉积速率约为0.01 m/年[54]。中国亦发育大量潟湖现代沉积,有些海岸线障壁岛—潟湖的比例超过20%,例如滦河三角洲、山东半岛、长江三角洲等[50]

    潟湖的发育受构造、气候、海平面控制,可以因河流、三角洲沉积物输入而改变。在干旱封闭的潟湖中,当蒸发量大于输入量时,发育石膏、盐岩以及干缩裂纹等相关沉积构造。半封闭或有大型海侵导致海水输入时,古生物组合、水体盐度都将受到明显影响。

    上述现代沉积研究可知(图5),海陆过渡地区障壁岛—潟湖体系的发育程度、发育规模可能远超目前的认识,潟湖相页岩是重要的页岩气有利相带。

    大洲 障壁岛—潟湖海岸线比例/%
    北美洲 17.6
    亚洲 13.8
    非洲 17.9
    南美洲 12.2
    欧洲 5.3
    澳洲 11.4

    Table 3.  Global barrier⁃lagoon coastline distribution

    Figure 5.  Global barrier⁃lagoon coastline distribution (modified from reference [54])

  • 鄂尔多斯和四川盆地30余口井统计表明:海陆过渡相页岩具备形成优质页岩气储层的基本条件,即存在高TOC含量页岩集中段,发育微纳米级孔—缝体系,富含石英等脆性矿物,含气量高,地层压力适中等[4]。据鄂尔多斯盆地东缘大吉51井,山西组山2段页岩厚40~80 m,TOC含量1.0%~3.0%,其中潟湖相页岩段TOC含量2%~12%,平均3.7%。R o为1.5%~2.6%,处于生气高峰阶段。鄂尔多斯盆地东缘大吉3-4井山2段页岩厚36 m,TOC含量1%~12%,其中潟湖相页岩段TOC含量4.2%~15%,平均5.7%,R o为1.6%~3%,生气潜力大。

    海相页岩中有机质孔是优势储集空间孔隙类型之一,海陆过渡相页岩中有机质孔、无机质孔均衡发育,有机质孔隙比例相对海相要低。198个样品分析结果(图6a),海陆过渡相页岩气储层孔隙孔体积14.9~26.7 uL/g,小于海相页岩14.3~35.8 μL/g,高于陆相页岩2.4~25.6 μL/g。390个样品分析结果(图6b),海陆过渡相页岩气储层孔隙孔径分布5~11.4 nm,其中潟湖相页岩储层孔隙分布2~50 nm。海陆过渡相页岩与海相页岩储层孔隙的孔径相当4.6~11.1 nm,小于陆相页岩储层孔隙孔径5.8~20.3 nm。海陆过渡相页岩孔隙度0.7%~6.3%(图6c),与陆相页岩2.1%~5.2%相当,小于海相页岩2.1%~7.4%。其中潟湖相页岩储层孔隙度1.2%~9%,平均2.53%。

    海陆过渡相页岩黏土矿物含量30%~60%,石英+长石的含量30%~40%(图6d),其中潟湖相页岩石英+长石含量30%~62%,平均38%。海陆过渡相垂向上页岩、粉砂岩、砂岩、煤岩互层,夹于页岩之间的粉砂岩、砂岩夹层可提高可压性。事实上,脆性较低的页岩也可以是优质的产层,如北美Niobrara页岩中夹高孔高渗的白垩为主要产层,阿根廷Vaca Muerta页岩脆性指数比Los Molles页岩低,但页岩油气主要产自Vaca Muerta页岩[55]

    鄂东缘海陆过渡相页岩含气量为1.38~5.66 m3/t,平均 2.63 m3/t[4]。四川盆地龙潭组总含气量0.56~8.78 m3/t,平均2.02 m3/t[3]。海陆过渡相页岩埋深相对较浅,鄂尔多斯盆地东缘石楼西地区埋深1 600~2 600 m,压力系数0.95~1.05,以常压为主[3]

    Figure 6.  Pores characteristics, porosity and mineral composition of transitional, marine, and continental shale gas

    由上可知,受海陆交互环境影响,海陆过渡相页岩储层非均质性强,潟湖相页岩整体有机质含量高,生气潜力大,储层中含粉砂岩、砂岩等夹层,可成为有利产气层的重要组成部分,且有利于水力压裂。因此,海陆过渡相页岩气勘探开发应主要聚焦于潟湖相富有机质页岩及整套页岩层系。

  • 我国油气勘探家及相关学者们高度关注页岩油气资源潜力和勘探开发前景。北美页岩油气资源以海相页岩层系为主[56-59]图7),海陆过渡相页岩气仅在圣胡安等盆地白垩系Lewis页岩中有生产。近年来,我国页岩气勘探开发在海陆过渡相页岩气取得了一系列新发现(图7~9表4),主要石油企业、自然资源部等在鄂尔多斯盆地东部太原组、山西组实施了大量钻探,获得了直井最高测试产量超过0.5×104 m3/d、水平井最高测试产量超过6×104 m3/d的工业页岩气流。南华北盆地中牟凹陷山西组、湘中涟源凹陷龙潭组3口井获稳定的低产页岩气流。沁水盆地、中扬子地区、下扬子地区及四川盆地等地区及盆地所钻评价井二叠系均见良好页岩气显示,岩芯实测含气量最高达到8.78 m3/t。此外,四川盆地川东北、川东南50多口常规天然气老井二叠系龙潭组页岩段气测异常、井涌、井喷等非常活跃的气显示。上述勘探成果充分展现了我国海陆过渡相良好的页岩气资源潜力和勘探前景。

    我国海陆过渡相页岩气勘探开发程度非常低,整体处在早期评价阶段。目前主要以我国鄂尔多斯盆地为重点,在其东缘山西组开展了大量勘探开发工作,一批直井与水平井测试获工业页岩气流,多口水平井投入生产,达到工业生产标准,初步实现了海陆过渡相页岩气勘探突破,发现了山2 3亚段底部发育海陆过渡相页岩气“甜点”段。针对该页岩气“甜点”段,2019年中国石油完钻了海陆过渡相页岩气水平井—吉平1H井(图9)。该井水平段长1 760 m,含气页岩累计长度1 427 m,含气页岩钻遇率81.08%。该井2020年8月24日投产,截止2020年12月14日,累计产气288.8×104 m3,折日产气量2.7×104 m3,最高日产量3.65×104 m3,预测动态可采储量6 484×104 m3,单井EUR为4 440×104 m3,展示出良好开发前景。

    Figure 7.  Lithological associations of global typical shale gas strata

    盆地 页岩年代/层系 井名 测试产量/(×104 m3/d)
    鄂尔多斯 二叠系山西组 大吉51、大吉45、吉平1H、吉页-平01、高页平01、云页平3、云页平6等30口井 0.2~6.0
    中牟凹陷 石炭—二叠系 太原—山西组 牟页1、牟页2 0.13
    涟源凹陷 二叠系龙潭组 湘页1井 0.24
    桂中凹陷 石炭系 柳页1 5.3
    毕节 石炭系 水页1 >2.0

    Table 4.  Explorational results of main Chinese transitional shale gas

    Figure 8.  Typical transitional facies shale gas wells and prediction of favorable areas in China (modified from reference[37])

    Figure 9.  Geological and production characteristics of typical transitional shale gas well in the Ordos Basin

  • 我国海陆过渡相页岩集中发育在石炭—二叠系,主要分布在华北板块、扬子板块的盆地中(图7图8)。华北板块石炭纪—二叠纪海陆过渡相页岩的富集受陆表海环境控制,呈广覆式分布,具东西延展、南北分异的特征[60-61]。陆表海环境下台地体系、障壁—潟湖体系、潮坪—三角洲体系呈带状分布(图10),岩性为灰岩、页岩、砂岩、煤层等交互。华北板块障壁沙坝广泛分布,板块中部总体为潟湖沉积环境[60-61],页岩气勘探开发有利领域广阔。

    南方扬子板块二叠纪经历了持续性的海侵过程,海侵来自于北西与南西两个方向。受康滇古陆抬升的影响,形成了上扬子地区整体西高东低的格局,由西向东依次发育陆相冲积—河流沉积体系、海陆过渡相三角洲—潮坪、潟湖沉积体系、海相碳酸盐台地沉积体系[46]。四川盆地二叠系沉积环境自西南向东北依次为河流、沼泽、潮坪—潟湖、台地和陆棚[3],龙潭组海陆过渡相页岩主要分布在川中—川南,富有机质页岩厚度20~80 m,展布面积约18×104 km2,是海陆过渡相页岩气勘探开发的重要领域。

    Figure 10.  Carboniferous⁃Permian epi⁃continental paleogeographic pattern in the north China (modified from reference[17])

    同时,全球多个大产气区,例如埃及尼罗河三角洲、缅甸伊洛瓦底三角洲、孟加拉湾恒河三角洲、澳大利亚西北陆架等,烃源岩都是海陆过渡相碳质页岩、煤岩,III型干酪根产出了丰富的天然气[29-30,47]。国内多位学者提出海陆过渡相烃源岩是大陆边缘盆地最有利的烃源岩类型,成藏条件优越[2930],海陆过渡相烃源岩以III型干酪根为主,生烃(气)能力强,可能是未来页岩气勘探开发的重要接替层系。

  • (1) 海陆过渡相是海陆过渡环境的产物,空间上处于海相环境与陆相环境的过渡带,划分为5类:三角洲相、河口湾相、障壁岛相、潟湖相与潮坪相。国外海陆过渡相页岩气层系仅见于少数盆地的中新生界,我国海陆过渡相页岩气层系较多,且集中发育在石炭系—二叠系,主要分布在鄂尔多斯盆地与四川盆地。

    (2) 海陆过渡相富有机质页岩主要发育在潟湖相、前三角洲亚相与三角洲平原亚相,尤以潟湖相为主。潟湖相分布面积大,是富有机质页岩沉积的最有利相带,具备形成页岩气 “甜点”储层的关键条件。海陆过渡相富有机质页岩沉积模式为障壁岛—潟湖沉积模式,即障壁岛有利于形成封闭—半封闭的潟湖水体环境,并造成潟湖水体分层,底部形成缺氧条件,促进有机质大规模沉积富集与保存。

    (3) 我国海陆过渡相页岩气勘探开发程度非常低,整体处在早期评价阶段,近些年来通过加强勘探取得了一系列新发现。鄂尔多斯盆地东缘已初步实现了海陆过渡相页岩气勘探突破。我国海陆过渡相富有机质页岩在鄂尔多斯和四川等盆地广覆式分布,具备良好的页岩气资源潜力和勘探开发前景。海陆过渡相页岩层系常与煤层伴生,可实现页岩气与煤层气“体积开发”,有助于我国天然气产业高质量大发展。

Reference (61)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return