Advanced Search
Volume 39 Issue 5
Sep.  2021
Turn off MathJax
Article Contents

SUN HaiTao, ZHONG DaKang, WANG Wei, WANG Ai, YANG Shuo, DU HongQuan, TANG ZiCheng, ZHOU ZhiHeng. Origin Analysis of a Tight Sandstone Reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei Area in the Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1057-1067. doi: 10.14027/j.issn.1000-0550.2020.121
Citation: SUN HaiTao, ZHONG DaKang, WANG Wei, WANG Ai, YANG Shuo, DU HongQuan, TANG ZiCheng, ZHOU ZhiHeng. Origin Analysis of a Tight Sandstone Reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei Area in the Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1057-1067. doi: 10.14027/j.issn.1000-0550.2020.121

Origin Analysis of a Tight Sandstone Reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei Area in the Sichuan Basin, China

doi: 10.14027/j.issn.1000-0550.2020.121
Funds:

National Natural Science Foundation of China 41302108

National Science and Technology Major Project 2016ZX05002-004-011

  • Received Date: 2020-06-29
  • Rev Recd Date: 2020-11-20
  • Publish Date: 2021-10-10
  • A large-scale gas reservoir of high and stable production has been found in the upper Triassic Xujiahe Formation in the Malubei area, northeastern Sichuan Basin. Based on all kinds of test data, this paper discusses the origin of the tight sandstone reservoir in the second member of the Xujiahe Formation (T3x2), according to its petrological characteristics, diagenesis, and pore evolution. The results show that: (1) Lithic sandstone and quartz sandstone of delta front, whose parent rocks were derived from the metamorphic rocks of the Daba Shan, were deposited in the Xujiahe Formation at the Malubei area; (2) We cannot identify many pores from the casting slice and cores, and only a few micropores can be seen using a scanning electron microscope. This tight reservoir has poor physical properties, no matter whether it is quartz sandstone or lithic sandstone, at any burial depth or any grain size; (3) Strong burial compaction results in the reduction and disappearance of various pores; (4) The strong compressions during the early Yanshan tectonic (199 - 100 Ma), middle to late Yanshan tectonic (100 - 65 Ma), and Himalayan tectonic (since 65 Ma) stages further reduced the porosity about 4%; and (5) While the burial compaction and strong tectonic compaction reduced the pores, different scale faults and fractures (particle crack, intergranular micro fracture, and layer discontinuity) were also produced, connecting micropores and forming fault fracture reservoirs composed of faults, fractures, and micropores. This kind of reservoir is mainly controlled by the tectonic stress, while the position with the strongest tectonic compression has developed the most fractures. Secondly, it is controlled by the lithology and sandstone thickness, while most good reservoirs developed in middle to thin layer of the quartz sandstone.
  • [1] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [2] 杨晓萍,赵文智,邹才能,等. 低渗透储层成因机理及优质储层形成与分布[J]. 石油学报,2007,28(4):57-61.

    Yang Xiaoping, Zhao Wenzhi, Zou Caineng, et al. Origin of low-permeability reservoir and distribution of favorable reservoir[J]. Acta Petrolei Sinica, 2007, 28(4): 57-61.
    [3] 朱如凯,邹才能,张鼐,等. 致密砂岩气藏储层成岩流体演化与致密成因机理:以四川盆地上三叠统须家河组为例[J]. 中国科学(D辑):地球科学,2009,39(3):327-339.

    Zhu Rukai, Zou Caineng, Zhang Nai, et al. Diagenetic fluids evolution and genetic mechanism of tight sandstone gas reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China (Seri. D): Earth Sciences, 2009, 39(3): 327-339.
    [4] 董贞环. 四川盆地西部须家河组致密砂岩成岩作用与孔隙演化模式[J]. 岩相古地理,1994,14(2):33-41.

    Dong Zhenhuan. Model for diagenesis and porosity evolution of the dense sandstones from the Xujiahe Formation in western Sichuan Basin[J]. Sedimentary Facies and Palaeogeography, 1994, 14(2): 33-41.
    [5] 祝海华,钟大康,李其荣,等. 四川盆地蜀南地区上三叠统须家河组低孔低渗储层特征及形成机理[J]. 沉积学报,2013,31(1):167-175.

    Zhu Haihua, Zhong Dakang, Li Qirong, et al. Characteristics and controlling factors of Upper Triassic Xujiahe tight sandstone reservoir in southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2013, 31(1): 167-175.
    [6] 程立雪,王威,王涛. 川东北元坝、马路背地区上三叠统须二段石英砂岩储层天然气产能差异的原因[J]. 天然气工业,2017,37(8):14-21.

    Cheng Lixue, Wang Wei, Wang Tao. Reasons for the productivity difference of quartz sandstone gas reservoirs of Upper Triassic Xu 2 member between Yuanba and Malubei areas in NE Sichuan Basin[J]. Natural Gas Industry, 2017, 37(8): 14-21.
    [7] 王威. 川东北地区须家河组天然气高效成藏模式探讨[J]. 岩性油气藏,2018,30(3):27-34.

    Wang Wei. High efficient reservoir accumulation models of natural gas of Xujiahe Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(3): 27-34.
    [8] 杜红权,王威,时志强,等. 四川盆地东北部马路背地区上三叠统须家河组天然气地球化学特征及气源[J]. 石油与天然气地质,2019,40(1):34-40.

    Du Hongquan, Wang Wei, Shi Zhiqiang, et al. Geochemical characteristics and source of natural gas of the Upper Triassic Xujiahe Formation in Malubei area, northeastern Sichuan Basin[J]. Oil & Gas Geology, 2019, 40(1): 34-40.
    [9] 彭绍坤. 马路背构造上三叠统须家河组沉积相特征[J]. 江汉石油职工大学学报,2016,29(2):11-13.

    Peng Shaokun. Characteristics of sedimentary facies of Upper Triassic Xujiahe Formation in Malubei structure[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2016, 29(2): 11-13.
    [10] 王威,林良彪. 四川盆地东北部马路背地区上三叠统须家河组二段气藏高产机制[J]. 天然气工业,2017,37(12):11-17.

    Wang Wei, Lin Liangbiao. High-yield mechanism of the second member of Upper Triassic Xujiahe reservoir in the Malubei area, NE Sichuan Basin[J]. Natural Gas Industry, 2017, 37(12): 11-17.
    [11] 肖继林,胡伟光,肖伟,等. 川东北马路背地区须家河组储层综合预测[J]. 天然气技术,2010,4(3):17-19.

    Xiao Jilin, Hu Weiguang, Xiao Wei, et al. Comprehensive prediction of basal reservoir in Xujiahe Formation, Malubei area, northeastern Sichuan Basin[J]. Natural Gas Technology, 2010, 4(3): 17-19.
    [12] 程立雪,王威,岳全玲,等. 川东北地区须二段石英砂岩储层特征差异性[J]. 成都理工大学学报(自然科学版),2016,43(2):207-215.

    Cheng Lixue, Wang Wei, Yue Quanling, et al. Differences of quartz sandstone reservoir characteristics for the Member 2 of Xujiahe Formation in northeast Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science &Technology Edition), 2016, 43(2): 207-215.
    [13] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. 吉林大学学报(地球科学版),2006,36(3):358-364.

    Du Yebo, Ji Hancheng, Zhu Xiaomin. Research on the diagenetic facies of the Upper Triassic Xujiahe Formation in the western Sichuan Foreland Basin[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(3): 358-364.
    [14] 黎静容,朱桦,冯晓明,等. 川东北陆相储层裂缝特征差异性及对产能的影响[J]. 石油实验地质,2016,38(6):742-747.

    Li Jingrong, Zhu Hua, Xiaoming Fen, et al. Differences of fracture characteristics and the influence on productivity in the northeastern Sichuan continental basin[J]. Petroleum Geology & Experiment, 2016, 38(6): 742-747.
    [15] 郑荣才,朱如凯,戴朝成,等. 川东北类前陆盆地须家河组盆—山耦合过程的沉积—层序特征[J]. 地质学报,2008,82(8):1077-1087.

    Zheng Rongcai, Zhu Rukai, Dai Chaocheng, et al. Depositional sequence features during coupling process between basin and mountain of the Xujiahe Formation of Upper Triassic in the foreland basin, NE Sichuan[J]. Acta Geologica Sinica, 2008, 82(8): 1077-1087.
    [16] 李伟,邹才能,杨金利,等. 四川盆地上三叠统须家河组气藏类型与富集高产主控因素[J]. 沉积学报,2010,28(5):1037-1045.

    Li Wei, Zou Caineng, Yang Jinli, et al. Types and controlling factors of accumulation and high productivity in the Upper Triassic Xujiahe Formation gas reservoirs, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2010, 28(5): 1037-1045.
    [17] 谢小平,李姝臻,鲁宁,等. 川北广元须家河组一段沉积相与沉积环境演化分析[J]. 沉积学报,2021,39(2):493-505.

    Xie Xiao ping, Li Shuzhen, Lu Ning, et al. Sedimentary facies and sedimentary environment evolution of First member of the Xujiahe Formation in Guangyuan area, northern Sichuan province[J]. Acta Sedimentologica Sinica,2021,39(2):493-505.
    [18] 徐兆辉,胡素云,汪泽成,等. 古气候恢复及其对沉积的控制作用:以四川盆地上三叠统须家河组为例[J]. 沉积学报,2011,29(2):235-244.

    Xu Zhaohui, Hu Suyun, Wang Zecheng, et al. Restoration of paleoclimate and its geological significance: As an example from Upper Triassic Xujiahe Formation in Sichuan Basin[J]. Acta Sedimentologica Sinica, 2011, 29(2): 235-244.
    [19] Gould K, Pe-Piper G, Piper D J W. Relationship of diagenetic chlorite rims to depositional facies in Lower Cretaceous reservoir sandstones of the Scotian Basin[J]. Sedimentology, 2010, 57(2): 587-610.
    [20] Paxton S T, Szabo J O, Ajdukiewicz J M, et al. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs[J]. AAPG Bulletin, 2002, 86(12): 2047-2067.
    [21] Stricker S, Jones S J.Enhanced porosity preservation by pore fluid overpressure and chlorite grain coatings in the Triassic Skagerrak, Graben Central, Sea North, UK[M]//Armitage P J, Butcher A R, Churchill J M, et al. Reservoir quality of clastic and carbonate rocks: Analysis, modelling and prediction. Geological Society, London, Special Publications, 2018: 423-446.
    [22] 孙小龙,林承焰,董春梅,等. 储层岩性控制下的绿泥石对硅质胶结的影响[J]. 地球科学,2017,42(9):1599-1607.

    Sun Xiaolong, Lin Chengyan, Dong Chunmei, et al. Influence of chlorite on siliceous cement under control of reservoir lithology[J]. Earth Science, 2017, 42(9): 1599-1607.
    [23] 田建锋,陈振林,凡元芳,等. 砂岩中自生绿泥石的产状、形成机制及其分布规律[J]. 矿物岩石地球化学通报,2008,27(2):200-205.

    Tian Jianfeng, Chen Zhenlin, Fan Yuanfang, et al. The occurrence, growth mechanism and distribution of authigenic chlorite in sandstone[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(2): 200-205.
    [24] 姚泾利,王琪,张瑞,等. 鄂尔多斯盆地华庆地区延长组长6砂岩绿泥石膜的形成机理及其环境指示意义[J]. 沉积学报,2011,29(1):72-79.

    Yao Jingli, Wang Qi, Zhang Rui, et al. Forming mechanism and their environmental implications of chlorite-coatings in Chang 6 sandstone (Upper Triassic) of Hua-Qing area, Ordos Basin[J]. Acta Sedimentologica Sinica, 2011, 29(1): 72-79.
    [25] 周晓峰,焦淑静,于均民. 鄂尔多斯盆地延长组砂岩中绿泥石膜的赋存状态及成因[J]. 矿物岩石地球化学通报,2017,36(5):834-842.

    Zhou Xiaofeng, Jiao Shujing, Yu Junmin. Occurrences and origin of chlorite films in the Yanchang Formation sandstones, Ordos Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(5): 834-842.
    [26] 杨威,魏国齐,赵杏媛,等. 碎屑岩储层中自生绿泥石衬边能抑制石英次生加大吗?:以四川盆地须家河组砂岩储层为例[J]. 石油学报,2013,34(增刊1):128-135.

    Yang Wei, Wei Guoqi, Zhao Xingyuan, et al. Can authigenic pore-lining chlorite restrain quartz overgrowth in clastic reservoir? A case study of sandstone reservoir in Xujiahe Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(Suppl.1): 128-135.
    [27] 吴群,彭金宁. 川东北地区埋藏史及热史分析:以普光2井为例[J]. 石油实验地质,2013,35(2):133-138.

    Wu Qun, Peng Jinning. Burial and thermal histories of northeastern Sichuan Basin: A case study of well Puguang 2[J]. Petroleum Geology & Experiment, 2013, 35(2): 133-138.
    [28] 孙海涛,钟大康,李勇,等. 超深低孔特低渗砂岩储层的孔隙成因及控制因素:以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版),2018,48(3):693-704.

    Sun Haitao, Zhong Dakang, Li Yong, et al. Porosity origin and controlling factors of ultra-deep, low porosity and ultra-low permeability sandstone reservoirs: A case study of Bashijiqike Formation in Keshen area of Kuqa Depression, Tarim Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3): 693-704.
    [29] 杨宪彰,毛亚昆,钟大康,等. 构造挤压对砂岩储层垂向分布差异的控制:以库车前陆冲断带白垩系巴什基奇克组为例[J]. 天然气地球科学,2016,27(4):591-599.

    Yang Xianzhang, Mao Yakun, Zhong Dakang, et al. Tectonic compression controls the vertical property variation of sandstone reservoir: An example of Cretaceous Bashijiqike Formation in Kuqa foreland thrust belt, Tarim Basin[J]. Natural Gas Geoscience, 2016, 27(4): 591-599.
    [30] 寿建峰,朱国华,张惠良. 构造侧向挤压与砂岩成岩压实作用:以塔里木盆地为例[J]. 沉积学报,2003,21(1):90-95.

    Shou Jianfeng, Zhu Guohua, Zhang Huiliang. Lateral structure compression and its influence on sandstone diagenesis—A case study from the Tarim Basin[J]. Acta Sedimentologica Sinica, 2003, 21(1): 90-95.
    [31] 张岳桥,董树文,李建华,等. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质,2011,38(2):233-250.

    Zhang Yueqiao, Dong Shuwen, Li Jianhua, et al. Mesozoic multi-directional compressional tectonics and formation-reformation of Sichuan Basin[J]. Geology in China, 2011, 38(2): 233-250.
    [32] 曹天宇,钟大康,牛胜利,等. 惠州凹陷东部珠海组储层碱性成岩作用及孔隙演化[J]. 沉积学报,2020,38(6):1327-1337.

    Cao Tianyu, Zhong Dakang, Niu Shengli, et al. Alkaline diagenesis and porosity evolution of Zhuhai Formation reservoirs in eastern Huizhou Sag[J]. Acta Sedimentologica Sinica, 2020,38(6):1327-1337.
    [33] 李宏涛. 台内鲕粒滩气藏成藏过程与模式:以川东北河坝地区下三叠统飞仙关组三段为例[J]. 石油勘探与开发,2016,43(5):723-732.

    Li Hongtao. Accumulation process and pattern of oolitic shoal gas pools in the platform: A case from Member 3 of Lower Triassic Feixianguan Formation in the Heba area, northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43(5): 723-732.
    [34] 萧惠中,周大森. 方差体裂缝检测技术在川东南官渡地区的应用[J]. 油气地球物理,2017,15(4):21-25.

    Xiao Huizhong, Zhou Dasen. Application of variance body fracture detection technology in Guandu area of southeast of Sichuan[J]. Petroleum Geophysics, 2017, 15(4): 21-25.
    [35] 商琳,戴俊生,冯建伟,等. 砂泥岩互层裂缝发育的地层厚度效应[J]. 新疆石油地质,2015,36(1):35-41.

    Shang Lin, Dai Junsheng, Feng Jianwei, et al. Effect of strata thickness on fracture development in sand-mud interbed[J]. Xinjiang Petroleum Geology, 2015, 36(1): 35-41.
    [36] 赵乐强,冯建伟. 岩石力学层与构造裂缝发育关系研究[J]. 山东科技大学学报(自然科学版),2018,37(1):35-46.

    Zhao Leqiang, Feng Jianwei. Interrelationship study between rock mechanical stratigraphy and structural fracture development[J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(1): 35-46.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(606) PDF downloads(202) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-29
  • Revised:  2020-11-20
  • Published:  2021-10-10

Origin Analysis of a Tight Sandstone Reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei Area in the Sichuan Basin, China

doi: 10.14027/j.issn.1000-0550.2020.121
Funds:

National Natural Science Foundation of China 41302108

National Science and Technology Major Project 2016ZX05002-004-011

Abstract: A large-scale gas reservoir of high and stable production has been found in the upper Triassic Xujiahe Formation in the Malubei area, northeastern Sichuan Basin. Based on all kinds of test data, this paper discusses the origin of the tight sandstone reservoir in the second member of the Xujiahe Formation (T3x2), according to its petrological characteristics, diagenesis, and pore evolution. The results show that: (1) Lithic sandstone and quartz sandstone of delta front, whose parent rocks were derived from the metamorphic rocks of the Daba Shan, were deposited in the Xujiahe Formation at the Malubei area; (2) We cannot identify many pores from the casting slice and cores, and only a few micropores can be seen using a scanning electron microscope. This tight reservoir has poor physical properties, no matter whether it is quartz sandstone or lithic sandstone, at any burial depth or any grain size; (3) Strong burial compaction results in the reduction and disappearance of various pores; (4) The strong compressions during the early Yanshan tectonic (199 - 100 Ma), middle to late Yanshan tectonic (100 - 65 Ma), and Himalayan tectonic (since 65 Ma) stages further reduced the porosity about 4%; and (5) While the burial compaction and strong tectonic compaction reduced the pores, different scale faults and fractures (particle crack, intergranular micro fracture, and layer discontinuity) were also produced, connecting micropores and forming fault fracture reservoirs composed of faults, fractures, and micropores. This kind of reservoir is mainly controlled by the tectonic stress, while the position with the strongest tectonic compression has developed the most fractures. Secondly, it is controlled by the lithology and sandstone thickness, while most good reservoirs developed in middle to thin layer of the quartz sandstone.

SUN HaiTao, ZHONG DaKang, WANG Wei, WANG Ai, YANG Shuo, DU HongQuan, TANG ZiCheng, ZHOU ZhiHeng. Origin Analysis of a Tight Sandstone Reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei Area in the Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1057-1067. doi: 10.14027/j.issn.1000-0550.2020.121
Citation: SUN HaiTao, ZHONG DaKang, WANG Wei, WANG Ai, YANG Shuo, DU HongQuan, TANG ZiCheng, ZHOU ZhiHeng. Origin Analysis of a Tight Sandstone Reservoir for the Xujiahe Formation of the Upper Triassic at the Malubei Area in the Sichuan Basin, China[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1057-1067. doi: 10.14027/j.issn.1000-0550.2020.121
  • 我国致密油气、页岩油气等非常规油气资源十分丰富,2018年非常规天然气的产量507×108 m3,为全国天然气产量的三分之一[1]。四川盆地上三叠统须家河组砂岩的基质孔隙度普遍低于10%,渗透率低于0.1×10-3 μm2,为典型的致密砂岩天然气储层,其总资源量为4.85×1012 m3,2014年提交的三级储量为2.2×1012 m3[2-5]。须家河组发育“大面积、低丰度”致密砂岩气藏,特别是在总体物性最差的川东北地区[6-7]。川东北地区马路背构造须家河组整体上表现出“高产、稳产”的特点,M101井于2009年在须二段(T3 x 2)测试日产天然气60.11×104 m3,M103井须二段测试日产13.28×104 m3。截至目前M101井已经累产天然气超过3×108 m3,M103井也累产天然气超过2×108 m3

    文献调研发现,前人研究主要探讨了该致密砂岩储层高产稳产的因素,认为优质源岩供烃、规模网状裂缝沟通孔隙和断裂疏导是气藏高产的重要条件[6-11],并未针对该砂岩储层致密化过程和主控因素展开深入研究。因此,本文拟利用岩心、薄片、地震等多种资料,采用定量的孔隙演化分析方法,宏观与微观观察、内因和外因结合阐明马路背地区须二段致密砂岩背景下优质储层的成因。通过构造地质学和沉积学交叉应用分析非常规油气富集规律,既能丰富非常规油气沉积学的研究内容,也能为四川盆地须家河组和其他盆地致密砂岩气藏高产井的目标优选提供依据。

  • 研究区位于四川盆地东北边缘(图1),在龙门山以东、米仓山以南、大巴山以西,地理位置位于现今广元—巴中境内,构造位置属于川北低缓褶皱带的北缘[6,12]。受到印支运动的影响,四川盆地处在海相环境向陆相环境转换的阶段,盆地周缘的米仓山—大巴山造山带开始活动形成米仓山—大巴山推覆构造带,向盆内供源并沉积形成了海陆过渡相的须家河组[9,12-14]。研究区须二段(T3 x 2)发育了辫状河三角洲沉积体系,沉积了灰白色石英砂岩、灰色岩屑石英砂岩和长石岩屑砂岩[12-18]。这套砂岩储层具有埋藏深度大、成岩作用强、孔隙结构复杂、储层非均质性较强的特点。

    Figure 1.  Location map of the study area and the lithology column of the second member of the Xujiahe Formation (T3 x 2) in the Malubei area

  • 马路背地区须二段砂岩的结构成熟度中等,分选中等-差,磨圆次棱-次圆,以中粒岩屑砂岩和岩屑石英砂岩、石英砂岩为主(图2a)。石英通常为单晶石英,含量分布不均,通常分布在30%~80%之间,部分砂岩中石英含量极高,可高达90%以上。长石含量较低,通常分布在2%~10%之间,均值为3.2%,以钾长石为主。岩屑含量较高,通常含量在10%~30%之间,均值为19.8%,且类型复杂多样,主要为沉积岩岩屑和变质岩岩屑(图2a),火山岩岩屑含量极低,通常不超过3%。在变质岩岩屑及沉积岩岩屑中识别出塑性岩屑(千枚岩岩屑、泥岩岩屑、粉砂岩岩屑和蚀变后的火山岩岩屑)和刚性岩屑(砂岩岩屑、变质石英岩岩屑和板岩岩屑等),另外还有少量碳酸盐岩岩屑(钙屑)。岩屑砂岩和岩屑石英砂岩中均含有较高的塑性岩屑含量(图2c),其平均含量分别为12.1%和8.2%),钙屑主要发育在岩屑砂岩中,占岩屑总量的1.2%。

    Figure 2.  Triangluar map of sandstone classification for T3 x 2 in the Malubei area

  • 马路背地区须二段砂岩具有大量水道沉积的特征,如板状、楔状交错层理、槽状交错层理和冲刷面构造,说明须二段发育河道沉积(图3)。根据泥岩颜色和特征矿物认为须二段河道沉积为水下河道,冲刷面附近暗色泥岩发育,常见暗色泥砾和黄铁矿(图3),指示了水下还原环境。中等的结构成熟度和富岩屑和贫长石的骨架颗粒组分特征,反映了快速风化、短距离搬运和快速埋藏的沉积成岩条件,同时也反映其物源区主要是一个贫长石(非花岗岩、花岗片麻岩)物源区[6],即研究区物源来自大巴山(图2)。总体上,马路背地区须二段砂岩是来自大巴山硅质岩等变质岩为母岩的近源三角洲前缘沉积成因。

    Figure 3.  Sedimentary structure characteristics of outcrop and drill cores in T3 x 2 at the Malubei area

  • 马路背地区须二段不同埋藏深度的石英砂岩和岩屑砂岩样品,在铸体薄片下观察不到孔隙的发育(图4a~d),扫描电镜下仅见少量微孔,孔径仅为2~5 μm(图4e~h),能识别的储集空间类型主要为残余粒间孔、粘土矿物晶间孔和微裂缝。该地区发育大量绿泥石,前人普遍认为绿泥石可以减缓其他成岩作用对粒间孔的充填[19-26]。但是,对马路背地区须二段砂岩而言,绿泥石并不抗压,不会减缓压实作用,且绿泥石的存在严重缩小了孔隙体积,只残余一些绿泥石晶间微孔隙(图4f~h)。分析研究区须二段的58对物性数据发现,孔隙度普遍低于5%,渗透率主要分布在(0.01~0.05)×10-3 μm2之间,根据油气储层评价标准(SY/T 6285—2011),应属于超低孔、超低渗储层。其中M2井须二段孔隙度范围为2.69%~4.05%,平均为3.61%,峰值区为3%~4%;渗透率范围(0.009~0.052)×10-3 μm2,平均为0.019×10-3 μm2,峰值区为(0.01~0.05)×10-3 μm2。M201井须二段孔隙度范围1.09%~4.05%,平均为2.8%,峰值区为2%~4%;渗透率范围(0.018~0.04)×10-3 μm2,平均为0.02×10-3 μm2,峰值区为(0.01~0.05)×10-3 μm2图5)。

    Figure 4.  Microscopy porosity characteristics of T3 x 2 in the Malubei area

    Figure 5.  Porosity and permeability histograms of T3 x 2 in the Malubei area

  • 根据薄片、扫描电镜等分析资料,并结合马路背地区须家河组的母岩特征、沉积环境和埋藏过程,探讨了须二段致密砂岩储层的形成和致密化过程。

  • 薄片鉴定结果证实,压实作用和胶结作用是须二段砂岩孔隙减小的主要成岩作用类型。利用薄片鉴定统计的粒间体积中胶结物的含量,结合粒间体积大小制作出减孔作用的散点图,认为压实作用是本区孔隙消失的主要原因(图6),其次是各类胶结作用,包括硅质和钙质胶结作用(图4a,c)。

    Figure 6.  Plot of porosity reduction between cementation and compaction for T3 x 2 in the Malubei area

    利用M3井须家河组之上的各个地层厚度数据,热史和剥蚀量参考邻区普光2井的参数[27],在Basinmod软件中制作了埋藏史曲线(图7),发现须家河组最大埋深接近8 000 m,晚白垩世以来,受到构造活动影响逐渐抬升至目前的埋藏深度。晚期构造活动不但使地层发生抬升,同时对地层产生了侧向构造挤压,主要证据有:1)颗粒发生定向排列(图4d,i);2)早期孔隙被压扁或缩小,颗粒间的胶结物发生蠕变,仅在线接触颗粒的接触面附近有残余(4i,j);3)岩石继续破裂形成贯穿碎屑颗粒的裂缝(图4d)。因此,认为研究区须二段砂岩压实减孔过程包含两个阶段,第一个阶段是埋藏压实减孔阶段,第二个是晚白垩世以来的构造挤压减孔阶段,这与中国西部典型前陆盆地发育构造挤压成岩阶段十分相似[28-31]。埋藏压实减孔阶段,含量较高的塑性岩屑在刚性颗粒的挤压下发生变形充填了骨架颗粒之间的粒间孔,构造挤压减孔阶段,进一步造成刚性骨架颗粒线接触,略带定向排列特征(图4d)。受强烈构造挤压作用的影响,须二段还形成了许多断层和微裂缝(图4d),这些裂缝有效沟通微孔,形成低孔但不低渗的裂缝—微孔隙组成的断缝储集体。此外,中等埋藏阶段,须二段周围的烃源岩成熟时排出有机酸对储层造成了微弱的溶蚀,形成了部分溶蚀孔隙,但是这些溶蚀孔隙被构造挤压阶段的强烈压实进一步破坏了,只留下了颗粒之间的一些残余孔隙或裂缝,有的已经充填了钙质胶结物,这些特征可以从阴极发光照片中看到(图4a)。

    Figure 7.  Burial history curve of well M3

  • 根据薄片下鉴定的储集空间类型及其基本特征,认为须二段发育强压实成因裂缝沟通微孔的孔隙—裂缝型储层。薄片鉴定的成岩作用特征结合包裹体测温结果表明,须二段砂岩的成岩序列为:埋藏压实作用―早期硅质胶结、钙质胶结—溶蚀作用—晚期硅质胶结、钙质胶结—构造挤压压实作用—构造破裂作用(图8)。利用马路背地区须二段砂岩的分选系数(S 0=1.2~1.5)和砂岩初始孔隙度计算公式ϕ=20.9+22.9/S 0求出初始孔隙度为33%[32]。M201井实测孔隙度平均2.8%,其中胶结作用减孔量4%(胶结物含量),中等埋藏阶段有机酸微弱溶蚀增孔2%(根据溶孔的面孔率确定),计算出压实作用减孔量为28.2%(初始孔隙度胶结减孔量+溶蚀增孔量-现今实测孔隙度),这与3.1部分得出的压实减孔是储层致密的主要因素认识一致(图8)。

    Figure 8.  Diagenetic and porosity evolution model of T3 x 2 in the Malubei area

  • 强烈压实与三期构造运动有关,早燕山199~100 Ma期间为深埋藏压实,100 Ma之后经历构造强挤压[16,33]。其中,燕山早期受太平洋板块俯冲,华南褶皱带隆升,形成北东走向的通南巴背斜的雏形(图9);燕山中晚期受太平洋和印度洋板块共同作用,形成近北西向断层(图9);喜马拉雅期主要受大巴山逆冲推覆的作用,形成北北西向的断裂(图9)。因此,须二段致密砂岩的储集性能得到改善的关键是在后面两期构造活动中产生大量的微裂缝,也就是说构造应力控制了优质储层的发育位置。因为在构造挤压最强的部位,裂缝才最发育。方差体裂缝检测可突出地震反射横向的不连续性,反映细致的断层和裂缝[34]。利用研究区225 km2三维地震资料,沿须二段顶面,以50×50的网格密度提取了方差属性体,可以看到M101井和M103井就处在多期裂缝都交汇的地方,方差属性异常(大于背景值0.2)高于相邻的M2井和M201井,说明该位置的裂缝发育程度高(图10),因此,该部位才形成了高产气藏。

    Figure 9.  Fault distribution characteristics of different tectonic stages in the Malubei area

    Figure 10.  Variance distribution characteristics for the top of T3 x 2 in the Malubei area

  • 通过分析单井测试产能发现,稳产3亿方的M101井主力产层是3 229~3 246 m处厚17 m的石英砂岩,常规测试日产天然气60.11×104 m3,M103井2 904~2 922 m处厚18 m的岩屑砂岩测试日产天然气13.28×104 m3,而M3井5 050~5 090 m处40 m厚的岩屑砂岩加砂压裂测试日产天然气仅有2 074 m3。从产能结果可以看出,这三口井虽处于相同构造部位,但中—薄层的石英砂岩储层产能优于其他中厚层的砂岩。首先,与岩屑砂岩相比,石英砂岩含有更多的抗压能力强的石英颗粒,在埋藏压实过程中更易降低压实减孔效应而保持较高的粒间体积。其次,同等构造挤压应力下,单层小于7 m的相对较薄的砂岩比单层厚度超过8 m的中厚层砂岩更容易发生变形和破碎,砂泥比为6.7的砂泥岩序列更容易形成裂缝[35-36]。所以,砂岩类型和砂岩厚度也是控制优质储层的另一个重要因素。

  • (1) 马路背地区须二段发育以大巴山变质岩为母岩的一套三角洲前缘中粒岩屑砂岩和石英砂岩,结构成熟度中等,大孔隙不发育,只发育微孔隙和微裂缝,为超低孔、超低渗砂岩储层。

    (2) 须二段致密砂岩的形成与强烈的埋藏压实作用和构造挤压压实作用有关,压实作用是减孔的最主要因素,其次是硅质和钙质胶结作用。早燕山期(199~100 Ma)、中晚燕山期(100~65 Ma)、喜山期(65 Ma以来)的构造挤压作用减孔量约4%。

    (3) 埋藏压实与构造强压实减孔的同时,产生了不同规模断层和裂缝,沟通微孔隙,形成裂缝—微孔隙组成的断缝储集体。这类储集体主要受构造应力大小控制,构造挤压最强的部位,裂缝最发育,产量最高;其次受岩性和砂岩厚度控制,中—薄层石英砂岩有利于高产;裂缝发育是该非常规天然气藏高产的关键因素。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return