Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

HOU YunChao, FAN TaiLiang, LI YiFan, CAI WenJie, WANG HongYu, LIU LongLong, YIN SiQi, LI Dong. Interactions and Responses Between Salt Structures and Deep Water Gravity Flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33. doi: 10.14027/j.issn.1000-0550.2020.123
Citation: HOU YunChao, FAN TaiLiang, LI YiFan, CAI WenJie, WANG HongYu, LIU LongLong, YIN SiQi, LI Dong. Interactions and Responses Between Salt Structures and Deep Water Gravity Flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33. doi: 10.14027/j.issn.1000-0550.2020.123

Interactions and Responses Between Salt Structures and Deep Water Gravity Flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico

doi: 10.14027/j.issn.1000-0550.2020.123
Funds:

Strategic Priority Research Program of the Chinese Academy of Scicences XDA14010201-02

the Project of CNOOC China YXKY-2018-ZY-01

  • Received Date: 2020-07-14
  • Rev Recd Date: 2020-11-19
  • Publish Date: 2022-01-10
  • In passive continental margin basins with salt tectonics, the determination of sedimentary coupling characteristics between salt tectonic activity and deep-water gravity flow events is the basis for the prediction and evaluation of relatively high-quality reservoirs and “sweet spot” areas in such basins. In this paper, the interaction types and response characteristics between Miocene deep-water sediments and salt structures in the Sureste Basin in the Gulf of Mexico are analyzed by means of integrated drilling and core analysis and the detailed interpretation of high-resolution three-dimensional seismic data. In addition, the genesis of different action modes and the significance of hydrocarbon exploration are discussed. The results show that the lower continental slope of the Sureste Basin develops a series of geomorphic units related to salt tectonic activities, such as a mini-basin, topographic slope break, local uplift, and connected tortuous corridors, etc. For this topographically complex slope, deep-water gravity flow depositions and salt structures form a variety of interaction modes and matching relationships. The early and syndepositional active salt structures can not only direct or limit gravity flow, forming various interaction types, such as guidance, confinement, blocking, and lateral deflection, but also be eroded by gravity flows to form an unconformity. The reconstruction of deep water deposition by salt activities in the late period shows two styles of truncation and deformation. Different interactions are likely controlled by the nature and erosional power of the gravity flow, the size, quantity, and orientation of the salt structure, and the timing and intensity of the salt structure growth. Blocking, erosion, and truncation correspond to three end-member classes of interaction between the salt structure and deep water deposition. Early and syndepositional salt tectonic activities affect the quality and distribution of deep water clastic reservoirs, and late salt tectonic activities are crucial to the formation of structural and structure-lithologic traps.
  • [1] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [2] Jackson M P A, Talbot C J. External shapes, strain rates, and dynamics of salt structures[J]. Geological Society of America Bulletin, 1986, 97(3): 305-323.
    [3] 戈红星,Jackson M P A. 盐构造与油气圈闭及其综合利用[J]. 南京大学学报,1996,32(4):640-649.

    Ge Hongxing, Jackson M P A. Salt structures, hydrocarbon traps and mineral deposits[J]. Journal of Nanjing University (Natural Sciences), 1996, 32(4): 640-649.
    [4] Hudec M R, Jackson M P A. Terra infirma: Understanding salt tectonics[J]. Earth-Science Reviews, 2007, 82(1/2): 1-28.
    [5] Smith R. Silled sub-basins to connected tortuous corridors: Sediment distribution systems on topographically complex sub-aqueous slopes[J]. Geological Society, London, Special Publications, 2004, 222(1): 23-43.
    [6] Ings S J, Beaumont C. Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal’ minibasins[J]. Geology, 2010, 38(4): 339-342.
    [7] Goteti R, Ings S J, Beaumont C. Development of salt minibasins initiated by sedimentary topographic relief[J]. Earth and Planetary Science Letters, 2012, 339-340: 103-116.
    [8] Prather B E. Calibration and visualization of depositional process models for above-grade slopes: A case study from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2000, 17(5): 619-638.
    [9] Gee M J R, Gawthorpe R L. Submarine channels controlled by salt tectonics: Examples from 3D seismic data offshore Angola[J]. Marine and Petroleum Geology, 2006, 23(4): 443-458.
    [10] Oluboyo A P, Gawthorpe R L, Bakke K, et al. Salt tectonic controls on deep‐water turbidite depositional systems: Miocene, southwestern Lower Congo Basin, offshore Angola[J]. Basin Research, 2014, 26(4): 597-620.
    [11] Clark I R, Cartwright J A. Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean sea[J]. Marine and Petroleum Geology, 2009, 26(8): 1465-1482.
    [12] Clark I R, Cartwright J A. Key controls on submarine channel development in structurally active settings[J]. Marine and Petroleum Geology, 2011, 28(7): 1333-1349.
    [13] 陈亮,赵千慧,王英民,等. 盐构造与深水水道的交互作用以下刚果盆地为例[J]. 沉积学报,2017,35(6):1197-1204.

    Chen Liang, Zhao Qianhui, Wang Yingmin, et al. Interactions between submarine channels and salt structures: Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1197-1204.
    [14] Carter R C, Gani M R, Roesler T, et al. Submarine channel evolution linked to rising salt domes, Gulf of Mexico, USA[J]. Sedimentary Geology, 2016, 342: 237-253.
    [15] Mayall M, Lonergan L, Bowman A, et al. The response of turbidite slope channels to growth-induced seabed topography[J]. AAPG Bulletin, 2010, 94(7): 1011-1030.
    [16] Doughty-Jones G, Mayall M, Lonergan L. Stratigraphy, facies, and evolution of deep-water lobe complexes within a salt-controlled intraslope minibasin[J]. AAPG Bulletin, 2017, 101(11): 1879-1904.
    [17] 周浩玮. 墨西哥Sureste盆地成藏组合及勘探潜力[J]. 地学前缘,2017,24(3):249-256.

    Zhou Haowei. Hydrocarbon plays and exploration potential of the Sureste Basin of Mexico[J]. Earth Science Frontiers, 2017, 24(3): 249-256.
    [18] Vendeville B C. Salt tectonics driven by sediment progradation: Part I—Mechanics and kinematics[J]. AAPG Bulletin, 2005, 89(8): 1071-1079.
    [19] Gaullier V, Vendeville B C. Salt tectonics driven by sediment progradation: Part II—Radial spreading of sedimentary lobes prograding above salt[J]. AAPG Bulletin, 2005, 89(8): 1081-1089.
    [20] Gradmann S, Beaumont C, Albertz M. Factors controlling the evolution of the Perdido Fold Belt, northwestern Gulf of Mexico, determined from numerical models[J]. Tectonics, 2009, 28(2): TC2002.
    [21] Brun J P, Fort X. Salt tectonics at passive margins: Geology versus models[J]. Marine and Petroleum Geology, 2011, 28(6): 1123-1145.
    [22] Feng J H, Buffler R T, Kominz M A. Laramide orogenic influence on Late Mesozoic-Cenozoic subsidence history, western deep Gulf of Mexico Basin[J]. Geology, 1994, 22(4): 359-362.
    [23] Sánchez R J P. Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México[J]. Boletín de la Sociedad Geológica Mexicana, 2007, 59(1): 19-42.
    [24] Gutiérrez-Paredes H C, Peterson-Rodríguez R, Catuneanu O, et al. Tectonic influence on the morphology, facies and distribution of Miocene reservoirs, southern Gulf of Mexico[J]. Journal of South American Earth Sciences, 2018, 88: 399-414.
    [25] Witt C, Brichau S, Carter A. New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry[J]. Tectonics, 2012, 31(6): TC6001.
    [26] Pirmez C, Beaubouef R T, Friedmann S J, et al. Equilibrium profile and baselevel in submarine channels: Examples from Late Pleistocene systems and implications for the architecture of deepwater reservoirs[C]//Deep‐water reservoirs of the world. Gulf coast section, SEPM 20th annual research conference. Huston: SEPM Special Publication, 2000: 782-805.
    [27] Kneller B. The influence of flow parameters on turbidite slope channel architecture[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 901-910.
    [28] Beaubouef R T, Friedmann S J. High resolution seismic/sequence stratigraphic framework for the evolution of Pleistocene intra slope basins, western Gulf of Mexico: Depositional models and reservoir analogs[C]//Deep-water reservoirs of the world: Gulf coast section SEPM 20th annual research conference. Huston: SEPM Special Publication, 2000: 40-60.
    [29] Prather B E. Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 529-545.
    [30] Weimer P, Bouroullec R, Lapinski T G, et al. Sequence stratigraphic evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico—Lower Cretaceous through upper Miocene (8.2 Ma): A case study[J]. AAPG Bulletin, 2017, 101(7): 1109-1143.
    [31] Prather B E, Booth J R, Steffens G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water Gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5A): 701-728.
    [32] Prather B E, Pirmez C, Winker C D. Stratigraphy of linked intraslope basins: Brazos-Trinity system western Gulf of Mexico[M]//Prather B, Deptuck M E, Mohrig D C, et al. Application of the principles of seismic geomorphology to continental-slope and base-of-slope systems: Case studies from seafloor and near-seafloor analogues. Tulsa: SEPM Special Publication, 2012: 83-109.
    [33] 李磊,王英民,张莲美,等. 尼日尔三角洲下陆坡限定性重力流沉积过程及响应[J]. 中国科学(D辑):地球科学,2010,40(11):1591-1597.

    Li Lei, Wang Yingmin, Zhang Lianmei, et al. Confined gravity flow sedimentary process and its impact on the lower continental slope, Niger Delta[J]. Science China (Seri. D): Earth Sciences, 2010, 40(11): 1591-1597.
    [34] Posamentier H W. Depositional elements associated with a basin floor channel-levee system: Case study from the Gulf of Mexico[J]. Marine and Petroleum Geology, 2003, 20(6/7/8): 677-690.
    [35] Samuel A, Kneller B, Raslan S, et al. Prolific deep-marine slope channels of the Nile Delta, Egypt[J]. AAPG Bulletin, 2003, 87(4): 541-560.
    [36] Mallarino G, Beaubouef R T, Droxler A W, et al. Sea level influence on the nature and timing of a minibasin sedimentary fill (northwestern slope of the Gulf of Mexico)[J]. AAPG Bulletin, 2006, 90(7): 1089-1119.
    [37] Kane I A, McGee D T, Jobe Z R. Halokinetic effects on submarine channel equilibrium profiles and implications for facies architecture: Conceptual model illustrated with a case study from Magnolia Field, Gulf of Mexico[J]. Geological Society, London, Special Publications, 2012, 363(1): 289-302.
    [38] McHargue T, Pyrcz M J, Sullivan M D, et al. Architecture of turbidite channel systems on the continental slope: Patterns and predictions[J]. Marine and Petroleum Geology, 2011, 28(3): 728-743.
    [39] Franks S G, Uchytil S J. Geochemistry of formation waters from the subsalt Tubular Bells Field, offshore Gulf of Mexico: Implications for fluid movement and reservoir continuity[J]. AAPG Bulletin, 2016, 100(6): 943-967.
    [40] Nikolinakou M A, Heidari M, Flemings P B, et al. Geomechanical modeling of pore pressure in evolving salt systems[J]. Marine and Petroleum Geology, 2018, 93: 272-286.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(1)

Article Metrics

Article views(395) PDF downloads(132) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-07-14
  • Revised:  2020-11-19
  • Published:  2022-01-10

Interactions and Responses Between Salt Structures and Deep Water Gravity Flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico

doi: 10.14027/j.issn.1000-0550.2020.123
Funds:

Strategic Priority Research Program of the Chinese Academy of Scicences XDA14010201-02

the Project of CNOOC China YXKY-2018-ZY-01

Abstract: In passive continental margin basins with salt tectonics, the determination of sedimentary coupling characteristics between salt tectonic activity and deep-water gravity flow events is the basis for the prediction and evaluation of relatively high-quality reservoirs and “sweet spot” areas in such basins. In this paper, the interaction types and response characteristics between Miocene deep-water sediments and salt structures in the Sureste Basin in the Gulf of Mexico are analyzed by means of integrated drilling and core analysis and the detailed interpretation of high-resolution three-dimensional seismic data. In addition, the genesis of different action modes and the significance of hydrocarbon exploration are discussed. The results show that the lower continental slope of the Sureste Basin develops a series of geomorphic units related to salt tectonic activities, such as a mini-basin, topographic slope break, local uplift, and connected tortuous corridors, etc. For this topographically complex slope, deep-water gravity flow depositions and salt structures form a variety of interaction modes and matching relationships. The early and syndepositional active salt structures can not only direct or limit gravity flow, forming various interaction types, such as guidance, confinement, blocking, and lateral deflection, but also be eroded by gravity flows to form an unconformity. The reconstruction of deep water deposition by salt activities in the late period shows two styles of truncation and deformation. Different interactions are likely controlled by the nature and erosional power of the gravity flow, the size, quantity, and orientation of the salt structure, and the timing and intensity of the salt structure growth. Blocking, erosion, and truncation correspond to three end-member classes of interaction between the salt structure and deep water deposition. Early and syndepositional salt tectonic activities affect the quality and distribution of deep water clastic reservoirs, and late salt tectonic activities are crucial to the formation of structural and structure-lithologic traps.

HOU YunChao, FAN TaiLiang, LI YiFan, CAI WenJie, WANG HongYu, LIU LongLong, YIN SiQi, LI Dong. Interactions and Responses Between Salt Structures and Deep Water Gravity Flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33. doi: 10.14027/j.issn.1000-0550.2020.123
Citation: HOU YunChao, FAN TaiLiang, LI YiFan, CAI WenJie, WANG HongYu, LIU LongLong, YIN SiQi, LI Dong. Interactions and Responses Between Salt Structures and Deep Water Gravity Flow: A case study from the Miocene strata in the Sureste Basin, Gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33. doi: 10.14027/j.issn.1000-0550.2020.123
  • 重力流具有突发、不连续的特征,属于事件沉积或“非常规”沉积[1]。在被动大陆边缘地区,深水重力流沉积体系因蕴含有丰富的油气资源而引起了广大学者的关注。不过,在墨西哥湾、西非和南美洲东部等陆架斜坡区发育大量盐构造,盐岩具有流变性和不可压缩性,在广泛的地质条件下表现出不稳定的特征[2-4]。与盐岩塑性流动相关的褶皱、断层和底辟等构造活动导致盐上地层发生变形,形成非常复杂的陆架斜坡地貌[5-7],这些地形/地貌明显控制着深水重力流沉积的可容纳空间大小和形态[8-10],影响重力流沉积的内部结构和相分布[11-14]。例如,盐构造活动对深水水道可以产生限制、改道、偏转和局限等4种作用,水道对盐构造也可以产生侵蚀作用,不同作用方式对应的储层发育情况存在明显差异[13,15-16]。因此,区域性盐构造活动和重力流等地质事件耦合使沉积记录表现出突变或不连续的特征,进而控制相对优质储层和甜点区的形成和分布,其多样的作用方式增加了深水勘探的难度。

    墨西哥湾南部Sureste盆地是墨西哥最重要的石油富集区之一,前期的勘探主要集中在陆上和浅水区,深水区域潜力巨大,正成为油气勘探的重点[17],但深水区储层埋深较大,同时受盐岩对储层沉积和成岩的影响,优质储层预测难度大、勘探风险高。Sureste盆地深水区广泛发育盐构造,中侏罗统盐岩在沉积负载和重力滑脱作用下发生塑性流动和底辟[18-21],使得盆地深水区沉积地貌变得非常复杂,盐构造与深水重力流沉积形成了多样的制约、响应关系。本文以Sureste盆地中新统为对象,在钻井和岩心分析基础上,结合三维地震资料精细解释,研究深水重力流与盐构造相互作用及响应特征,探讨不同作用方式的成因机制和油气地质意义,这对盐构造活动与重力流事件沉积耦合以及类似背景下甜点区评价具有重要指导意义。

  • Sureste盆地位于墨西哥湾南部,东侧为Yucatan台地,西侧毗邻Veracruz盆地和东马德雷山脉(简称SMO),南接马德雷—恰帕斯山脉(简称SMC),由南向北横跨墨西哥东南部塔巴斯科海岸平原、浅水陆架以及北部深水洋盆(图1a)。盆地可进一步划分为4个构造单元:Comalcalco次盆、Reforma构造带、Macuspana次盆和Campeche(或Salina)次盆(图1b)。其中Comalcalco次盆和Macuspana次盆位于盆地南部,均呈北东—南西走向,发育浅层盐底辟,分别为两个第三系沉积中心。Campeche次盆处于盆地北部,包含了深水大部分区域,该区盐岩活动最为强烈,发育不同类型和规模的盐构造,如盐株、盐墙、盐蓬以及挤压和逆冲推覆形成的相关褶皱等(图1c)。

    Figure 1.  Location and stratigraphic structural section of the study area

    Sureste盆地构造—沉积演化过程受区域性构造事件与局部性构造事件共同影响。区域性构造演化事件包括北美西部Laramide造山运动、南部Caribbean(或Chortis)板块的侧向运动以及Cocos板块向北美板块南端的俯冲,局部构造事件主要与盐活动有关[22-23]。自晚侏罗世以来,Sureste盆地的伸展、挤压和盐构造活动至少可以划分为4个变形幕:晚侏罗世至晚白垩世的重力伸展/挤压阶段、古近纪构造挤压阶段、中新世构造挤压阶段和新近纪重力伸展/挤压阶段[24]。其中南部Caribbean(或Chortis)板块从始新世以来的向东运动导致Yucatan板块南部边缘发生左旋走滑挤压,挤压作用在中新世达到顶峰[25],这一事件被称为Chiapanecan造山运动,中新世成为墨西哥南部最显著的变形时期之一。挤压造山(SMC山脉)为Sureste盆地提供了大量陆缘碎屑物质,这些沉积物被搬运至深水盆地形成重要的储层。本文的研究区位于Campeche次盆,水深200~3 000 m,目的层为中新世地层,此阶段深水重力流沉积非常发育,而且也是盐构造活动的重要时期,这为深水重力流沉积单元与盐构造相互作用研究提供了良好地质条件。

  • 三维地震资料显示,研究区刺穿盐体在地震剖面上通常具有特殊的反射特征,盐岩顶界面多为强振幅、连续反射,盐体内部主要表现为空白反射或中—弱振幅、杂乱反射,通过盐构造的规模和几何形态可进一步划分为盐株、盐墙和盐背斜等不同类型。Sureste盆地陆架由上部的伸展区和中下部的挤压区构成,研究区主要处于中下陆坡的挤压体系(图1c)。中新世时期,由于重力滑动作用在下陆坡和深海平原形成一系列盐相关褶皱带、冲断带、挤压底辟带和挤压盐推覆体等,这些活动的盐构造形成了非常复杂的海底地貌。Smith[5]根据地貌结构特征,将发育盐构造的陆架斜坡区划分出阶梯式串联的闭塞微盆和相互连通的曲折通道2种端元类型。不过,大量的盐构造导致研究区实际的地形复杂多变,通常由很多不同地貌单元构成。根据地貌形态和连通关系,研究区先存地貌单元可以归纳为完全闭塞微盆、未有效闭合微盆、地形坡折、局部凸起和弯曲通道等5种类型,这些地貌单元在三维空间相互连接或组合(图2)。此外,综合考虑地震反射的披覆、上超等特征和地层厚度的横向变化可以判断,研究区除了先存地貌,很多盐构造在深水重力流沉积单元发育过程中和沉积后仍处于活动的状态,持续改变着陆坡结构和沉积地形。

    Figure 2.  Characteristics of three⁃dimensional (3⁃D) seismic geomorphology and different geomorphic units in the study area

  • 陆坡均衡面是沉积与侵蚀作用相平衡的一个趋势面,连接着陆架坡折与盆地基准面,在深水重力流沉积体系中,基准面是浊流沿着某一特定通道可以到达的最低点[26]。基准面并不是一个固定的界面,从大的区域尺度上看,最深的盆地底界面代表着基准面的位置,但是在复杂地貌背景下,局部基准面的位置可能会是某个陆坡微盆的沉积底界面。均衡剖面的最下端与基准面相连,因此,构造活动相关的局部隆起可以改变基准面的位置,进而影响均衡剖面的坡度和形状。例如,随着基准面的上升,均衡剖面的坡度将会减小,从而形成新的可容纳空间。如果基准面的位置固定,斜坡均衡剖面的梯度主要与流体密度、流体厚度和悬浮物颗粒大小有关[27]

    陆架斜坡重力流沉积体系的结构样式由可容纳空间决定,均衡剖面与实际斜坡或沉积物表面之间的间隙决定了可容纳空间大小[27-29]。当实际的斜坡剖面位于均衡剖面之上时,可容纳空间为负,存在侵蚀的可能性,反之为正,即存在可供沉积物堆积的空间。因此,均衡剖面的变化将控制可容纳空间的产生或消除,从而决定了侵蚀和沉积分布的空间变化。

  • 在研究区,深水水道和朵叶是最为常见的两种重力流沉积单元。钻井揭示,深水水道内沉积的砂岩厚度一般可以达到30~100 m,表现为大套厚层砂岩夹薄层泥岩特征。岩心中层理现象丰富,以块状层理、递变层理和平行层理为主(图3a,b),侵蚀冲刷面比较常见。此外,沉积物粒级变化大,从粉细砂岩到中粗砂岩和砂砾岩均有发育,除了浊流沉积外,也发育有碎屑流沉积和水道侧壁垮塌形成的滑塌沉积(图3c)。朵叶是流体从水道末端分散开来形成的席状富砂沉积单元。在地震剖面上,朵叶表现为中—强振幅反射,这些反射轴一般向两侧收敛减薄,具有平缓的丘状或透镜状反射结构。钻井上,朵叶砂体与厚层深海泥岩互层加积,砂体厚度一般5~25 m,测井曲线呈齿化箱型或钟型。朵叶砂体岩性总体中等—细,除了浊流成因的中厚层纯净块状或平行层理细砂岩外(图3d),富含泥岩碎屑的碎屑流沉积以及浊流和碎屑流组合形成的混合重力流沉积也比较发育(图3e,f)。

    Figure 3.  Sedimentary characteristics of Miocene deep⁃water gravity flow in the study area

  • 盐构造活动相对于深水重力流事件的发育时间可以表现为早期、同沉积期和后期等3种情况,它们在时间和空间上的耦合形成了多样的匹配关系和作用方式,控制着深水沉积充填过程。

  • 早期盐构造形成局部凸起和弯曲通道,使沉积物运输路径更加多变和复杂,流体会在正向地貌处发生改向或沉积物卸载。盐核背斜对深水水道和朵叶的导向作用在研究区较为常见。当早期盐背斜隆升形成地貌高地,深水水道延伸方向又与盐背斜走向近乎垂直时,深水水道会在各个背斜带尖灭处发生改向和绕行,水道改向幅度可达数千米,最终水道穿过背斜带继续向盆地方向延伸(图4)。如果大量盐岩向背斜核部流动,背斜周边可能会因为盐撤退而形成局部洼地,也称之为周边向斜,这些区域位于均衡剖面之下,成为沉积物的潜在堆积区。浊流在背斜带的阻挡作用下发生回流减速,沉积物在靠近背斜带翼部的低洼处卸载堆积形成富砂朵叶。浊流在低洼处分散开来的时候受微地貌起伏变化影响,随着近源地貌洼地的持续充填,后期浊流能够进一步向下游方向或其他低洼处推进,形成次级朵叶(图5)。

    Figure 4.  The guiding effect of the anticline on the turbidite channel

    Figure 5.  The guiding effect of the anticline on the lobe distribution

  • 限定作用是指当盐构造走向与深水水道或朵叶的延展方向大致平行时,受两侧大规模盐株、盐墙、盐背斜等正向地貌限制,重力流被迫限制在一定的范围内向下游流动,这在发育大量凸起或弯曲通道等地貌单元处比较常见。如果早期大规模盐构造的走向与重力流流向垂直或高角度相交时,盐构造阻挡了重力流的传输路径,使流体完全限定在一个封闭的地形内并卸载沉积物,这种现象称为局限作用。局限作用主要发育在完全闭塞微盆和未有效闭合微盆内,通常形成朵叶沉积,在墨西哥湾和大西洋被动大陆边缘等多个盆地中非常常见[16,30]。当盐构造的高度难以阻挡重力流流体时,这种局限作用也就随之消失,之后为溢出过程[31-33]。研究区以盐构造微盆对朵叶的限定和局限作用最为典型,例如,图6中的地震剖面显示,在朵叶发育时期,地层向周边盐构造的收敛减薄和上超非常明显,表明该时期盐构造已经隆升形成高地,在两侧盐墙和盐背斜的限制下东部和西部两个朵叶复合体由南向北延展,其最北端受盐墙阻挡,朵叶交汇连片,显示了盐构造对重力流沉积的明显控制作用。

    Figure 6.  The confinement and blocking of the salt structure on the lobes

  • 无论是差异负载、重力扩展,还是挤压或伸展作用,都可能引起盐岩发生塑性流动和变形。因此,在地质历史时期,盐构造在主要的变形幕之间,通常存在小规模同沉积活动。这种同沉积活动导致地貌坡度和可容纳空间处于不断变化的状态,盐构造周边重力流的路径和沉积过程也会相应发生调整,其中较为常见和容易观察的是活动盐构造周边重力流沉积单元(如水道、朵叶)发育位置的迁移变化。例如,盐背斜在隆升过程中,其侧翼的水道具有加积和侵蚀共同作用、交替变化的特征,靠近背斜一侧水道表现为侧向加积,而远离背斜一侧受浊流侵蚀影响,水道边界较为陡倾,这些水道在纵向叠置的同时也在横向上发生着系统性迁移(图7)。根据地震剖面上水道顶部的略微上拱和强反射特征,推测水道应该是富砂的[34]

    Figure 7.  The characteristics of lateral channel migration in response to salt tectonic uplift

  • 重力流的侵蚀能力大小与流体性质(如流体类型、浓度、砂质含量、速度等)有关[27,35-36],侵蚀能力弱的流体遇到小型障碍物就会发生阻挡或转向,而侵蚀能力强的流体则可能对障碍物产生侵蚀切割,从而越过障碍物。就不同重力流沉积单元来说,水道和块体搬运沉积一般具有较强的侵蚀能力,其底界面通常可以见到下切侵蚀现象,而朵叶的侵蚀能力明显较弱,朵叶远端的席状砂体对下伏地层基本不具有侵蚀作用。因此,研究区侵蚀不整合通常发育在陆坡中上部的沉积物主要供给方向和水道发育区。

    研究区南部靠近陆架物源区,盐构造活动形成的微盆之间高差比较大,随着流体向下游微盆溢出,水道将响应于下一个盆地较低的新基准面,系统处于不平衡状态,这种不平衡导致上游微盆主要发育低弯度侵蚀水道。下游微盆可容纳空间大,且地貌由限制型水道向开阔微盆转变,有利于流体分散和沉积物卸载堆积,从而形成朵叶,朵叶展布受微盆形态的控制(图8)。微盆之间的盐构造作为坡度突变带,该区域浊流流速快、侵蚀能力强,沉积物以过路为主,一般形成明显的侵蚀不整合界面。总体而言,陆坡中部和上部的实际斜坡表面多位于均衡剖面之上,即存在侵蚀的可能性,加之该处坡度梯度较大,流体能量强,因此研究区南部盐构造隆起常被侵蚀后形成了大规模不整合。

    Figure 8.  Erosion of salt structures by the turbidite channel

  • 后期盐构造活动会对早期重力流沉积产生进一步改造,从匹配关系和作用方式来看包括两种类型:一种是盐体刺穿上覆地层导致盐底辟与深水重力流沉积单元之间表现为突变接触,沉积单元在横向上变得不连续,这里称为截切作用;另一种是盐相关褶皱导致早期沉积发生变形,在这一过程中重力流沉积单元可能被断裂错断或遭受后期侵蚀。截切作用和变形作用属于后期改造型,它对深水重力流沉积单元的发育和展布不具有控制作用。例如,从残余水道带的平面组合来看,图9中水道带发育期应该具有高弯曲度,水道带内发育多个细长的条带状单期水道,这些单期水道侧向迁移形成宽度2~4 km的水道复合体。无论是平面上还是剖面上,盐底辟与水道均表现为高角度相交和直接接触的特征,表明早期水道的发育和展布范围大,现今盐底辟与水道的截切关系是后期盐体刺穿造成的。

    Figure 9.  The truncation of the turbidite channel by the salt structure

  • 局限、限定和导向等作用类型的形成需要盐构造在早期已经活动并形成地貌高差,在深水重力流沉积单元发育过程中,这些盐构造可以是停止活动的,也可以是持续活动的。它们的形成主要是因为携带大量沉积物的重力流流体在地形坡度和自身重力的双重作用下,流体速度、浓度和方向等在盐构造附近发生变化,在宏观上则表现出重力流沉积单元的延伸方向和堆积区域发生改变(表1)。

    Table 1.  Response characteristics of deep water gravity flow deposition under different tectonic settings

    早期或同沉积期微盆除了对重力流起到限定和局限作用外,微地貌起伏变化对微盆内重力流沉积过程和地层结构也会产生重要影响。例如,图6中西部微盆总体由次盆—坡折—次盆等三个地貌单元共同构成,浊流进入南部次盆后经历了沉积物卸载和溢出两个过程,相应的形成了“朵叶—沟道—朵叶”串联的沉积充填特征,沟道位于坡折带处;东部微盆整体呈近南北向的长条状,微盆内地貌相对平缓,浊流携带的大量粗粒碎屑首先在微盆南部堆积形成朵体,沉积物的堆积导致近源地貌增高,后期浊流会进一步向下游远端推进,最后,多个浊流事件便形成了“串珠”状连接、叠置的朵叶,总体具有加积—进积的特征。

    同沉积盐构造在引起水道侧向迁移的过程中,加积和侵蚀的相对强弱与盐构造活动控制的均衡剖面位置密切相关。当均衡剖面处于较低位置时,可容纳空间小,水道趋向于下切侵蚀;而均衡剖面较高时,可容纳空间增大,水道趋向于加积和内部充填,甚至向堤岸型水道和朵叶转变[37]图7中深水水道大致经历了迁移—加积、迁移和迁移—弱加积三个阶段,各阶段的迁移、加积特征与旁边盐构造的活动强度具有很好对应关系。水道1发育期,地层厚度横向差异较小,盐构造活动弱,均衡剖面较高,浊流更倾向于过路或者发生卸载堆积,因此水道下切深度也较小,水道1至水道2在横向迁移的同时也表现出明显的加积特征;而水道2~4发育期,地层向背斜顶部收敛减薄非常快,表明盐背斜隆升强度增大,均衡剖面相对下降,导致水道下切深度逐渐增大,水道2至水道4以横向的迁移摆动占主导,垂向加积特征变得不明显(图7)。

    重力流对盐构造的侵蚀作用可以形成于两种背景:一种是早期盐构造活动形成正向地貌单元,当重力流与盐构造走向正交且侵蚀能力较强时,重力流有可能侵蚀穿过盐构造顶部;另一种是重力流发育时间早于盐构造或与盐构造开始活动同步,当其侵蚀速率与盐构造生长速率保持一致或略大于盐构造活动速率时,它们也可以切过盐构造向下游方向继续流动。无论哪种背景下,深水水道对盐构造的侵蚀强弱主要受重力流流体性质和均衡剖面位置变化控制。例如,流体的密度增加或厚度增大,或者盐构造活动导致坡度增加或均衡剖面降低,都可能导致重力流沉积单元的侵蚀能力增加[27,35,38],水道的下切深度增大,并有利于深水水道由迁移—加积进一步向大规模侵蚀转变。

    总体而言,盐构造与深水重力流的不同作用类型和响应特征是流体—地貌和盐构造活动事件共同作用的结果。早期/同沉积期盐构造的数量越多、规模和活动强度越大,越容易形成局限作用;深水重力流沉积单元的侵蚀能力越强,越容易形成对盐构造的侵蚀作用;后期盐构造活动越强、底辟越发育,越有利于截切作用的发生(图10)。因此,局限作用、侵蚀作用和截切作用对应了盐构造与深水重力流沉积相互作用的三个端元。需要注意的是,图10中不同作用类型所处的位置并非绝对,这里只是突出在某些因素占主导的情况下更容易发育这些作用方式和匹配关系。

    Figure 10.  Coupling characteristics of different interactions and genetic factors

  • 对于导向、限定、局限、侧向迁移和侵蚀等早期型或同沉积期作用方式来说,盐构造都不同程度的影响了深水重力流沉积单元的空间分布和充填演化特征,从而宏观上控制了深水碎屑岩储层的质量和展布。尽管深水重力流沉积单元的内部结构和沉积过程非常复杂,但就上述几种类型总体对比而言,大规模盐构造对浊流的限定和局限有利于形成高弯曲度水道和富砂朵叶的发育,这些沉积单元通常发育粒度较粗的块状层理或平行层理砂岩、砂砾岩(图3),以鲍马序列Ta、Tb段为主,砂体累积厚度一般可达数米至数十米,地震上表现为强振幅反射特征,是深水油气的良好储集体(图11)。

    Figure 11.  Characteristics of sandy lobes in the salt structure mini-basin

    对于导向和侧向迁移来说,重力流沉积单元发育在盐构造侧翼和周边向斜,其中朵叶一般富含砂质沉积物,从而可以形成有利储集体(图3),同时朵叶砂体与盐构造相互匹配可以构成岩性圈闭,从而成为深水勘探的有利目标。深水水道在盐构造控制下,延伸方向和弯曲度发生变化,水道内浊流在经过弯曲改道处,受沟道限制,流体的方向发生改变、能量被消耗,从而造成流体中部分粗粒沉积物的卸载堆积,有利于部分砂质的沉积。图4中水道弯曲处振幅能量明显更强,因此水道改向的地方可能是有利储集砂体发育区。侵蚀作用发生在盐构造顶部,该处可容纳空间小,尽管可能存在一些滞留粗粒沉积,但水道通常表现为侵蚀和过路特征,因此内部主要为后期的泥质充填,与上述几种类型相比,难以形成规模性储集体,勘探风险较大。

    截切与变形是后期盐构造变形对沉积单元的进一步改造,它们对深水重力流沉积过程不具有控制作用,但对深水勘探中储层成岩和油气圈闭的形成具有重要意义。对于截切来说,一方面,盐体刺穿上覆地层时会使周边地层发生一定的上倾变形或破裂,而盐体本身具有很好的封堵作用,因此,被截切的沉积单元可以与盐体组合形成盐体封堵的构造圈闭,或者与断层匹配形成断块圈闭和断层—岩性圈闭;另一方面,盐岩具有较低的密度和较高的热导率,盐岩脱水还可以增加邻近储层的孔隙流体压力,这些因素能够延缓盐下储层成岩作用进度,有利于相对优质储层形成,但也要注意盐体周围偏碱性地层流体环境有利于碳酸盐矿物沉淀和硫酸盐胶结物的形成[39-40],进而影响致密储层的发育和甜点区(段)的分布。对于非刺穿的盐相关褶皱来说,它会导致上部沉积砂体(朵叶、水道等)错断或褶皱变形,变形有利于盐核挤压背斜圈闭或其它构造—岩性复合圈闭的形成,断裂则可以成为油气的运移通道,从而疏导油气形成油气藏。

    总之,在发育盐岩的被动陆缘地区开展深水油气勘探,重力流事件与盐构造活动是需要综合考虑的重要因素,它从沉积和成岩两方面控制了储层发育特征。本文主要从沉积学角度对发育盐构造的被动陆缘区深水沉积储层进行分析,而不同背景下盐构造对储层成岩以及甜点区(段)分布的控制还需进一步深入研究。

  • 重力滑动作用使Sureste盆地下陆坡发生变形,形成一系列与盐构造相关的微盆、地形坡折、局部凸起和弯曲通道等地貌单元。早期和同沉积期盐构造活动引起的均衡剖面调整和地形/地貌变化控制了可容纳空间的大小和流体的分散过程,形成了导向、限定、局限和侧向迁移等多种作用类型。此外,重力流对早期盐构造可以产生侵蚀作用,后期盐构造活动使早期沉积发生截切和变形。上述宏观作用方式和匹配关系受重力流的性质、侵蚀能力与盐构造的规模、数量、走向、活动时间和强度的控制,微地貌变化和均衡剖面调整对重力流侵蚀、过路和沉积充填过程也产生了重要影响。局限、侵蚀和截切对应了盐构造与深水重力流沉积相互作用的三个端元类型。

    早期和同沉积盐构造活动与深水重力流事件的耦合作用控制着深水碎屑岩储层的质量和分布,是甜点区(段)评价的基础,后期盐构造活动形成的截切和变形作用对储层成岩和构造、构造—岩性等油气圈闭的形成具有重要意义。不过,不同背景下储层的质量差异和盐构造对储层成岩作用的具体影响还需进一步深入研究。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return