Advanced Search
Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents

ZHAO JianHua, JIN ZhiJun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72. doi: 10.14027/j.issn.1000-0550.2020.133
Citation: ZHAO JianHua, JIN ZhiJun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72. doi: 10.14027/j.issn.1000-0550.2020.133

Mudstone diagenesis: Research advances and prospects

doi: 10.14027/j.issn.1000-0550.2020.133
Funds:

National Natural Science Foundation of China 41802141

Natural Science Foundation of Shandong Province ZR2019QD009

  • Received Date: 2020-07-20
  • Publish Date: 2021-02-06
  • Driven by the shale oil and gas revolution,important advances have been made in mudstone diagenesis, which is a frontier in sedimentology and petroleum geology. Mudstone diagenesis of not only controls the generation and migration of oil and gas, but also has important influence on the composition, microstructure, reservoir physical and mechanical properties. The research status and prospects of the study were documented. At present, the research advances of mudstone diagenesis is mainly reflected in 4 aspects: (1)diagenetic evolution of inorganic minerals; (2)diagenetic evolution of organic matter and the development of organic matter-hosted pores; (3)driving mechanism and physical response of mudstone diagenesis; (4)effects of diagenesis on mechanical properties of mudstone. The study of mudstone diagenesis will continue to complement and improve the basin diagenesis system, and provide theoretical support for the exploration and development of unconventional oil and gas resources. The study of mudstone diagenesis system at different scales under the control of multi-field coupling indicates a profound and extensive development prospect.
  • [1] Curtis C D. Possible links between sandstone diagenesis and depth-related geochemical reactions occurring in enclosing mudstones[J]. Journal of the Geological Society, 1978, 135(1): 107-117.
    [2] Bathurst R G C. Carbonate sediments and their diagenesis[M]. Amsterdam: Elsevier, 1971.
    [3] Schmidt V, McDonald D A, Platt R L. Pore geometry and reservoir aspects of secondary porosity in sandstones[J]. Bulletin of Canadian Petroleum Geology, 1977, 25(2): 271-290.
    [4] Bernard S, Horsfield B, Schulz H M, et al. Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany)[J]. Marine and Petroleum Geology, 2012, 31(1): 70-89.
    [5] Hower J, Eslinger E V, Hower M E, et al. Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence[J]. GSA Bulletin, 1976, 87(5): 725-737.
    [6] Löhr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132.
    [7] Morad S, Ketzer J M, de Ros L F. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: Implications for mass transfer in sedimentary basins[J]. Sedimentology, 2000, 47(S1): 95-120.
    [8] Surdam R C, Crossey L J, Hagen E S, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin, 1989, 73(1): 1-23.
    [9] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. Berlin: Springer, 1984.
    [10] Seewald J S. Organic–inorganic interactions in petroleum-producing sedimentary basins[J]. Nature, 2003, 426(6964): 327-333.
    [11] 应凤祥,罗平,何东博. 中国含油气盆地碎屑岩储集层成岩作用与成岩数值模拟[M]. 北京:石油工业出版社,2004.

    Ying Fengxiang, Luo Ping, He Dongbo, et al. Clastic reservoir diagenesis and diagenetic numerical simulation of petroliferous basins in China[M]. Beijing: Petroleum Industry Press, 2004.
    [12] Boudreau B P. Modelling the sulfide-oxygen reaction and associated pH gradients in porewaters[J]. Geochimica et Cosmochimica Acta, 1991, 55(1): 145-159.
    [13] Taylor T R, Giles M R, Hathon L A, et al. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin, 2010, 94(8): 1093-1132.
    [14] 王瑞飞,沈平平,赵良金. 深层储集层成岩作用及孔隙度演化定量模型:以东濮凹陷文东油田沙三段储集层为例[J]. 石油勘探与开发,2011,38(5):552-559.

    Wang Ruifei, Shen Pingping, Zhao Liangjin. Diagenesis of deep sandstone reservoirs and a quantitative model of porosity evolution: Taking the third member of Shahejie Formation in the Wendong oilfield, Dongpu Sag, as an example[J]. Petroleum Exploration and Development, 2011, 38(5): 552-559.
    [15] 姜在兴,梁超,吴靖,等. 含油气细粒沉积岩研究的几个问题[J]. 石油学报,2013,34(6):1031-1039.

    Jiang Zaixing, Liang Chao, Wu Jing, et al. Several issues in sedimentological studies on hydrocarbon-bearing fine-grained sedimentary rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1031-1039.
    [16] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [17] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [18] Loucks R G, Reed R M, Ruppel S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96(6): 1071-1098.
    [19] Milliken K. A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 2014, 84(12): 1185-1199.
    [20] Fishman N S, Egenhoff S O, Boehlke A R, et al. Petrology and diagenetic history of the upper shale member of the Late Devonian-early Mississippian Bakken Formation, Williston Basin, North Dakota[J]. AAPG Bulletin, 2017, 101(10): 1625-1673.
    [21] 王秀平,牟传龙,王启宇,等. 川南及邻区龙马溪组黑色岩系成岩作用[J]. 石油学报,2015,36(9):1035-1047.

    Wang Xiuping, Mou Chuanlong, Wang Qiyu, et al. Diagenesis of black shale in Longmaxi Formation, southern Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2015, 36(9): 1035-1047.
    [22] Camp W K, Diaz E, Wawak B. Electron microscopy of shale hydrocarbon reservoirs[M]. Tulsa: American Association of Petroleum Geologists, 2013.
    [23] Schieber J, Krinsley D, Riciputi L. Diagenetic origin of quartz silt in mudstones and implications for silica cycling[J]. Nature, 2000, 406(6799): 981-985.
    [24] Longman M W, Drake W R, Milliken K L, et al. A comparison of silica Diagenesis in the Devonian Woodford shale (central basin platform, west Texas) and cretaceous Mowry shale (Powder River Basin, Wyoming)[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 49-67.
    [25] Peltonen C, Marcussen Ø, Bjørlykke K, et al. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties[J]. Marine and Petroleum Geology, 2009, 26(6): 887-898.
    [26] Dowey P J, Taylor K G. Extensive authigenic quartz overgrowths in the gas-bearing Haynesville-Bossier Shale, USA[J]. Sedimentary Geology, 2017, 356: 15-25.
    [27] Jiao X, Liu Y Q, Yang W, et al. Mixed biogenic and hydrothermal quartz in Permian lacustrine shale of Santanghu Basin, NW China: Implications for penecontemporaneous transformation of silica minerals[J]. International Journal of Earth Sciences, 2018, 107(6): 1989-2009.
    [28] Zhao J H, Jin Z K, Jin Z J, et al. Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for pore evolution[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 21-38.
    [29] 赵建华,金之钧,金振奎,等, 2016. 四川盆地五峰组—龙马溪组含气页岩中石英成因研究[J]. 天然气地球科学,2016,27(2):377-386.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. The genesis of quartz in Wufeng-Longmaxi gas shales, Sichuan Basin[J]. Natural Gas Geoscience, 2016, 27(2): 377-386.
    [30] Walderhaug O. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs[J]. AAPG Bulletin, 1996, 80(5): 731-745.
    [31] Alexandre A, Meunier J D, Llorens E, et al. Methodological improvements for investigating silcrete formation: Petrography, FT-IR and oxygen isotope ratio of silcrete quartz cement, Lake Eyre Basin (Australia)[J]. Chemical Geology, 2004, 211(3/4): 261-274.
    [32] Kastner M, Gieskes J M. Chapter 13 opal-a to opal-Ct transformation: A kinetic study[J]. Developments in Sedimentology, 1983, 36: 211-227.
    [33] Thiry M, Ayrault M B, Grisoni J C. Ground-water silicification and leaching in sands: Example of the Fontainebleau Sand (Oligocene) in the Paris Basin[J]. GSA Bulletin, 1988, 100(8): 1283-1290.
    [34] Haddad S C, Worden R H, Prior D J, et al. Quartz cement in the Fontainebleau sandstone, Paris basin, France: Crystallography and implications for mechanisms of cement growth[J]. Journal of Sedimentary Research, 2006, 76(2): 244-256.
    [35] Cecil C B, Heald M T. Experimental investigation of the effects of grain coatings on quartz growth[J]. Journal of Sedimentary Research, 1971, 41(2): 582-584.
    [36] Heald M T, Larese R E. Influence of coatings on quartz cementation[J]. Journal of Sedimentary Research, 1974, 44(4): 1269-1274.
    [37] Paxton S T, Szabo J O, Calvert C S. Preservation of primary porosity in deeply buried sandstones: A new play concept from the Cretaceous Tuscaloosa sandstone of Louisiana[J]. AAPG Bulletin, 1990, 74(5): 737.
    [38] Pittman E D, Larese R E, Heald M T. Clay coats: Occurrence and relevance to preservation of porosity in sandstones[M]//Houseknecht D W, Pittman E D. Origin, diagenesis, and petrophysics of clay minerals in sandstones. Tulsa: SEPM Special Publication, 1992: 241-255.
    [39] Jahren J, Ramm M. The porosity‐preserving effects of microcrystalline quartz coatings in Arenitic sandstones: Examples from the Norwegian continental shelf[M]//Worden R H, Morad S. Quartz cementation in sandstones. Oxford: Blackwell Publishing Ltd., 2000.
    [40] Milliken K L. Compactional and mass-balance constraints inferred from the volume of quartz cementation in mudrocks[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 33-48.
    [41] Lander R H, Larese R E, Bonnell L M. Toward more accurate quartz cement models: The importance of euhedral versus noneuhedral growth rates[J]. AAPG Bulletin, 2008, 92(11): 1537-1563.
    [42] Hinman N W. Chemical factors influencing the rates and sequences of silica phase transitions: Effects of organic constituents[J]. Geochimica et Cosmochimica Acta, 1990, 54(6): 1563-1574.
    [43] Isaacs C M. Influence of rock composition on kinetics of silica phase changes in the Monterey Formation, Santa Barbara area, California[J]. Geology, 1982, 10(6): 304-308.
    [44] Canfield D E. Organic matter oxidation in marine sediments[M]//Wollast R, Mackenzie F T, Chou L. Interactions of C, N, P and S biogeochemical cycles and global change. Berlin, Heidelberg: Springer, 1993.
    [45] Chen X Y, Chafetz H S, Andreasen R, et al. Silicon isotope compositions of euhedral authigenic quartz crystals: Implications for abiotic fractionation at surface temperatures[J]. Chemical Geology, 2016, 423: 61-73.
    [46] Stolper D A, Love G D, Bates S, et al. Paleoecology and paleoceanography of the Athel silicilyte, Ediacaran–Cambrian boundary, Sultanate of Oman[J]. Geobiology, 2017, 15(3): 401-426.
    [47] Zanella A, Cobbold P R, Ruffet G, et al. Geological evidence for fluid overpressure, hydraulic fracturing and strong heating during maturation and migration of hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, Mendoza province, Argentina[J]. Journal of South American Earth Sciences, 2015, 62: 229-242.
    [48] Hilgers C, Koehn D, Bons P D, et al. Development of crystal morphology during unitaxial growth in a progressively widening vein: II. Numerical simulations of the evolution of antitaxial fibrous veins[J]. Journal of Structural Geology, 2001, 23(6/7): 873-885.
    [49] Israelson C, Halliday A N, Buchardt B. U-Pb dating of calcite concretions from Cambrian black shales and the Phanerozoic time scale[J]. Earth and Planetary Science Letters, 1996, 141(1/2/3/4): 153-159.
    [50] Rodrigues N, Cobbold P R, Loseth H, et al. Widespread bedding-parallel veins of fibrous calcite (’beef') in a mature source rock (Vaca Muerta Fm, Neuquén Basin, Argentina): Evidence for overpressure and horizontal compression[J]. Journal of the Geological Society, 2009, 166(4): 695-709.
    [51] Cobbold P R, Zanella A, Rodrigues N, et al. Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization[J]. Marine and Petroleum Geology, 2013, 43: 1-20.
    [52] Barth T, Bjørlykke K. Organic acids from source rock maturation: Generation potentials, transport mechanisms and relevance for mineral diagenesis[J]. Applied Geochemistry, 1993, 8(4): 325-337.
    [53] Heydari E, Wade W J. Massive recrystallization of low-Mg calcite at high temperatures in hydrocarbon source rocks: Implications for organic acids as factors in diagenesis[J]. AAPG Bulletin, 2002, 86(7): 1285-1303.
    [54] Liang C, Cao Y C, Liu K Y, et al. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation[J]. Geochimica et Cosmochimica Acta, 2018, 229: 112-128.
    [55] Webster T. IV. —Observations on the Purbeck and Portland beds[J]. Transactions of the Geological Society of London, 1826, S2-2(1): 37-44.
    [56] Gresley W S. Cone-in-cone: How it occurs in the Devonian; Series in Pennsylvania (U.S.A.); with Further Details of its Structure, Varieties, etc.[J]. Quarterly Journal of the Geological Society, 1894, 50(1/2/3/4): 731-739.
    [57] Zhang J G, Jiang Z X, Jiang X L, et al. Oil generation induces sparry calcite formation in lacustrine mudrock, Eocene of east China[J]. Marine and Petroleum Geology, 2016, 71: 344-359.
    [58] 王冠民,任拥军,钟建华,等. 济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J]. 地质学报,2005,79(6):834-838.

    Wang Guanmin, Ren Yongjun, Zhong Jianhua, et al. Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J]. Acta Geologica Sinica, 2005, 79(6): 834-838.
    [59] Taber S. The growth of crystals under external pressure[J]. American Journal of Science, 1916, S4-41(246): 532-556.
    [60] Taber S. The origin of veinlets in the Silurian and Devonian strata of central New York[J]. The Journal of Geology, 1918, 26(1): 56-73.
    [61] Shovkun I, Espinoza D N. Geomechanical implications of dissolution of mineralized natural fractures in shale formations[J]. Journal of Petroleum Science and Engineering, 2018, 160: 555-564.
    [62] Bons P D, Montenari M. The formation of antitaxial calcite veins with well-developed fibres, Oppaminda Creek, South Australia[J]. Journal of Structural Geology, 2005, 27(2): 231-248.
    [63] Nollet S, Urai J L, Bons P D, et al. Numerical simulations of polycrystal growth in veins[J]. Journal of Structural Geology, 2005, 27(2): 217-230.
    [64] Means W D, Li T. A laboratory simulation of fibrous veins: Some first observations[J]. Journal of Structural Geology, 2001, 23(6/7): 857-863.
    [65] Nollet S, Hilgers C, Urai J L. Experimental study of polycrystal growth from an advecting supersaturated fluid in a model fracture[J]. Geofluids, 2006, 6(2): 185-200.
    [66] Brooks B T. Evidence of catalytic action in petroleum formation[J]. Industrial & Engineering Chemistry, 1952, 44(11): 2570-2577.
    [67] Grim R E. Relation of clay mineralogy to origin and recovery of petroleum[J]. AAPG Bulletin, 1947, 31(8): 1491-1499.
    [68] Kennedy M J, Löhr S C, Fraser S A, et al. Direct evidence for organic carbon preservation as clay-organic nanocomposites in a Devonian black shale; from deposition to diagenesis[J]. Earth and Planetary Science Letters, 2014, 388: 59-70.
    [69] Williams L B, Canfield B, Voglesonger K M, et al. Organic molecules formed in a “primordial womb”[J]. Geology, 2005, 33(11): 913-916.
    [70] Dainyak L G, Drits V A, Zviagina B B, et al. Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales[J]. American Mineralogist, 2006, 91(4): 589-603.
    [71] Bethke C M, Altaner S P. Layer-by-layer mechanism of smectite illitization and application to a new rate law[J]. Clays and Clay Minerals, 1986, 34(2): 136-145.
    [72] Cuadros J, Altaner S P. Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods; constraints on the smectite-to-illite transformation mechanism[J]. American Mineralogist, 1998, 83(7/8): 762-774.
    [73] Hoffman J, Hower J. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A.[M]//Scholle P A, Schluger P S. Aspects of diagenesis. Tulsa: SEPM Special Publication, 1979: 55-79.
    [74] Lindgreen H, Hansen P L. Ordering of illite-smectite in Upper Jurassic claystones from the North Sea[J]. Clay Minerals, 1991, 26(1): 105-125.
    [75] Buatier M D, Peacor D R, O’Neil J R. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature[J]. Clays and Clay Minerals, 1992, 40(1): 65-80.
    [76] Dong H L, Peacor D R. TEM observations of coherent stacking relations in smectite, I/S and illite of shales: Evidence for MacEwan crystallites and dominance of 2M polytypism[J]. Clays and Clay Minerals, 1996, 44(2): 257-275.
    [77] Środoń J, Eberl D D, Drits V A. Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism[J]. Clays and Clay Minerals, 2000, 48(4): 446-458.
    [78] Freed R L, Peacor D R. Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates[J]. Journal of Sedimentary Research, 1992, 62(2): 220-234.
    [79] Pollastro R M. Considerations and Applications of the Illite/Smectite Geothermometer in Hydrocarbon-Bearing Rocks of Miocene to Mississippian Age[J]. Clays and Clay Minerals, 1993, 41(2): 119-133.
    [80] Merriman M F, Frey M. Patterns of very low‐grade metamorphism in metapelitic rocks[M]//Frey M, Robinson D. Low‐grade metamorphism. Oxford: Blackwell Science, 1998: 61-108.
    [81] 李颖莉,蔡进功. 有机质对蒙脱石伊利石化作用的影响——来自热模拟实验的证据[C]//中国矿物岩石地球化学学会第15届学术年会论文摘要集(4). 长春:中国矿物岩石地球化学学会,2015:198-199. [[

    Li Yingli, Cai Jingong. Effect of organic matter on illitization of smectite: evidence from thermal simulations[C]//Abstracts (4) of the 15th annual meeting of the Chinese Society of Mineral and rock Geochemistry. Changchun: Chinese Society of Mineralogy and Petrochemistry, 2015: 198-199.]]
    [82] Wilson M J, Shaldybin M V, Wilson L. Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. I. Occurrence and interpretation of mixed-layer R3 ordered illite/smectite[J]. Earth-Science Reviews, 2016, 158: 31-50.
    [83] Berner R A. Sulphate reduction, organic matter decomposition and pyrite formation[J]. Philosophical Transactions of the Royal Society A, 1985, 315(1531): 25-38.
    [84] Raiswell R, Reinhard C T, Derkowski A, et al. Formation of syngenetic and early diagenetic iron minerals in the Late Archean Mt. McRae Shale, Hamersley Basin, Australia: New insights on the patterns, controls and paleoenvironmental implications of authigenic mineral formation[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1072-1087.
    [85] Bond D P, Wignall P B. Pyrite framboid study of marine Permian–Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction[J]. GSA Bulletin, 2010, 122(7/8): 1265-1279.
    [86] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks[J]. American Journal of Science, 1998, 298(7): 537-552.
    [87] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3897-3912.
    [88] Raiswell R. Pyrite texture, isotopic composition and the availability of iron[J]. American Journal of Science, 1982, 282(8): 1244-1263.
    [89] Ye Y T, Wu C D, Zhai L N, et al. Pyrite morphology and episodic euxinia of the Ediacaran Doushantuo Formation in South China[J]. Science China Earth Sciences, 2017, 60(1): 102-113.
    [90] Ardakani O H, Chappaz A, Sanei H, et al. Effect of thermal maturity on remobilization of molybdenum in black shales[J]. Earth and Planetary Science Letters, 2016, 449: 311-320.
    [91] Fishman N S, Egenhoff S O, Lowers H A, et al. Pyritization history in the Late Cambrian alum shale, Scania, Sweden: Evidence for ongoing Diagenetic processes[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 83-102.
    [92] Baumgartner R J, Van Kranendonk M J, Wacey D, et al. Nano- porous pyrite and organic matter in 3.5-billion-year-old stromatolites record primordial life[J]. Geology, 2019, 47(11): 1039-1043.
    [93] LaFlamme C, Martin L, Jeon H, et al. In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models[J]. Chemical Geology, 2016, 444: 1-15.
    [94] 杨蔚,胡森,张建超,等. 纳米离子探针分析技术及其在地球科学中的应用[J]. 中国科学(D辑):地球科学,2015,45(9):1335-1346.

    Yang Wei, Hu Sen, Zhang Jianchao, et al. NanoSIMS analytical technique and its applications in earth sciences[J]. Science China (Seri.D):Earth Sciences, 2015, 45(9): 1335-1346.
    [95] Loucks R G, Reed R M, Ruppel S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett shale[J]. Journal of Sedimentary Research, 2009, 79(12): 848-861.
    [96] Tissot B, Durand B, Espitalie J, et al. Influence of nature and Diagenesis of organic matter in formation of petroleum[J]. AAPG Bulletin, 1974, 58(3): 499-506.
    [97] Katz B J, Arango I. Organic porosity: A geochemist's view of the current state of understanding[J]. Organic Geochemistry, 2018, 123: 1-16.
    [98] Pommer M, Milliken K. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas[J]. AAPG Bulletin, 2015, 99(9): 1713-1744.
    [99] Reed R M. Organic-matter pores: New findings from Lower-thermal-maturity mudrocks[J]. GCAGS Journal, 2017, 6: 99-110.
    [100] Han Y J, Horsfield B, Wirth R, et al. Oil retention and porosity evolution in organic-rich shales[J]. AAPG Bulletin, 2017, 101(6): 807-827.
    [101] Ko L T, Loucks R G, Milliken K L, et al. Controls on pore types and pore-size distribution in the Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for pore-evolution models of lacustrine mudrocks[J]. Interpretation, 2017, 5(2): SF127-SF148.
    [102] Cardott B J, Landis C R, Curtis M E. Post-oil solid bitumen network in the Woodford Shale, USA: A potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139: 106-113.
    [103] Bernard S, Horsfield B. Reply to comment on “Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin)”[J]. International Journal of Coal Geology, 2014, 127: 114-115.
    [104] Lu J M, Ruppel S C, Rowe H D. Organic matter pores and oil generation in the Tuscaloosa marine shale[J]. AAPG Bulletin, 2015, 99(2): 333-357.
    [105] Hackley P C, Cardott B J. Application of organic petrography in North American shale petroleum systems: A review[J]. International Journal of Coal Geology, 2016, 163: 8-51.
    [106] Mastalerz M, Schimmelmann A, Drobniak A, et al. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97(10): 1621-1643.
    [107] Zhao J H, Jin Z J, Jin Z K, et al. Mineral types and organic matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for pore systems, diagenetic pathways, and reservoir quality in fine-grained sedimentary rocks[J]. Marine and Petroleum Geology, 2017, 86: 655-674.
    [108] 李忠,刘嘉庆. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向[J]. 沉积学报,2009,27(5):837-848.

    Li Zhong, Liu Jiaqing. Key problems and research trend of diagenetic geodynamic mechanism and spatio-temporal distribution in sedimentary basins[J]. Acta Sedimentologica Sinica, 2009, 27(5): 837-848.
    [109] Arning E T, Van Berk W, Schulz H M. Fate and behaviour of marine organic matter during burial of anoxic sediments: Testing CH2O as generalized input parameter in reaction transport models[J]. Marine Chemistry, 2016, 178: 8-21.
    [110] Prochnow E A, Remus M V D, Ketzer J M, et al. Organic-inorganic interactions in oilfield sandstones: Examples from turbidite reservoirs in the Campos Basin, offshore Eastern Brazil[J]. Journal of Petroleum Geology, 2006, 29(4): 361-380.
    [111] Helgeson H C, Knox A M, Owens C E, et al. Petroleum, oil field waters, and authigenic mineral assemblages Are they in metastable equilibrium in hydrocarbon reservoirs[J]. Geochimica et Cosmochimica Acta, 1993, 57(14): 3295-3339.
    [112] Burdige D J. Temperature dependence of organic matter remineralization in deeply-buried marine sediments[J]. Earth and Planetary Science Letters, 2011, 311(3/4): 396-410.
    [113] Arning E T, van Berk W, Schulz H M. Quantitative geochemical modeling along a transect off Peru: Carbon cycling in time and space, and the triggering factors for carbon loss and storage[J]. Global Biogeochemical Cycles, 2012, 26(4): GB4012.
    [114] Chow N, Morad S, Al-Aasm I S. Origin of Authigenic Mn-Fe carbonates and pore-water evolution in marine sediments: Evidence from cenozoic strata of the arctic ocean and Norwegian-Greenland Sea (Odp Leg 151)[J]. Journal of Sedimentary Research, 2000, 70(3): 682-699.
    [115] Raiswell R, Canfield D E. Sources of iron for pyrite formation in marine sediments[J]. American Journal of Science, 1998, 298(3): 219-245.
    [116] Schulz H M, Wirth R, Schreiber A. Nano-crystal formation of TiO2 polymorphs Brookite and Anatase due to organic—inorganic rock–fluid interactions[J]. Journal of Sedimentary Research, 2016, 86(2): 59-72.
    [117] Morse J W. Formation and diagenesis of carbonate sediments[J]. Treatise on Geochemistry, 2003, 7: 67-85.
    [118] Worden R H, Burley S D. Sandstone diagenesis: The evolution of sand to stone[M]//Burley S D, Worden R D. Sandstone diagenesis: Recent and ancient. Malden: Blackwell, 2003.
    [119] Emerson S, Jahnke R, Bender M, et al. Early diagenesis in sediments from the eastern equatorial Pacific, I. Pore water nutrient and carbonate results[J]. Earth and Planetary Science Letters, 1980, 49(1): 57-80.
    [120] Carr A D. A vitrinite reflectance kinetic model incorporating overpressure retardation[J]. Marine and Petroleum Geology, 1999, 16(4): 355-377.
    [121] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京:科学出版社, 2005.

    Hao Fang. Kinetics of hydrocarbon generation and mechanisms of petroleum accumulation in overpressured Basins[M]. Beijing: Science Press, 2005.
    [122] Baldwin B, Butler C O. Compaction curves[J]. AAPG Bulletin, 1985, 69(4): 622-626.
    [123] Burst F J. Argillaceous sediment dewatering[J]. Annual Review of Earth and Planetary Sciences, 1976, 4: 293-318.
    [124] Schieber J. SEM observations on ion-milled samples of Devonian black shales from Indiana and New York: The petrographic context of multiple pore types[M]//Camp W K, Diaz E. Electron microscopy of shale hydrocarbon reservoirs. Tulsa: AAPG, 2013: 153-171.
    [125] Wang M, Chen Y, Song G Q, et al. Formation of bedding-parallel, fibrous calcite veins in laminated source rocks of the Eocene Dongying Depression: A growth model based on petrographic observations[J]. International Journal of Coal Geology, 2018, 200: 18-35.
    [126] Yoon H, Ingraham M D, Grigg J, et al. Impact of depositional and diagenetic heterogeneity on multiscale mechanical behavior of Mancos Shale, New Mexico and Utah, USA[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 121-148.
    [127] Hall C D. Compositional and diagenetic controls on brittleness in organic siliceous mudrocks[M]//Camp W K, Milliken K L, Taylor K, et al. Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks. Tulsa and Broken Arrow: AAPG and SEPM, 2020: 103-120.
    [128] Gowd T N, Rummel F. Effect of confining pressure on the fracture behaviour of a porous rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(4): 225-229.
    [129] 林卓英, 吴玉山, 关玲莉. 岩石在三轴压缩下脆—延性转化的研究[J]. 岩土力学, 1992, 13(2/3): 45-53.

    Lin Zhuoying, Wu Yushan, Guan Lingli. Research on the brittle-ductile transition property of rocks under triaxial compression[J]. Rock and Soil Mechanics, 1992, 13(2/3): 45-53.
    [130] 沈华章,王水林,刘泉声. 模拟应变软化岩石三轴试验过程曲线[J]. 岩土力学,2014,35(6):1647-1654.

    Shen Huazhang, Wang Shuilin, Liu Quansheng. Simulation of constitutive curves for strain-softening rock in triaxial compression[J]. Rock and Soil Mechanics, 2014, 35(6): 1647-1654.
    [131] 袁玉松,刘俊新,周雁. 泥页岩脆-延转化带及其在页岩气勘探中的意义[J]. 石油与天然气地质,2018,39(5):899-906.

    Yuan Yusong, Liu Junxin, Zhou Yan. Brittle-ductile transition zone of shale and its implications in shale gas exploration[J]. Oil & Gas Geology, 2018, 39(5): 899-906.
    [132] 李忠,韩登林,寿建峰. 沉积盆地成岩作用系统及其时空属性[J]. 岩石学报,2006,22(8):2151-2164.

    Li Zhong, Han Denglin, Shou Jianfeng. Diagenesis systems and their spatio-temporal attributes in sedimentary basins[J]. Acta Petrologica Sinica, 2006, 22(8): 2151-2164.
    [133] English J M, Laubach S E. Opening-mode fracture systems: Insights from recent fluid inclusion microthermometry studies of crack-seal fracture cements[J]. Geological Society, London, Special Publications, 2017, 458(1): 257-272.
    [134] Laubach S E, Eichhubl P, Hilgers C, et al. Structural diagenesis[J]. Journal of Structural Geology, 2010, 32(12): 1866-1872.
    [135] Zhu X J, Cai J G, Wang Y S, et al. Evolution of organic-mineral interactions and implications for organic carbon occurrence and transformation in shale[J]. GSA Bulletin, 2020, 132(3/4): 784-792.
    [136] Schmidt V, Mcdonald D A. The role of secondary porosity in the course of sandstone diagenesis[M]//Scholle P A, Schluger P R. Aspects of diagenesis. Tulsa: SEPM Special Publication, 1979:175-207.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(2007) PDF downloads(615) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-07-20
  • Published:  2021-02-06

Mudstone diagenesis: Research advances and prospects

doi: 10.14027/j.issn.1000-0550.2020.133
Funds:

National Natural Science Foundation of China 41802141

Natural Science Foundation of Shandong Province ZR2019QD009

Abstract: Driven by the shale oil and gas revolution,important advances have been made in mudstone diagenesis, which is a frontier in sedimentology and petroleum geology. Mudstone diagenesis of not only controls the generation and migration of oil and gas, but also has important influence on the composition, microstructure, reservoir physical and mechanical properties. The research status and prospects of the study were documented. At present, the research advances of mudstone diagenesis is mainly reflected in 4 aspects: (1)diagenetic evolution of inorganic minerals; (2)diagenetic evolution of organic matter and the development of organic matter-hosted pores; (3)driving mechanism and physical response of mudstone diagenesis; (4)effects of diagenesis on mechanical properties of mudstone. The study of mudstone diagenesis will continue to complement and improve the basin diagenesis system, and provide theoretical support for the exploration and development of unconventional oil and gas resources. The study of mudstone diagenesis system at different scales under the control of multi-field coupling indicates a profound and extensive development prospect.

ZHAO JianHua, JIN ZhiJun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72. doi: 10.14027/j.issn.1000-0550.2020.133
Citation: ZHAO JianHua, JIN ZhiJun. Mudstone diagenesis: Research advances and prospects[J]. Acta Sedimentologica Sinica, 2021, 39(1): 58-72. doi: 10.14027/j.issn.1000-0550.2020.133
  • 早在20世纪70年代就开始了成岩作用对砂岩和碳酸盐岩储层影响的研究[1-3],经历了近50年的发展,已在多方面开展了广泛的研究,特别是在含油气盆地储层成岩作用、黏土矿物和有机质成岩演化等领域都取得了令人瞩目的进展[2,4-10],逐渐从早期的定性描述向建立数学模型定量预测储层质量转变[11-14],极大地推动了油气勘探和开发进展。与砂岩和碳酸盐岩相比,泥岩粒度小,观察难度大,同时受微观实验条件的限制,其沉积和成岩作用是沉积学界乃至于地质学界研究薄弱领域[15]。泥岩成岩作用是当今非常规油气沉积学研究比较活跃的前沿领域之一,特别是在页岩油气勘探开发中对成岩作用的时空分布和发育规律已经提出了愈来愈高的要求[16]。目前,页岩油气革命深刻地改变着油气勘探理念,石油工业正处于从常规到非常规转换的新阶段,而泥页岩势必成为非常规油气研究的主角,这将极大地推进对泥岩成岩作用的探索[17-21]

    页岩油气作为源—储一体型资源,其成岩作用不仅控制着油气的生成和运移,同时对物质组成、微观结构、储层物性和力学性质都具有重要的影响,据此本文所涉及的“泥岩”研究范畴是指与页岩油气有关的“源—储”岩系。近十几年来,扫描电镜等新技术的应用,揭开了泥岩纳米级尺度结构的面纱[22],发现了大量自生矿物(胶结和交代)的存在,追踪到了有机质不同演化阶段的性质,加深了泥岩中有机和无机成岩作用及其对储层质量控制的理解。研究进展概括起来主要体现在以下几个方面:1)无机矿物成岩演化;2)有机质成岩演化与有机质孔的发育;3)泥岩成岩作用的驱动机制及其物性响应;4)泥岩成岩作用对力学性质的影响。值得指出的是,越来越多的研究表明,简单地套用经典的成岩模式已经困扰了泥岩成岩作用的深入研究,也难以解释不断深入研究和勘探实践所遇到的各种地质现象。泥岩成岩作用系统是一个涉及多学科交叉的研究领域。本文围绕这一领域,结合国内外相关研究进展,重点讨论泥岩成岩过程中有机和无机组分的演化过程和驱动机制相关进展。

  • 矿物特别是脆性矿物控制着岩石的可压裂性,是页岩油气能否商业开发的关键。研究发现,典型的页岩油气储层内黏土矿物并不是主要矿物类型,而是以石英、长石及碳酸盐矿物及其混合为主导。随着微束分析技术的进步,矿物微观结构、来源和成因机制的研究逐渐成为泥岩成岩作用研究的热点。泥岩成岩作用类型多样,同时涉及到有机质的成岩演化,导致成岩作用的研究异常复杂,下面就目前泥岩中研究相对集中的几种主要矿物的成岩演化过程加以总结论述。

    石英作为富有机质泥岩中的主要的脆性组分,除了陆源成因外,在成岩过程中形成的各种类型的自生石英组分也是不容忽视的,其含量可远远高于陆源供给的碎屑石英[23]。更重要的是由于不同成因石英形成时间、结晶习性和赋存方式(孔隙充填、交代结构、次生加大)的差异,其带来的储层物性和力学性质的响应也必然具有差异性,这将直接影响页岩含油气量和水力压裂储层改造的实施效果。一些学者通过扫描电镜—阴极发光、主微量元素分析等手段研究发现,美国Chattanooga页岩、Barnett页岩、Moway页岩和龙马溪页岩中硅质生物骨架的溶解再沉淀形成了充填粒间孔隙/生物腔体的微晶自生石英[19,24]图1);Møre和Vøring盆地白垩系泥岩中黏土矿物转化过程中释放的硅质沉淀形成了板片状自生石英[25];碎屑石英颗粒的压溶作用和黏土矿物转化过程导致了美国Haynesville页岩中石英次生加大边的广泛发育[26];生物和热液作用共同提供了三塘湖盆地二叠系页岩中粉砂级石英颗粒形成的硅质来源[27]。其中生物成因和黏土矿物转化形成的自生石英在近几年页岩油气储层的研究中受到广泛关注,是页岩中自生石英形成的主要机制[28-29]。在低温条件下(<50 ℃)受动力学障碍的影响,自生石英的成核和生长受到限制[30],当孔隙流体中硅的浓度达到蛋白石的饱和度时,通常以燧石和玉髓的形式沉淀[31-34]。当温度超过50 ℃,流体中硅的浓度低于蛋白石的饱和度时,石英成核和生长表现出阿仑尼乌斯(Arrhenius)行为,由于需要以先前存在的干净石英表面作为成核部位,使得这一过程复杂化[35-39]。自生石英形成还受到晶体的控制,一旦生长最慢的晶面控制了晶体表面,生长速度就会减慢,在泥岩中由于成核表面非常小,最慢的生长速度可能支配大多数晶体的生长过程[40-41]。黏土矿物能够抑制蛋白石-A向蛋白石-CT转化[42],而方解石具有促进蛋白石-CT的成核速度,从而加速其向石英转化[43]。碱性环境有利于蛋白石-CT的形成[44],同时也利于早期形成的石英交代碳酸盐矿物[45]。最近,Milliken[40]基于质量平衡理论对比分析了富含硅质生物与富含陆源碎屑的泥岩中自生石英的形成差异,强调石英沉淀的成核点和形成石英胶结物的孔隙空间受压实状态的限制。富含生物硅质的泥岩易于在早成岩低温阶段形成微晶石英;而富含陆源碎屑的泥岩由于缺少硅质生物组分,自生石英主要形成于高温阶段,此时受压实作用的影响,成核部位和空间限制了自生石英的形成,并且对黏土矿物转化过程中释放的硅质是否最终以石英的形式沉淀提出了质疑。Longman et al.[24,46],Stolper et al.[46]在泥盆纪Woodford页岩和白垩纪Mowry页岩中发现了大量的与寒武系Athel石英岩相似纳米级硅球(图1c,e~f),认为这一硅化过程中纳米级的硅球形成与微生物特别是硫酸盐还原菌的活动有关,但是这一时期硅质的来源依旧是一个谜题。由此可见,泥岩中自生石英的成因机制仍然存在诸多争论,亟待下一步深入攻关研究,这对于深化泥岩成岩作用具有重要意义。

    Figure 1.  Typical authigenic quartz in mudstones

    方解石胶结、交代和重结晶现象在泥岩中普遍存在(图2),其中针对成岩过程中方解石重结晶和脉体成因机制的研究一直以来受到了广泛的关注[47-51]。钙质生物组分(有孔虫)、藻类周期性勃发形成的碳酸盐季节性沉积、生物作用、化学作用和机械破碎、磨蚀作用形成的灰泥溶解提供了成岩过程中形成重结晶方解石的主要物质来源。亮晶方解石通常出现在富有机质泥岩中,并主要分布在有机质纹层边缘,指示亮晶方解石与有机质生烃作用的密切关系(图2a)。有机质生烃过程中形成的CO2溶解和有机酸会使得碳酸盐矿物溶解[52],形成的流体在压力梯度或浓度梯度下通过渗透或扩散的方式在孔隙及裂缝中短距离运移,同时解除Mg2+的束缚,使得碳酸盐矿物就近沉淀结晶,形成粒状方解石晶体[53-54]。在全球不同时代的沉积盆地中(寒武纪—古近纪),纤维状方解石脉在海相和陆相泥岩层系中广泛发育[51]。纤维状方解石脉体一种是平行于层理、晶体延长方向垂直于边缘,以中线为轴对称分布,这种构造早在19世纪20年代就被学者们观察到,尤其是在泥岩中发育十分常见,被称作“牛排”构造(Beef)[55];另一种类型被称为叠锥状结构(Cone-in-cone),是指单独具有厘米级并且可以形成聚集体的圆锥结构[56]。纤维状方解石主要形成于成岩阶段,与由构造作用、孔隙流体压力和岩石组构共同作用产生的顺层裂缝,以及方解石结晶生长过程密切相关。然而,针对方解石脉体的形成时间仍然存在不同观点,多数学者认为形成于烃源岩生油阶段方解石晶体充填裂缝[57-58],但在方解石脉体内部缺少油气包裹体广泛发育的佐证,部分方解石脉体的同沉积变形特征说明也可能形成于早成岩阶段[51]。近年来由方解石重结晶作用控制脉体形成的观点屡被提及[57-58],认为纤维状矿物的结晶动力是改变岩石局部应力状态的重要因素[59-61]。Bons et al.[62]基于溶质浓度变化与应力关系建立了结晶动力的数学模型,并取得了物理实验模拟和数值模拟的证实[63-65],甚至证明了方解石脉体可以在没有裂缝存在的条件下形成。

    Figure 2.  Diagenetic calcite in mudstones

    黏土矿物是与油气勘探关系最为密切的矿物类型之一,早在20世纪40~50年代,美国黏土矿物学家Grim和化学家Brooks就指出了酸性黏土矿物对有机质的生烃反应有催化作用[66-67]。随后,黏土矿物成岩演化及其与有机质之间的相互作用得到了广泛的关注[68-69]。蒙脱石经历伊蒙混层(R0-R1-R3)最终转化成伊利石是最为熟知的泥岩成岩作用类型,但是关于这个过程的转化机制依旧存在争议。固态转化机制认为结构层内及层间化学成分渐变,涉及到蒙脱石夹层固定K+,同时硅氧四面体中Si4+被Al3+置换[70-74]。溶解重结晶机制认为蒙脱石逐渐溶解,生成数量不断增加的伊利石晶体[75-77]。不管哪种转化机制,对于蒙脱石向伊利石转化各个阶段的温度基本达成共识,蒙脱石开始向伊蒙混层转化的温度范围是70 °C~95 ℃[78-79],Merriman et al.[80]认为在20 °C~200 °C之间大约95%蒙脱石转化成伊利石。这一过程除了与温度有关外,还受控于层间溶液的化学成分和地层压力等条件。李颖莉等[81]通过热模拟实验分析了有机质对黏土矿物转化的影响,认为蒙脱石伊利石化过程对应两种转化机制,在200 ℃~350 ℃范围内,层间有机质的支撑作用使得此阶段对应固态转化机制;而400 °C~600 ℃区间,层间有机质排出,推测有机质以有机酸的形式,造成晶体稳定性变差,硅氧四面体及铝氧四面体部分溶解,初步认为此阶段为溶解—重结晶机制。然而,Wilson et al.[82]通过对北美古生代—新生代泥岩中黏土矿物的研究,对中生代以前地层中的伊利石和高有序度伊蒙混层是否由蒙脱石转化而来提出了质疑,并指出泥岩中自生伊利石的形成并不一定以蒙脱石为前体。因此,关于黏土矿物在成岩过程中的演化依旧存在诸多未解决的谜题。

    黄铁矿是富有机质泥岩中普遍发育的矿物,不同形态的黄铁矿在沉积和成岩阶段均可形成。在现代硫化水体环境中,草莓状黄铁矿(<10 μm)可以在氧化还原界面之下的海水中迅速生成,并沉降到海底。成岩过程中形成的黄铁矿主要与微生物硫酸盐还原和热化学硫酸盐还原作用、铁还原作用和有机质氧化作用等过程相关[83]。草莓状黄铁矿的形成和形态对氧化还原条件敏感,常常被用来指示沉积环境,自被发现以来,近百年的时间里科学家对其形成机制的研究热情从未消减[16,84-87]。但是,对于莓球状黄铁矿的成因一直存在“生物成因”和“非生物成因”之争,本文不再赘述。早成岩阶段,沉积物与水界面以下硫酸盐还原速率高,孔隙水中FeS和FeS2均达到饱和,草莓状黄铁矿通过中间产物FeS在孔隙流体中沉淀;随着铁离子的消耗以及硫酸盐还原速率的降低,孔隙水中FeS浓度降低,处于未饱和状态,此时自形黄铁矿晶体直接沉淀[86-88]。自然界中,封闭的成岩环境和较慢的反应速率更有利于自形黄铁矿的形成[86]。成岩过程中草莓状黄铁矿通过内部微晶的连续生长,可形成自形黄铁矿[89]。热化学硫酸盐还原作用形成的黄铁矿晶体通常较大,同时还会导致早期形成的黄铁矿发生重结晶作用并交代其他矿物(图3[90-91]。黄铁矿是当前地球科学和微生物学交叉研究的典型矿物之一,成岩过程中形成的黄铁矿记录了有机—无机相互作用的重要信息,但是对于黄铁矿的成因机制以及在成岩过程中的演化方面的研究有待加强。随着现代微束技术的进步,特别是纳米粒子探针分析技术在显著提高空间分辨能力的同时,兼具高的分析精度[92-94],有望在揭示泥岩中黄铁矿在成岩过程中的演化机制中发挥重要作用。

    Figure 3.  Typical features of pyrite in mudstones

  • 有机质孔的发现改变了人们对页岩储集空间的认识[95],同时极大地促进了有机质成岩演化的研究。Tissot et al.[96]总结了不同类型干酪根的演化路径及不同阶段的产物。有机质孔是页岩气储层重要的孔隙类型,其发育受控于有机质类型、含量、成熟度及其与矿物的组合关系等因素[18,97]。目前,有机质孔隙的演化可总结为以下几个阶段:在未成熟阶段,继承性的孔隙通常存在于结构有机质和部分无定形有机质的原始结构中[6,98-99]图4a,b)。在成熟阶段早期,干酪根降解形成的烃类充填在干酪根原始的结构孔隙中,只有当形成的烃类超过了干酪根的吸附能力(R o约为0.8%),烃类才会从干酪根中排出[100-101]图4c)。伴随着成熟度的增加,这个过程中干酪根分子结构会重新调整(体积收缩、密度增加),同时干酪根中的孔隙会再度出现[6]。在高成熟和过成熟阶段,干酪根和液态石油裂解生气,在形成的固体沥青中大量发育有机质孔[102-103]图4d)。国内外大量的高成熟—过成熟页岩中,固体沥青中的孔隙提供了主要的有机质孔,贡献了主要的孔隙度[18,104]。总体上,有机质的热演化和烃类的形成被认为是控制富有机质页岩孔隙度形成和演化的主要因素,但是有机质成熟度和孔隙度之间并不是一个简单的线性关系[105-106]图5)。比如,在相同的成熟度条件下,有机质类型的差异会导致不同的有机质孔隙演化模式。有机质的含量及其与矿物骨架之间的配置关系也是影响有机质孔隙发育的重要因素,脆性矿物骨架能够为有机质提供坚固的支撑条件,降低有机质的压实程度,有利于有机质孔的发育;与黏土矿物结合形成的有机黏土复合结构,受黏土矿物催化作用的影响,有机质孔通常较为发育[107]

    Figure 4.  Organic matter pore development characteristics in mudstones with different maturity

    Figure 5.  Mineral, organic matter, and pore evolution during diagenesis[79,106]

    有机质孔的发育受控于多种因素,不同因素的叠合配置会导致有机质孔形成演化的多样性。此外,Hackley et al.[105]所指出的,在储层温度和压力条件下,有机质孔的存在尚未得到证实,目前关于有机质孔的观点都是在地表条件下进行分析而得出的。因此,随着成岩演化和有机质的成熟,有机质孔隙演化机制和控制作用的研究仍是一项富有挑战性的工作。

  • 成岩作用的驱动机制及其演化路径是成岩作用研究最重要的理论基础和永恒的主题[108]。泥岩成岩作用受物理、化学和生物因素演变的制约,成岩作用驱动机制受实际地质条件与复合因素的叠加影响而复杂多变。

    早期成岩作用阶段,有机质在微生物作用下发生的氧化降解是成岩过程的主要驱动力[109],区别于地表其他自然沉积过程的一个显著特点是微生物几乎参与了所有的成岩过程,因而是典型的生物地球化学过程。有机质分解过程释放二氧化碳、甲烷、氢分子、乙酸等低分子有机酸导致孔隙水化学性质发生变化,从而打破原始矿物与孔隙水之间的化学平衡,促使矿物溶解以及次生矿物的沉淀,引发多种有机—无机反应[10,110-112]。有机—无机相互作用遵循有机质依次被O2、NO3 2-、Fe3+ S O 4 2 - 氧化的基本理论,不同沉积环境中各主要氧化剂的优势还原作用具有分带特征[10]。多种次生矿物在这一过程中形成,如磷酸盐矿物、碳酸盐矿物、硫化物、纳米级硅球、氧化钛等[113-116]。从早期成岩过程中继承下来的特征会影响中期和晚期成岩作用的进程,从而影响非常规油气储层的物理性质和力学性质[16]

    中期和晚期成岩作用阶段,温度和压力的驱动作用是目前成岩作用理论认识比较成熟的领域[117-119]。有机质演化和矿物之间转化都是在热力学驱动下达到一个稳定状态的过程。有机质生烃和黏土矿物的转化过程及其引起的一系列化学反应是泥岩典型的成岩作用特征。有机质生烃作用不仅可以提供油气初次运移的动力,形成油气初次运移的路径,残留的沥青可为有机质孔隙形成提供载体[18];同时,生烃过程中产物对矿物的溶解和沉淀也具有重要的影响。泥岩内部有机质生烃、黏土矿物脱水以及流体热膨胀作用产生超压会导致超压缝的形成,从而为油气的运移提供了通道,同时也为矿物生长提供了空间。此外,压力对有机质的演化也会产生复杂的影响[120],郝芳[121]指出超压对有机质演化的抑制程度与有机质类型和含量、超压发育的时间和幅度、超压地层中地层水的含量等因素有关。

    原始沉积组分控制泥岩成岩演化路径,从而影响泥岩的孔隙演化。泥质松散沉积物初始的孔隙度可达75%~80%,受压实作用影响,在埋藏50 m的范围内孔隙度迅速降低[122],埋藏达到300 m时脱水作用终止孔隙度减少至一半[123]。早期成岩作用阶段形成的自生矿物尽管降低了孔隙度,但是可以有效抑制后期的压实作用(图6),特别是硅质泥岩中自生纳米级硅球聚集体内部可保留接近15%的孔隙度[45]。中期和晚期成岩作用阶段是生烃过程中形成酸性流体溶蚀不稳定矿物形成溶蚀孔隙和有机质孔隙发育的主要阶段,长石、碳酸盐矿物、生物骨架等组分遭受溶蚀后可形成粒内、粒间及铸模孔,从而增加页岩孔隙度[18]。溶蚀孔隙在以碳酸盐矿物为主的纹层状泥岩中可以作为重要的存储和运移油气的孔隙类型[124-125]。有机质生烃是形成有机质孔的主要机制,Woodford页岩中有机质面孔率可达50%[17],是大部分页岩气储层的主要孔隙类型。此外,在成岩过程中,受压力和应力的影响,形成的不同尺度的裂缝不仅可以储存油气,也可以作为油气运移的主要通道,极大地改善了泥岩储层的渗透性。

    Figure 6.  Diagenetic evolution and pore development model of siliceous shale[27]

    泥岩成岩作用的驱动机制及其物性响应的研究不仅在完善成岩理论方面具有意义,在指导页岩油气勘探开发上同样具有重要的实践价值。受控于复杂的实际地质条件,特别是中期和晚期成岩作用阶段物质的传输过程及其传输机制研究的限制,成岩作用的驱动机制和演化路径研究相对薄弱,成岩作用对泥岩孔隙演化的控制机制异常复杂,相关研究仍然是该领域学科发展的主流。

  • 泥岩的力学性质是决定压裂效果的关键因素,受控于矿物组成和岩石的微观结构。目前大多数关于页岩力学性质的研究主要基于矿物的组成,认为脆性矿物含量越高,则岩石的脆性越强;但是脆性矿物的含量(脆性指数)与岩石的力学性质参数(杨氏模量和泊松比)并没有非常好的相关性。相同矿物组成的岩石,力学性质会表现出较大的差异,造成这种现象的内在因素是成岩作用(压实、胶结、重结晶等)导致的岩石微观结构的差异,涉及到颗粒和孔隙的再排列[126]。Hall[127]对比了两种不同成岩演化路径的泥岩力学性质的差异(Marcellus和Woodford泥岩),指出陆源石英,以及成岩过程中黏土矿物转化形成的石英对泥岩脆性的贡献有限,而早成岩作用阶段生物成因的石英胶结极大地提高了泥岩的脆性(图7)。值得注意的是,成岩演化过程不仅仅是单方向的增加岩石的脆性,沉积盆地中泥岩的脆性和延性随着压力和温度条件的变化可以相互转化。围压与岩石变形机制的三轴实验研究表明,随着围压的增加,岩石出现了由脆性向延性转变的特征,并得到了不同岩性的转化临界围压值[128-130]。袁玉松等[131]依据名义固结压力、OCR门限值和脆—延转化临界围压确定了四川盆地川东鄂西地区龙马溪组页岩脆性带底界深度介于1 940~2 763 m,延性带顶界深度大约为4 470±230 m,并指出脆延转化带是页岩气勘探开发的最佳深度带。岩石发生脆延转化是多方面因素共同作用的结果,除压力外岩石的力学性质、流动特性、岩石的物理性质,特别是成岩演化过程中岩石微观结构的变化等对岩石脆延特性转化都具有重要的影响,岩石脆延特性转化机理的研究仍然是薄弱的一个环节。

    Figure 7.  Plot of brittleness and Young’s modulus of typical American mudstones[127]

  • 成岩作用系统是指不同尺度上一系列在成因上密切关联的成岩作用产物及其形成环境的总和,一定的成岩系统具备确定的成岩作用组合和时空范围[132]。成岩作用的研究应纳入盆地动力学演化框架内,基于盆地沉积层序、地层格架、埋藏、构造及流体分析。按照李忠等[132]提出的成岩作用系统划分方案,泥岩成岩作用系统是介于层内域—层序域内的一套穿时成岩作用系统,由于泥岩的矿物组成复杂导致成岩演化路径差异明显,可进一步划分为纹层、岩相和岩相组合三个尺度。随着成岩作用驱动机制的深入探索,不同尺度成岩系统的实验与数值模拟实验和动力学过程研究有助于深入理解不同尺度的成岩地质模型及动力学模型时空分布,推进泥岩成岩作用系统的发展。盆地动力学过程即构造活动、温压场及其演化历史对成岩反应、物质输运与再配置的认识必须从盆地动力学角度考察和研究[108]。温度、压力、应力场耦合下的成岩作用研究必将为成岩作用研究的一个主流。温度是伴随整个成岩演化过程,是有机质生烃和矿物转化的主要驱动力。压力—应力耦合通过改变岩石的孔隙弹性响应和流体的渗透力来改变地层局部的差异应力大小和主应力方向,影响裂缝发育的类型和产状,从而影响流体的传输路径及相应的成岩作用进程,二者往往是协同演化、相互影响的[133],这一领域的研究已经发展出构造—成岩作用这一交叉学科[134]。此外,压力—应力—温度耦合也是控制泥岩力学性质变化的重要因素。因此,随着对泥岩成岩作用重要性认识的加强,亟待开展多场耦合控制下泥岩成岩作用系统的研究。

  • 泥岩中有机—无机相互作用对成岩作用的进程也具有重要的控制作用,逐渐引起了人们的重视[53,135]。有机—无机相互作用成岩体系在19世纪70~80年代就已经开展了比较深入的研究,并在砂岩和碳酸盐岩储层中得以有效应用[1,8,136]。泥岩中有机质生烃演化和矿物组分成岩作用研究相对较为成熟,但成岩过程中有机—无机相互作用机制不清楚,特别是不同尺度下有机和无机组分的协同演化路径及控制因素尚不明确。早期成岩作用是典型的物理—化学—生物作用过程,对于泥岩中有机质降解过程、微生物作用、成岩演化路径及数学模型建立等方面都缺乏深入而系统的研究。中期和晚期成岩作用阶段,有机质热解产生的流体化学—矿物体系对成岩作用的制约机制和分布特征仍然不清,有待深入。因此,在今后的研究中多场耦合、不同尺度有机—无机相互作用影响下泥岩成岩作用驱动机制和流体岩石相互作用效应研究是泥岩成岩作用系统重要的发展方向。

  • 泥岩成岩作用是当今非常规油气沉积学研究的一个涉及多学科交叉的前沿研究领域。高新技术的不断发展、研究尺度的不断精细和新资料的不断获取,为这一领域的研究奠定了重要基础。泥岩成岩作用研究将不断补充完善盆地成岩作用系统,并继续为非常规油气资源的勘探和开发提供理论支撑。多场耦合下不同尺度有机—无机相互作用影响下泥岩成岩作用驱动机制和流体岩石相互作用效应研究预示了深远和广泛的发展前景。

Reference (136)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return