Advanced Search
Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents

LIU Rong, ZHANG Kun, LIU ZhaoJun, YAN Xu, YU JiaQi. Oil Shale Mineralization and Geological Events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28. doi: 10.14027/j.issn.1000-0550.2020.104
Citation: LIU Rong, ZHANG Kun, LIU ZhaoJun, YAN Xu, YU JiaQi. Oil Shale Mineralization and Geological Events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28. doi: 10.14027/j.issn.1000-0550.2020.104

Oil Shale Mineralization and Geological Events in China

doi: 10.14027/j.issn.1000-0550.2020.104
Funds:

National Natural Science Foundation of China 42072122

  • Received Date: 2020-06-30
  • Publish Date: 2021-02-06
  • Research findings increasingly indicate that geological events such as volcanic action, hydrothermal fluids, ocean anoxia, climate mutation, transgression, gravity flow and so on are frequently evident in the sedimentary sequences of oil shale (a type of fine-grained sedimentary rock rich in organic matter). High paleolake productivity and a stable reducing environment are important considerations for oil shale mineralization. A summary of the genesis and distribution behavior of oil shale in 50 basins (95 mining areas) in China reveals that the geological events listed above have led to various degrees of algal and microbial blooms which changed the water conditions in ancient lakes and formed the stable layered lacustrine environments that are important for oil shale mineralization. However, frequent volcanic eruptions release large amounts of gas and ash, and intermittent hydrothermal fluids at high temperature and pressure. Also, frequent gravity flow is not conducive to oil shale enrichment. The present study focuses only on a single event. In future it will be necessary to promote interdisciplinary studies of sedimentology, geochemistry and microbiology from the perspective of earth system science to reveal the ecological cyclic accumulation processes of unconventional oil and gas resources and major geological environment mutation. This will add to our understanding of the combined effects of various geological events on oil shale mineralization, and enrich the theory of unconventional oil and gas sedimentology.
  • [1] 刘招君,杨虎林,董清水,等. 中国油页岩[M]. 北京:石油工业出版社,2009:3-157.

    Liu Zhaojun, Yang Hulin, Dong Qingshui, et al. Oil shale in China[M]. Beijing: Petroleum Industry Press, 2009: 3-157.
    [2] Smith M E, Singer B S, Carroll A R. 40Ar/39Ar geochronology of the eocene green river formation, wyoming[J]. GSA Bulletin, 2003, 115(5): 549-565.
    [3] Smith M E, Singer B S, Carroll A R, et al. Precise dating of biotite in distal volcanic ash: Isolating subtle alteration using 40Ar/39Ar laser incremental heating and electron microprobe techniques[J]. American Mineralogist, 2008, 93(5/6): 784-795.
    [4] 刘招君,柳蓉,孙平昌,等. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版),2020,50(2):313-325.

    Liu Zhaojun, Liu Rong, Sun Pingchang, et al. Oil shale characteristics and distribution in typical basins of China[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2): 313-325.
    [5] 商斐,周海燕,刘勇,等. 松辽盆地嫩江组泥页岩有机质富集模式探讨:以嫩江组一、二段油页岩为例[J]. 中国地质,2020,47(1):236-248.

    Shang Fei, Zhou Haiyan, Liu Yong, et al. A discussion on the organic matter enrichment model of the Nenjiang Formation, Songliao Basin: A case study of oil shale in the 1st and 2nd members of the Nenjiang Formation[J]. Geology in China, 2020, 47(1): 236-248.
    [6] 康玉柱. 准噶尔盆地古生界油气前景与勘探方向[J]. 新疆石油地质,2010,31(5):449-453.

    Kang Yuzhu. Petroleum prospect and exploration targets of Paleozoic in Junggar Basin[J]. Xinjiang Petroleum Geology, 2010, 31(5): 449-453.
    [7] 程甘露,田继军,王长江,等. 准噶尔盆地南缘油页岩特征及控矿条件[J]. 西安科技大学学报,2014,34(5):558-563.

    Cheng Ganlu, Tian Jijun, Wang Changjiang, et al. Characteristics and ore-controlling condition of oil shale in southern margin area of Junggar Basin[J]. Journal of Xi′an University of Science and Technology, 2014, 34(5): 558-563.
    [8] 庞军刚,李赛,杨友运,等. 湖盆深水区细粒沉积成因研究进展:以鄂尔多斯盆地延长组为例[J]. 石油实验地质,2014,36(6):706-711,724.

    Pang Jungang, Li Sai, Yang Youyun, et al. Study progress of origin of fine-grained sedimentary rocks in deep-water area of lacustrine basin: Taking Yangchang Formation in Ordos Basin as an example[J]. Petroleum Geology & Experiment, 2014, 36(6): 706-711, 724.
    [9] 段方. 下寺湾地区长7油层测井认识[D]. 西安:西安石油大学,2014.

    Duan Fang. Xiasiwan region long recognized seven oil well logging [D]. Xi′an: Xi′an Shiyou University, 2014.
    [10] 孙莎莎,刘人和,拜文华. 鄂尔多斯盆地铜川地区上三叠统油页岩含油率影响因素分析[J]. 中国石油勘探,2011,16(2):79-83.

    Sun Shasha, Liu Renhe, Bai Wenhua. Effect factor analysis of oil content of upper triassic oil shale in Tongchuan area, Ordos Basin[J]. China Petroleum Exploration, 2011, 6(2): 79-83.
    [11] 薛敏. 北票盆地下白垩统九佛堂组油页岩特征及资源评价[D]. 长春:吉林大学,2019.

    Xue Min. Characteristics and resource potential of oil shale in the Lower Cretaceous Jiufotang Formation in Beipiao Basin[D]. Changchun: Jilin University, 2019.
    [12] 杨华,梁晓伟,牛小兵,等. 陆相致密油形成地质条件及富集主控因素:以鄂尔多斯盆地三叠系延长组7段为例[J]. 石油勘探与开发,2017,44(1):12-20.

    Yang Hua, Liang Xiaowei, Niu Xiaobing, et al. Geological conditions for continental tight oil formation and the main controlling factors for the enrichment: A case of Chang 7 member, Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(1): 12-20.
    [13] 闫伟鹏,杨涛,马洪,等. 中国陆相致密油成藏模式及地质特征[J]. 新疆石油地质,2014,35(2):131-136.

    Yan Weipeng, Yang Tao, Ma Hong, et al. The tight oil accumulation model and geological characteristics in continental sedimentary basins of China[J]. Xinjiang Petroleum Geology, 2014, 35(2): 131-136.
    [14] 柳蓉,刘招君,杜江峰,等. 依兰盆地始新统达连河组油页岩成因新认识[J]. 吉林大学学报(地球科学版),2012,42(4):941-947.

    Liu Rong, Liu Zhaojun, Du jiangfeng, et al. New research on oil shale origin of Eocene Dalianhe Formation in Yilan Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(4): 941-947.
    [15] 柳蓉,刘招君,柳世友,等. 依兰盆地煤与油页岩赋存特征及成矿规律研究[J]. 煤炭学报,2012,37(5):776-781.

    Liu Rong, Liu Zhaojun, Liu Shiyou, et al. Coal and oil shale occurrence characteristic and metallogenic regularity in Yilan Basin[J]. Journal of China Coal Society, 2012, 37(5): 776-781.
    [16] 张健. 东北地区新生代断陷盆地油页岩特征研究[D]. 长春:吉林大学,2007.

    Zhang Jian. Research on characteristics of oil shale of Cenozoic Fault Basin in Northeast area[D]. Changchun: Jilin University, 2007.
    [17] 柳蓉,刘招君,张坤,等. 含油页岩岩系中的事件沉积与有机质富集[C]//第十五届全国古地理学及沉积学学术会议摘要集. 成都:中国矿物岩石地球化学学会岩相古地理专业委员会,2018:282-283. [

    Liu Rong, Liu Zhaojun, Zhang Kun, et al. Event deposition and organic matter enrichment in oil bearing shale series[C]//Sedimentology of Chinese society abstracts of the 15th national academic conference on paleogeography and sedimentology. Chengdu: The Professional Committee of Lithofacies and Paleogeography of Chinese Society of Mineral and Petrochemistry, 2018: 282-283.]
    [18] 刘招君,王东坡,刘立,等. 松辽盆地白垩纪沉积特征[J]. 地质学报,1992,66(4):327-338.

    Liu Zhaojun, Wang Dongpo, Liu Li, et al. Sedimentary characteristics of the Cretaceous Songliao Basin[J]. Acta Geologica Sinica, 1992, 66(4): 327-338.
    [19] 贾建亮. 基于地球化学—地球物理的松辽盆地上白垩统油页岩识别与资源评价[D]. 长春:吉林大学,2012.

    Jia Jianliang. Research on the recognition and resource evaluation of the Upper Cretaceous oil shale based on geochemistry-geophysics technique in the Songliao Basin (NE, China)[D]. Changchun: Jilin University, 2012.
    [20] 许圣传,董清水,闫丽萍,等. 山东黄县断陷盆地油页岩特征及生成机制[J]. 吉林大学学报(地球科学版),2006,36(6):954-958.

    Xu Shengchuan, Dong Qingshui, Yan Liping, et al. The characteristics and the formation mechanism of the oil shale in Huangxian faulted basin, Shandong province[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(6): 954-958.
    [21] 熊林芳. 坳陷型富烃凹陷优质烃源岩的形成环境:以鄂尔多斯盆地长7烃源岩为例[D]. 西安:西北大学,2015.

    Xiong Linfang. Formation environment of the high quality source rocks in basin of dereption-type: An example from chang-7 source rock in Ordos Basin, China[D]. Xi′an: Northwest University, 2015.
    [22] 杜乐天. 烃碱流体地球化学原理:重论热液作用和岩浆作用[M]. 北京:科学出版社,1996:390.

    Du Letian. Geochemical principles of hydrocarbon alkali-fluids[M]. Beijing: Science Press, 1996: 390.
    [23] 陈志鹏,任战利,于春勇,等. 银额盆地哈日凹陷下白垩统热水沉积岩特征及成因[J]. 地球科学,2018,43(6):1941-1956.

    Chen Zhipeng, Ren Zhanli, Yu Chunyong, et al. Characteristics and genetic analysis of hydrothermal sediment of Lower Cretaceous in Hari Depression, Yin′e Basin[J]. Earth Science, 2018, 43(6): 1941-1956.
    [24] 陈明东,董良杰,史宇亮. 小颗粒油页岩热裂解制取页岩油可行性分析[J]. 矿产综合利用,2007(6):30-32,43.

    Chen Mingdong, Dong Liangjie, Shi Yuliang. Feasibility analysis of preparation of shale oil by pyrolysis of small-size oil shale[J]. Multipurpose Utilization of Mineral Resources, 2007(6): 30-32, 43.
    [25] 章中九,肖翠翠,周琛龙. 砀山县后黄楼凹陷区油页岩矿找矿潜力分析[J]. 安徽地质,2018,28(3):171-175.

    Zhang Zhongjiu, Xiao Cuicui, Zhou Chenlong. Analysis of the potential for prospecting oil shale in the Houhuanglou Depression in Dangshan county[J]. Geology of Anhui, 2018, 28(3): 171-175.
    [26] Bohacs K M. Lake-basin type, source potential, and hydrocarbon character: An integrated sequence-stratigraphic-geochemical framework[J]. AAPG Bulletin, 1999, 83(6): 143-162.
    [27] 刘沣. 抚顺盆地始新统计军屯组油页岩特征及其沉积环境分析[D]. 长春:吉林大学,2008.

    Liu Feng. Analysis of oil shale characteristics and depositional enviroment of the Jijuntun Formation of Eocene in Fushun Basin[D]. Changchun: Jilin University, 2008.
    [28] 丁寒生. 松辽盆地北部中浅层油页岩分布特征及资源潜力[J]. 四川地质学报,2014,34(3):350-354,358.

    Ding Hansheng. Distribution and resource potential of medium-shallow oil shale in the north of the Songliao Basin[J]. Acta Geologica Sichuan, 2014, 34(3): 350-354, 358.
    [29] 刘招君,孙平昌,柳蓉,等. 中国陆相盆地油页岩成因类型及矿床特征[J]. 古地理学报,2016,18(4):525-534.

    Liu Zhaojun, Sun Pingchang, Liu Rong, et al. Genetic types and deposit features of oil shale in continental basin in China[J]. Journal of Palaeogeography, 2016, 18(4): 525-534.
    [30] Kelts K. Environments of deposition of lacustrine petroleum source rocks: An introduction[J]. Geological Society, London, Special Publications, 1988, 40(1): 3-26.
    [31] 韩佳兵. 银额盆地东北缘下白垩统巴音戈壁组油页岩特征及成矿条件[D]. 长春:吉林大学,2019.

    Han Jiabing. Oil shale characteristics and metallogenic conditions of the Bayingebi Formation in the Lower Cretaceous in the northeastern margin of Yin′e Basin[D]. Changchun: Jilin University, 2019.
    [32] 秦建中. 青藏高原羌塘盆地中生界主要烃源层分布特征[J]. 石油实验地质,2006,28(2):134-141.

    Qin Jianzhong. Distributions of the main Mesozoic hydrocarbon source rocks in the Qiangtang Basin of the Qinghai-Tibet Plateau[J]. Petroleum Geology and Experiment, 2006, 28(2): 134-141.
    [33] 张林晔. 湖相烃源岩研究进展[J]. 石油实验地质,2008,30(6):591-595.

    Zhang Linye. The progress on the study of lacustrine source rocks[J]. Petroleum Geology and Experiment, 2008, 30(6): 591-595.
    [34] 刘传联,徐金鲤. 生油古湖泊生产力的估算方法及应用实例[J]. 沉积学报,2002,20(1):144-150.

    Liu Chuanlian, Xu Jinli. Estimation method on productivity of oil-producing lake and a case study[J]. Acta Sedimentologica Sinica, 2002, 20(1): 144-150.
    [35] 孟庆涛,刘招君,胡菲,等. 桦甸盆地始新世古湖泊生产力与有机质富集机制[J]. 中国石油大学学报(自然科学版),2012,36(5):38-44.

    Meng Qingtao, Liu Zhaojun, Hu Fei, et al. Eocene paleolake productivity and organic matter accumulation mechanism in Huadian Basin[J]. Journal of China University of Petroleum, 2012, 36(5): 38-44.
    [36] 尹秀珍. 松辽盆地中部晚白垩世早期古湖泊生产力研究[D]. 北京:中国地质大学(北京),2008.

    Yin Xiuzhen. Palaeolacustrine productivity study of early Late Cretaceous in the central area of Songliao Basin[D]. Beijing: China University of Geosciences (Beijing), 2008.
    [37] Chen G, Gang W Z, Chang X C, et al. Paleoproductivity of the Chang 7 unit in the Ordos Basin (North China) and its controlling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551, 109741.
    [38] Zhang W Z, Yang W W, Xie L Q. Controls on organic matter accumulation in the Triassic Chang 7 lacustrine shale of the Ordos Basin, central China[J]. International Journal of Coal Geology, 2017, 183, 38-51.
    [39] Bianchi T S, Cui X Q, Blair N E, et al. Centers of organic carbon burial and oxidation at the land-ocean interface[J]. Organic Geochemistry, 2018, 115: 138-155.
    [40] Baltar F, Arístegui J, Gasol J M, et al. Prokaryotic carbon utilization in the dark ocean: Growth efficiency, leucine-to-carbon conversion factors, and their relation[J]. Aquatic Microbial Ecology, 2010, 60(3): 227-232.
    [41] Richardson T L, Jackson G A. Small phytoplankton and carbon export from the surface ocean[J]. Science, 2007, 315(5813): 838-840.
    [42] Kolber Z S, van Dover C L, Niederman R A, et al. Bacterial photosynthesis in surface waters of the open ocean[J]. Nature, 2000, 407(6801): 177-179.
    [43] Hobbie B, Mancke R B. Oil monopoly divestiture: A clash of media versus expert perceptions[J]. Energy Policy, 1977, 5(3): 232-244.
    [44] Fuhrman J A, Azam F. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California[J]. Applied and Environmental Microbiology, 1980, 39 (6): 1085-1095.
    [45] Sachsenhofer R F, Koltun Y V. Black shales in Ukraine - A review[J]. Marine and Petroleum Geology, 2012, 31(1): 125-136.
    [46] 朱峰. 柳树河盆地和宁安盆地油页岩成藏环境研究[D]. 北京:中国地质大学(北京),2010.

    Zhu Feng. Environmental studies of oil shale reservoir in Liushuhe and Ningan Basins[D]. Beijing: China University of Geosciences (Beijing), 2010.
    [47] Bradley W H, Eugster H P. Geochemistry and palimnology of the trona deposits and associated auhigenic minerals of the Green River Formation of Wyoming[R]. America: US Geological Survey Professional Paper, 1969: 53.
    [48] Surdam R C, Wolfbauer C A. Depositional environment of the Green river Formation of Wyoming: A preliminary report[J]. GSA Bulletin, 1973, 84(4): 1115-1120.
    [49] Surdam R C, Wolfbauer C A. Green river formation, wyoming: A Playa-Lake complex[J]. GSA Bulletin, 1975, 86(3): 335-345.
    [50] Desborough G A. A biogenic-chemical stratified lake model for the origin of oil shale of the Green River Formation: An alternative to the playa-lake model[J]. GSA Bullein, 1978, 89(7): 961-971.
    [51] Boyer B W. Green river laminites: Does the playa-lake model really invalidate the stratified-lake model?[J]. Geology, 1982, 10(6): 321-324.
    [52] 徐进军,刘招君,孟庆涛,等. 敦化盆地土门子组砂岩地球化学特征及其地质意义[J]. 中南大学学报(自然科学版),2015,46(3):1006-1015.

    Xu Jinjun, Liu Zhaojun, Meng Qingtao, et al. Geochemical characteristics and geological implications of sandstones in Tumenzi Formation, Dunhua Basin, North China[J]. Journal of Central South University (Science and Technology), 2015, 46(3): 1006-1015.
    [53] 柳蓉,刘招君,孟庆涛,等. 抚顺盆地始新世古湖泊演化[J]. 沉积学报,2010,28(4):688-695.

    Liu Rong, Liu Zhaojun, Meng Qingtao, et al. Paleolake evolution of Eocene in Fushun Basin[J]. Acta Sedimentologica Sinica, 2010, 28(4): 688-695.
    [54] Morgan W J. Deep mantle convection plumes and plate motions[J]. AAPG Bulletin, 1972, 56(2): 203-213.
    [55] Condie K C. Supercontinents and superplume events: Distinguishing signals in the geologic record[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1/2): 319-332.
    [56] 李献华,李武显,何斌. 华南陆块的形成与Rodinia超大陆聚合—裂解:观察、解释与检验[J]. 矿物岩石地球化学通报,2012,31(6):543-559.

    Li Xianhua, Li Wuxian, He Bin. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent: Observations, interpretations and tests[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(6): 543-559.
    [57] Li Z X, Mitchell R N, Spencer C J, et al. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 2019, 323: 1-5.
    [58] Sepkoski Jr J J. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions[J]. Paleobiology, 1984, 10(2): 246-267.
    [59] 戎嘉余,黄冰. 生物大灭绝研究三十年[J]. 中国科学(D辑):地球科学,2014,44(3):377-404.

    Rong Jiayu, Huang Bing. Study of mass extinction over the past thirty years: A synopsis[J]. Science China (Seri. D): Earth Sciences, 2014, 44(3): 377-404.
    [60] Bouma A H. Sedimentology of some flysch deposits: A graphic approach to facies interpretation[M]. Amsterdam: Elsevier, 1962: 1-168.
    [61] Shanmugam G. 50 years of the turbidite Paradigm (1950s-1990s): Deep-water processes and facies models-a critical perspective[J]. Marine and Petroleum Geology, 2000, 17(2): 285-342.
    [62] 何起祥. 沉积地球科学的历史回顾与展望[J]. 沉积学报,2003,21(1):10-18.

    He Qixiang. Sedimentary earth sciences: Yesterday, today and tomorrow[J]. Acta Sedimentologica Sinica, 2003, 21(1): 10-18.
    [63] 王成善. 白垩纪地球表层系统重大地质事件与温室气候变化研究:从重大地质事件探寻地球表层系统耦合[J]. 地球科学进展,2006,21(8):838-842.

    Wang Chengshan. Coupling of the earth surface system: Inferring from the Cretaceous major geological events[J]. Advances in Earth Science, 2006, 21(8): 838-842.
    [64] 胡修棉,王成善. 白垩纪大洋红层:特征、分布与成因[J]. 高校地质学报,2007,13(1):1-13.

    Hu Xiumian, Wang Chengshan. Cretaceous oceanic red beds: Characters, occurrences, and origin[J]. Geological Journal of China Universities, 2007, 13(1): 1-13.
    [65] 黄宏伟,杜远生,黄志强,等. 广西丹池盆地F-F界线事件沉积及成因分析[J]. 地质科技情报,2009,28(5):40-46.

    Huang Hongwei, Du Yuansheng, Huang Zhiqiang, et al. Event deposits near F-F boundary in Nandan-Hechi Basin and their origin[J]. Geological Science and Technology Information, 2009, 28(5): 40-46.
    [66] Katz B J. Clastic and carbonate lacustrine systems: An organic geochemical comparison (Green River Formation and East African Lake sediments)[J]. Geological Society, London, Special Publications, 1988, 40(1): 81-90.
    [67] Katz B J. Factors controlling the development of lacustrine petroleum source rocks-an update[M]//Huc A Y. Paleogeography, paleoclimate, and source rocks: AAPG Studies in Geology40. Tulsa: AAPG, 1995: 61-79.
    [68] Lohmann U, Feichter J. Global indirect aerosol effects: A review[J]. Atmospheric Chemistry and Physics, 2005, 5(3): 715-737.
    [69] O'Dowd C D, Facchini M C, Cavalli F, et al. Biogenically driven organic contribution to marine aerosol[J]. Nature, 2004, 431(7009): 676-680.
    [70] Memoli V, Eymar E, García-Delgado C, et al. Soil element fractions affect phytotoxicity, microbial biomass and activity in volcanic areas[J]. Science of the Total Environment, 2018, 636: 1099-1108.
    [71] Madonia P, Cangemi M, Bellomo S, et al. Influence of volcanic activity on the quality of water collected in roof water catchment systems at Stromboli island (Italy)[J]. Journal of Geochemical Exploration, 2013, 131: 28-36.
    [72] Frogner P, Reynir Gíslason S, Óskarsson N. Fertilizing potential of volcanic ash in ocean surface water[J]. Geology, 2001, 29(6): 487-490.
    [73] Langmann B, Zakšek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3891-3899.
    [74] Jones M T, Gislason S R. Rapid releases of metal salts and nutrients following the deposition of volcanic ash into aqueous environments[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3661-3680.
    [75] Duggen S, Croot P, Schacht U, et al. Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data[J]. Geophysical Research Letters, 2007, 34(1): L01612.
    [76] Gao P, He Z L, Li S J, et al. Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 381-397.
    [77] Hackley P C, Walters C C, Kelemen S R, et al. Organic petrology and micro-spectroscopy of Tasmanites microfossils: Applications to kerogen transformations in the early oil window[J]. Organic Geochemistry, 2017, 114: 23-44.
    [78] 钟大康,杨喆,孙海涛,等. 热水沉积岩岩石学特征:以内蒙古二连盆地白音查干凹陷下白垩统腾格尔组为例[J]. 古地理学报,2018,20(1):19-32.

    Zhong Dakang, Yang Zhe, Sun Haitao, et al. Petrological characteristics of hydrothermal-sedimentary rocks: A case study of the Lower Cretaceous Tengger Formation in the Baiyinchagan Sag of Erlian Basin, Inner Mongolia[J]. Journal of Palaeogeography, 2018, 20(1): 19-32.
    [79] Zielinski G A. Use of paleo-records in determining variability within the volcanism-climate system[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 417-438.
    [80] Königer S, Lorenz V, Stollhofen H, et al. Origin, age and stratigraphic significance of distal fallout ash tuffs from the Carboniferous-Permian continental Saar-Nahe Basin (SW Germany)[J]. International Journal of Earth Sciences, 2002, 91(2): 341-356.
    [81] 王书荣,宋到福,何登发. 三塘湖盆地火山灰对沉积有机质的富集效应及凝灰质烃源岩发育模式[J]. 石油学报,2013,34(6):1077-1087.

    Wang Shurong, Song Daofu, He Dengfa. The enrichment effect of organic materials by volcanic ash in sediments of the Santanghu Basin and the evolutionary pattern of tuffaceous source rocks[J]. Acta Petrolei Sinica, 2013, 34(6): 1077-1087.
    [82] McKibben M A, Williams A E, Hall G E M. Solubility and transport of plantinum-group elements and Au in saline hydrothermal fluids: Constraints from geothermal brine data[J]. Economic Geology, 1990, 85(8): 1926-1934.
    [83] Korzhinsky M A, Tkachenko S I, Shmulovich K I, et al. Discovery of a pure rhenium mineral at Kudriavy volcano[J]. Nature, 1994, 369(6475): 51-52.
    [84] Dover C L V. Hydrothermal vent ecology[M]. Encyclopedia of Ocean Sciences2001: 1234-1241.
    [85] Halbach M, Koschinsky A, Halbach P. Report on the discovery of gallionella ferruginea from an active hydrothermal field in the deep sea[J]. Inter Ridge News, 2001, 10(1): 18-20.
    [86] Staudigel H. Ocean crust alteration: Timing, fluxes, and microbial controls[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): A892.
    [87] Thorseth I H, Torsvik T, Torsvik V, et al. Diversity of life in ocean floor basalt[J]. Earth and Planetary Science Letters, 2001, 194(1/2): 31-37.
    [88] Fisk M R, Giovannoni S J, Thorseth I H. Alteration of oceanic volcanic glass: Textural evidence of microbial activity[J]. Science, 1998, 281(5379): 978-980.
    [89] Templeton A, Knowles E. Microbial transformations of minerals and metals: Recent advances in geomicrobiology derived from synchrotron-based X-ray spectroscopy and X-Ray microscopy[J]. Annual Review of Earth and Planetary Sciences, 2009, 37: 367-391.
    [90] Mason O U, Stingl U, Wilhelm L J, et al. The phylogeny of endolithic microbes associated with marine basalts[J]. Environmental Microbiology, 2007, 9(10): 2539-2550.
    [91] Lysnes K, Thorseth I H, Steinsbu B O, et al. Microbial community diversity in seafloor basalt from the Arctic spreading ridges[J]. FEMS Microbiology Ecology, 2004, 50(3): 213-230.
    [92] 焦鑫. 新疆三塘湖盆地二叠系热液喷流岩特征及其对油气的影响[D]. 西安:西北大学,2012.

    Jiao Xin. Characteristics of exhalative hydrothermal rocks and its impaction on oil and gas, Permian, Santanghu Basin, Xinjiang[D]. Xi′an: Northwest University, 2012.
    [93] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

    Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
    [94] 贺聪,吉利明,苏奥,等. 鄂尔多斯盆地南部延长组热水沉积作用与烃源岩发育的关系[J]. 地学前缘,2017,24(6):277-285.

    He Cong, Ji Liming, Su Ao, et al. Relationship between hydrothermal sedimentation process and source rock development in the Yanchang Formation in southern Ordos Basin[J]. Earth Science Frontiers, 2017, 24(6): 277-285.
    [95] 贾智彬,侯读杰,孙德强,等. 热水沉积区黑色页岩稀土元素特征及其地质意义:以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业,2018,38(5):44-51.

    Jia Zhibin, Hou Dujie, Sun Deqiang, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: A case study from the Lower Cambrian Niutitang Fm shale in central and eastern Guizhou[J]. Natural Gas Industry, 2018, 38(5): 44-51.
    [96] 柳益群,周鼎武,焦鑫,等. 一类新型沉积岩:地幔热液喷积岩:以中国新疆三塘湖地区为例[J]. 沉积学报,2013,31(5):773-781.

    Liu Yiqun, Zhou Dingwu, Jiao Xin, et al. A new type of sedimentary rocks: Mantle-originated hydroclastites and hydrothermal exhalites, Santanghu area, Xinjiang, NW China[J]. Acta Sedimentologica Sinica, 2013, 31(5): 773-781.
    [97] 柳益群,周鼎武,南云,等. 新疆北部地区二叠系幔源碳酸岩质喷积岩研究[J]. 古地理学报,2018,20(1):49-63.

    Liu Yiqun, Zhou Dingwu, Nan Yun, et al. Permian mantle-derived carbonatite originated exhalative sedimentary rocks in North Xinjiang[J]. Journal of Palaeogeography, 2018, 20(1): 49-63.
    [98] 焦鑫,柳益群,樊婷婷,等. 幔源纹层状岩浆-热液喷溢沉积岩[J]. 西北大学学报(自然科学版),2017,47(6):887-895.

    Jiao Xin, Liu Yiqun, Fan Tingting, et al. Mantle-derived laminated magmatic-hydrothermal effusive-eruptive sedimentary rocks[J]. Journal of Northwest University (Natural Science Edition), 2017, 47(6): 887-895.
    [99] 焦鑫,柳益群,靳梦琪,等. 新疆三塘湖薄层状岩浆-热液白云质喷流沉积岩[J]. 沉积学报,2017,35(6):1087-1096.

    Jiao Xin, Liu Yiqun, Jin Mengqi, et al. Thin bed magmatic-hydrothermal dolomitic exhalative sedimentary rocks in Santanghu Basin, Xinjiang[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1087-1096.
    [100] 李哲萱,柳益群,焦鑫,等. 火山-热液作用相关细粒沉积岩研究现状及前沿探索[J]. 古地理学报,2019,21(5):727-742.

    Li Zhexuan, Liu Yiqun, Jiao Xin, et al. Progress and present research on volcanic-hydrothermal related fine-grained sedimentary rocks[J]. Journal of Palaeogeography, 2019, 21(5): 727-742.
    [101] Zhang K, Liu R, Liu Z J, et al. Influence of volcanic and hydrothermal activity on organic matter enrichment in the Upper Triassic Yanchang Formation, southern Ordos Basin, Central China[J]. Marine and Petroleum Geology, 2020, 112: 104059.
    [102] 张晓峰,侯明才,陈安清. 鄂尔多斯盆地东北部下石盒子组致密砂岩储层特征及主控因素[J]. 天然气工业,2010,30(11):34-38.

    Zhang Xiaofeng, Hou Mingcai, Chen Anqing. Features and main controlling factors of tight sandstone reservoirs in the Lower Shihezi Formation in the northeastern Ordos Basin[J]. Natural Gas Industry, 2010, 30(11): 34-38.
    [103] 何治亮,金晓辉,沃玉进,等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探,2016,21(1):3-14.

    He Zhiliang, Jin Xiaohui, Yujin Wo, et al. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration, 2016, 21(1): 3-14.
    [104] 陈志鹏. 银额盆地哈日凹陷下白垩统湖相热水沉积岩特征及形成机理[D]. 西安:西北大学,2019.

    Chen Zhipeng. Characteristics and forming mechanism of lacustrine hydrothermal sedimentary rocks in Lower Cretaceous, Hari Sag, Yin-E Basin[D]. Xi′an: Northwest University, 2019.
    [105] Keller G. Defining the Cretaceous-Tertiary boundary: A practical guide and return to first principles[M]//Keller G, Adatte T. The End-Cretaceous mass extinction and the chicxulub impact in texas. Tulsa: SEPM Special Publication, 2011.
    [106] Jahren A H, Arens N C, Sarmiento G, et al. Terrestrial record of methane hydrate dissociation in the Early Cretaceous[J]. Geology, 2001, 29(2): 159-162.
    [107] Corbett B F, Morrison J A. The allelopathic potentials of the non-native invasive plant Microstegium vimineum and the native Ageratina altissima: Two dominant species of the eastern Forest Herb Layer[J]. Northeastern Naturalist, 2012, 19(2): 297-312.
    [108] Immenhauser A. Estimating palaeo-water depth from the physical rock record[J]. Earth-Science Reviews, 2009, 96(1/2): 107-139.
    [109] Larson R L, Erba E. Onset of the mid-cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses[J]. Paleoceanography, 1999, 14(6): 663-678.
    [110] Larson R L, Olson P. Mantle plumes control magnetic reversal frequency[J]. Earth and Planetary Science Letters, 1991, 107(3/4): 437-447.
    [111] Erbachen J, Gerth W, Schmiedl G, et al. Benthic foraminiferal assemblages of Late Aptian-Early Albian black shale intervals in the Vocontian Basin, SE France[J]. Cretaceous Research, 1998, 19(6): 805-826.
    [112] Suarez M B, Ludvigson G A, González L A, et al. Stable isotope chemostratigraphy in lacustrine strata of the Xiagou Formation, Gansu province, NW China[J]. Geological Society, London, Special Publications, 2013, 382(1): 143-155.
    [113] Zhang X L, Zhang G J, Sha J G. Lacustrine sedimentary record of early Aptian carbon cycle perturbation in western Liaoning, China[J]. Cretaceous Research, 2016, 62: 122-129.
    [114] 戴霜,刘学,赵杰,等. 陆地沉积物对大洋缺氧事件的响应:六盘山群黑色页岩地球化学特征及其意义[J]. 地学前缘,2012,19(4):255-259.

    Dai Shuang, Liu Xue, Zhao Jie, et al. The OAEs record in the terrestrial sediments: The geochemistry of blackshales in the Liupanshan Group and its paleoclimatic implications[J]. Earth Science Frontiers, 2012, 19(4): 255-259.
    [115] 伊帆,朱利东,刘显凡,等. 藏北羌塘盆地双湖地区下侏罗统油页岩的有机碳同位素异常和正构烷烃分布特征及大洋缺氧事件研究[J]. 矿物学报,2016,36(3):413-422.

    Yi Fan, Zhu Lidong, Liu Xianfan, et al. The distribution of N-alkanes and anomalies of organic carbon isotopes and the toarcian oceanic anoxic events of the Lower Jurassic Oil Shales in Qiangtang Basin, North Tibet, China[J]. Acta Mineralogica Sinica, 2016, 36(3): 413-422.
    [116] 胡广,曹剑,胡文瑄,等. 大洋缺氧事件及其等时陆相沉积与烃源岩发育[J]. 西南石油大学学报(自然科学版),2014,36(5):1-15.

    Hu Guang, Cao Jian, Hu Wenxuan, et al. Frontiers of the Oceanic Anoxic Events (OAEs), terrestrial deposits and development of source rocks[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(5): 1-15.
    [117] 侯读杰,冯子辉,黄清华. 松辽盆地白垩纪缺氧地质事件的地质地球化学特征[J]. 现代地质,2003,17(3):311-317.

    Hou Dujie, Feng Zihui, Huang Qinghua. Geological and geochemical evidences of anoxic event in the Songliao Basin, China[J]. Geoscience, 2003, 17(3): 311-317.
    [118] 孙平昌. 松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学[D]. 长春:吉林大学,2013.

    Sun Pingchang. Environmental dynamics of organic accumulation in the oil shale bearing layers in the Upper Cretaceous, Southeast Songliao Basin (NE China)[D]. Changchun: Jilin University, 2013.
    [119] Li S, Zheng D R, Zhang Q, et al. Discovery of the Jehol Biota from the Celaomiao region and discussion of the Lower Cretaceous of the Bayingebi Basin, northwestern China[J]. Palaeoworld, 2016, 25(1): 76-83.
    [120] Zuo Y H, Qiu N S, Hao Q Q, et al. Geothermal regime and source rock thermal evolution in the Chagan Sag, Inner Mongolia, northern China[J]. Marine and Petroleum Geology, 2015, 59: 245-267.
    [121] Zhang M Z, Dai S, Pan B T, et al. The palynoflora of the Lower Cretaceous strata of the Yingen-Ejinaqi Basin in North China and their implications for the evolution of early angiosperms[J]. Cretaceous Research, 2014, 48: 23-38.
    [122] 邹艳荣,彭平安,宋之光,等. 白垩纪缺氧事件期间分子有机碳同位素偏移的二种不同机制[J]. 地质学报,2008,82(1):31-36.

    Zou Yanrong, Peng Ping′an, Song Zhiguang, et al. The mechanism of stable carbon isotope excursion of the individual normal-alkane during the Cretaceous oceanic anoxic event[J]. Acta Geologica Sinica, 2008, 82(1): 31-36.
    [123] 曹珂. 中国陆相白垩系地层对比[J]. 地质论评,2013,59(1):24-40.

    Cao Ke. Cretaceous terrestrial stratigraphic correlation in China[J]. Geological Review, 2013, 59(1): 24-40.
    [124] 史冀忠. 内蒙古巴格毛德油页岩特征及测井响应研究[D]. 长春:吉林大学,2008.

    Shi Jizhong. Research on oil shale characteristics and log responses in Neimenggu Bagemaode area[D]. Changchun: Jilin University, 2008.
    [125] 李磊. 我国东部新生代含油页岩盆地构造特征及其成矿研究[D]. 北京:中国地质大学(北京),2010.

    Li Lei. Research on oil shale basin structural features and metallogenic in Cenozoic of eastern China[D]. Beijing: China University of Geosciences (Beijing), 2010.
    [126] 王平丽,李增学,吕大炜,等. 典型盆地煤与油页岩共生成矿物质及古气候分析[J]. 中国煤炭地质,2013,25(12):8-11.

    Wang Pingli, Li Zengxue, Dawei Lü, et al. Analysis on palaeoclimate and metallogenic materials of typical basins under co-occurring circumstances of coal and oil shale[J]. Coal Geology of China, 2013, 25(12): 8-11.
    [127] Mills B J W, Krause A J, Scotese C R, et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from Late Neoproterozoic to present day[J]. Gondwana Research, 2019, 67: 172-186.
    [128] Simms M J, Ruffell A H. Synchroneity of climatic change and extinctions in the Late Triassic[J]. Geology, 1989, 17(3): 265-268.
    [129] Mutti M, Weissert H. Triassic monsoonal climate and its signature in Ladinian-Carnian carbonate platforms (southern Alps, Italy)[J]. Journal of Sedimentary Research, 1995, 65(3b): 357-367.
    [130] Stefani M, Furin, S, Gianolla P, et al. The changing climate framework and depositional dynamics of Triassic carbonate platforms from the Dolomites[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 43-57.
    [131] Trotter J A, Williams I S, Nicora A, et al. Long-term cycles of Triassic climate change: A new δ18O record from conodont apatite[J]. Earth and Planetary Science Letters, 2015, 415: 165-174.
    [132] Hornung T, Krystyn L, Brandner R. A tethys-wide mid-carnian (Upper Triassic) carbonate productivity crisis: Evidence for the alpine reingraben event from spiti (Indian Himalaya)?[J]. Journal of Asian Earth Sciences, 2007, 30(2): 285-302.
    [133] Dal Corso J, Gianolla P, Newton R J, et al. Carbon isotope records reveal synchronicity between carbon cycle perturbation and the "Carnian Pluvial Event" in the Tethys realm (Late Triassic)[J]. Global and Planetary Change, 2015, 127: 79-90.
    [134] Dal Corso J, Ruffell A, Preto N. Carnian (Late Triassic) C-isotope excursions, environmental changes, and biotic turnover: A global perturbation of the Earth's surface system[J]. Journal of the Geological Society, 2019, 176(1): 129-131.
    [135] Barrenechea J F, López-Gómez J, De La Horra R. Sedimentology, clay mineralogy and palaeosols of the Mid-Carnian Pluvial Episode in eastern Spain: Insights into humidity and sea-level variations[J]. Journal of the Geological Society, 2018, 175(6): 993-1003.
    [136] Baranyi V, Rostási Á, Raucsik B, et al. Palynological and X-ray fluorescence (XRF) data of Carnian (Late Triassic) formations from western Hungary[J]. Data in Brief, 2019, 23: 103858.
    [137] Hornung T, Brandner R. Biochronostratigraphy of the Reingraben Turnover (Hallstatt Facies Belt): Local black shale events controlled by regional tectonics, climatic change and plate tectonics[J]. Facies, 2005, 51(1/2/3/4): 460-479.
    [138] Kozur H W, Bachmann G H. The Middle Carnian wet intermezzo of the Stuttgart Formation (Schilfsandstein), Germanic Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 107-119.
    [139] Johns M J, Albanesi G L, Voldman G G. Freshwater shark teeth (Family Lonchidiidae) from the Middle-Upper Triassic (Ladinian-Carnian) Paramillo Formation in the Mendoza Precordillera, Argentina[J]. Journal of Vertebrate Paleontology, 2014, 34(3): 512-523.
    [140] Franz M, Kaiser S I, Fischer J, et al. Eustatic and climatic control on the Upper Muschelkalk Sea (Late Anisian/Ladinian) in the Central European Basin[J]. Global and Planetary Change, 2015, 135: 1-27.
    [141] Korte C, Kozur H W, Veizer J. δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 226(3/4): 287-306.
    [142] Haq B U, Al-Qahtani A M. Phanerozoic cycles of sea-level change on the Arabian Platform[J]. GeoArabia, 2005, 10(2): 127-160.
    [143] Zou C N, Wang L, Li Y, et al. Deep-lacustrine transformation of sandy debrites into turbidites, Upper Triassic, Central China[J]. Sedimentary Geology, 2012, 265-266: 143-155.
    [144] Gradstein F M, Ogg J G, Schmits M D, et al. The geological time scale[M]. Amsterdan: Elsevier, 2012: 681-730.
    [145] Zhu R K, Cui J W, Deng S H, et al. High-precision dating and geological significance of Chang 7 Tuff Zircon of the Triassic Yanchang Formation, Ordos Basin in central China[J]. Acta Geologica Sinica (English Edition), 2019, 93(6): 1823-1834.
    [146] Nesbitt H W, Young G M, McLennan S M, et al. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. The Journal of Geology, 1996, 104(5): 525-542.
    [147] Bechtel A, Jia J L, Strobl S A I, et al. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis[J]. Organic Geochemistry, 2012, 46: 76-95.
    [148] 周世新,李原,张中宁,等. 库车坳陷中生代海侵事件对有机质的影响[J]. 沉积学报,1999,17(1):106-111.

    Zhou Shixin, Li Yuan, Zhang Zhongning, et al. Influence on organic matter cauced by Mesozoic Transgressive events in the Kuqa Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 1999, 17(1): 106-111.
    [149] 王东坡,刘立. 大陆裂谷盆地层序地层学的研究[J]. 岩相古地理,1994,14(3):1-9.

    Wang Dongpo, Liu Li. Sequence stratigraphy in continental rift basins[J]. Sedimentary Facies and Palaeogeography, 1994, 14(3): 1-9.
    [150] 冯子辉,方伟,王雪,等. 松辽盆地海侵制约油页岩形成的微体古生物和分子化石证据[J]. 中国科学(D辑):地球科学,2009,39(10):1375-1386.

    Feng Zihui, Fang Wei, Wang Xue, et al. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment[J]. Science China (Seri. D): Earth Sciences, 2009, 39(10): 1375-1386.
    [151] 席党鹏,万晓樵,冯志强,等. 松辽盆地晚白垩世有孔虫的发现:来自松科1井湖海沟通的证据[J]. 科学通报,2010,55(35):3433-3436.

    Xi Dangpeng, Wan Xiaoqiao, Feng Zhiqiang, et al. Discovery of Late Cretaceous foraminifera in the Songliao Basin: Evidence from SK-1 and implications for identifying seawater incursions[J]. Chinese Science Bulletin, 2010, 55(35): 3433-3436.
    [152] 高瑞祺,何承全,乔秀云. 松辽盆地白垩纪两次海侵的沟鞭藻类新属种[J]. 古生物学报,1992,31(1):17-18,20-22.

    Gao Ruiqi, He Chengquan, Qiao Xiuyun. A new genus and species of Cretaceous dinoflagel-lates from two transgressive beds in Songliao Basin, NE China[J]. Acta Palaeontologica Sinica, 1992, 31(1): 17-18, 20-22.
    [153] 王东坡,杜小弟. 松辽盆地白垩系青山口组黑色页岩的形成环境及海水侵入的底流模式[J]. 岩相古地理,1996,16(1):34-43.

    Wang Dongpo, Du Xiaodi. The origin of the black shales and the bottom current model for seawater encroachment in the Cretaceous Qingshankou Formation, Songliao Basin, Northeast China[J]. Sedimentary Facies and Palaeogeography, 1996, 16(1): 34-43.
    [154] Hou D J, Li M, Huang Q H. Marine transgressional events in the gigantic freshwater lake Songliao: Paleontological and geochemical evidence[J]. Organic Geochemistry, 2000, 31(7/8): 763-768.
    [155] 王国栋,程日辉,王璞珺,等. 松辽盆地嫩江组白云岩形成机理:以松科1井南孔为例[J]. 地质学报,2008,82(1):48-54.

    Wang Guodong, Cheng Rihui, Wang Pujun, et al. The forming mechanism of dolostone of Nengjiang Formation in Songliao Basin - example from CCSD-SK Ⅱ[J]. Acta Geologica Sinica, 2008, 82(1): 48-54.
    [156] Feng Z H, Fang W, Wang X, et al. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment[J]. Science in China Series D: Earth Sciences, 2009, 52(10): 1559-1571.
    [157] 侯读杰,黄清华,黄福堂,等. 松辽盆地海侵地层的分子地球化学特征[J]. 石油学报,1999,20(2):30-34.

    Hou Dujie, Huang Qinghua, Huang Futang, et al. The characteristics of molecular geochemistry of marine transgression strata in Songliao Basin[J]. Acta Petrolei Sinica, 1999, 20(2): 30-34.
    [158] Hu J F, Peng P A, Liu M Y, et al. Seawater incursion events in a Cretaceous Paleo-lake revealed by specific marine biological markers[J]. Scientific Reports, 2015, 5(1): 9508.
    [159] Lü D W, Wang D D, Li Z X, et al. Depositional environment, sequence stratigraphy and sedimentary mineralization mechanism in the coal bed- and oil shale-bearing succession: A case from the Paleogene Huangxian Basin of China[J]. Journal of Petroleum Science and Engineering, 2017, 148: 32-51.
    [160] 王炳山,李艳红,王西恩. 黄县盆地早第三纪海侵湖环境及聚煤作用[J]. 煤田地质与勘探,2000,28(3):8-11.

    Wang Bingshan, Li Yanhong, Wang Xien. Palaeogene transgressive lacustrine environment and coal accumulation in Huangxian Basin[J]. Coal Geology & Exploration, 2000, 28(3): 8-11.
    [161] 沈吉. 末次盛冰期以来中国湖泊时空演变及驱动机制研究综述:来自湖泊沉积的证据[J]. 科学通报,2012,57(34):3228-3242.

    Shen Ji. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum: A review and synthesis of lacustrine sediment archives[J]. Chinese Science Bulletin, 2012, 57(34): 3228-3242.
    [162] 孟庆涛,刘招君,徐进军,等. 松辽盆地北部上白垩统细粒沉积有机质富集机制[C]//2015年全国沉积学大会沉积学与非常规资源论文摘要集. 武汉:长江大学地球科学学院,2015:271-272. [

    Meng Qingtao, Liu Zhaojun, Xu Jinjun, et al. Enrichment mechanism of fine-grained sedimentary organic matter of Upper Cretaceous in northern Songliao Basin[C]//Abstracts of papers on sedimentology and unconventional resources of national sedimentology conference 2015. Wuhan: School of Geosciences, Yangtze University, 2015: 271-272.]
    [163] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [164] 韩佳兵,柳蓉,刘招君,等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长9段浊积岩特征及对有机质富集的影响[J]. 世界地质,2018,37(4):1177-1186.

    Han Jiabing, Liu Rong, Liu Zhaojun, et al. Characteristics of turbidite and its influence on organic matter accumulation in Chang 9 member of Triassic Yanchang Formation in Tongchuan area, southern Ordos Basin[J]. Global Geology, 2018, 37(4): 1177-1186.
    [165] 柳蓉. 东北地区东部新生代断陷盆地油页岩特征及成矿机制研究[D]. 长春:吉林大学,2007.

    Liu Rong. Research on oil shale characteristics and metallogenic mechanism of Cenozoic Fault Basins in eastern Northeast Region: Doctor's degree thesis[D]. Changchun: Jilin University, 2007.
    [166] 崔景伟,朱如凯,范春怡,等. 页岩层系油气资源有序共生及其勘探意义:以鄂尔多斯盆地延长组长7页岩层系为例[J]. 地质通报,2019,38(6):1052-1061.

    Cui Jingwei, Zhu Rukai, Fan Chunyi, et al. Oil and gas resources of shale formation orderly accumulation and coexistence as well as its prospecting significance: A case study of Chang 7 shale formation in Ordos Basin[J]. Geological Bulletin of China, 2019, 38(6): 1052-1061.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(1584) PDF downloads(394) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-30
  • Published:  2021-02-06

Oil Shale Mineralization and Geological Events in China

doi: 10.14027/j.issn.1000-0550.2020.104
Funds:

National Natural Science Foundation of China 42072122

Abstract: Research findings increasingly indicate that geological events such as volcanic action, hydrothermal fluids, ocean anoxia, climate mutation, transgression, gravity flow and so on are frequently evident in the sedimentary sequences of oil shale (a type of fine-grained sedimentary rock rich in organic matter). High paleolake productivity and a stable reducing environment are important considerations for oil shale mineralization. A summary of the genesis and distribution behavior of oil shale in 50 basins (95 mining areas) in China reveals that the geological events listed above have led to various degrees of algal and microbial blooms which changed the water conditions in ancient lakes and formed the stable layered lacustrine environments that are important for oil shale mineralization. However, frequent volcanic eruptions release large amounts of gas and ash, and intermittent hydrothermal fluids at high temperature and pressure. Also, frequent gravity flow is not conducive to oil shale enrichment. The present study focuses only on a single event. In future it will be necessary to promote interdisciplinary studies of sedimentology, geochemistry and microbiology from the perspective of earth system science to reveal the ecological cyclic accumulation processes of unconventional oil and gas resources and major geological environment mutation. This will add to our understanding of the combined effects of various geological events on oil shale mineralization, and enrich the theory of unconventional oil and gas sedimentology.

LIU Rong, ZHANG Kun, LIU ZhaoJun, YAN Xu, YU JiaQi. Oil Shale Mineralization and Geological Events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28. doi: 10.14027/j.issn.1000-0550.2020.104
Citation: LIU Rong, ZHANG Kun, LIU ZhaoJun, YAN Xu, YU JiaQi. Oil Shale Mineralization and Geological Events in China[J]. Acta Sedimentologica Sinica, 2021, 39(1): 10-28. doi: 10.14027/j.issn.1000-0550.2020.104
  • 油页岩是一种固体可燃有机矿产,灰分含量高,含油率≥3.5%,发热量通常≥4 187 J/g,有机质含量高,主要由腐泥和腐殖质以及腐泥—腐殖质组成,在低温干馏下,可以得到油页岩油,是一种重要的非常规油气资源。我国油页岩资源丰富,居世界第二位[1]。我国石油对外依存度突破70%,油页岩资源有望成为重要的战略资源及补充能源。目前吉林大学和吉林众诚油页岩公司已经成功地开采出原位油页岩油,结合我国资源开发现状,寻找适合原位开发的高含油率“甜点区”成为了加快推进我国油页岩原位开发的重点问题。

    随着油页岩资源勘探开发的不断推进,油页岩成矿机制成为了学者们研究的难点和热点的问题之一,研究发现:在这些含油页岩的沉积组合序列中,高含油率油页岩发育经常与火山作用、重力流作用、海侵作用等事件沉积伴生。在美国绿河油页岩[2-3],中国松辽盆地[4-5]、准噶尔盆地[6-7]、鄂尔多斯盆地[8-10]及北票盆地[11]的含油页岩岩系中均发现了数层凝灰岩层;鄂尔多斯盆地[12-13]、依兰盆地[14-16]、朝阳盆地[17]中的含油页岩岩系中还发现了频繁的重力流沉积。在松辽盆地[18-19]、黄县盆地[20]中发现了多种海侵沉积标志。鄂尔多斯盆地[21]、桐柏盆地[22]、银额盆地含油页岩岩系中发现了热液沉积[23]表1)。同时,油页岩也是一种有机质异常富集的沉积岩,其形成是否与这些事件之间存在一定的时空耦合关系?这些事件沉积对油页岩,特别是对高含油率的油页岩“甜点区”的发育是促进还是抑制?

    盆地 准噶尔盆地 银额盆地 鄂尔多斯盆地 朝阳盆地 松辽盆地 依兰盆地 桐柏盆地 黄县盆地
    地层 上二叠统 下白垩统 上三叠统 下白垩统 上白垩统 古近系 古近系 古近系
    沉积环境 半深湖—深湖 半深湖 半深湖—深湖 半深湖—深湖 半深—深湖 半深湖—深湖 浅湖 湖沼
    油页岩 赋存形式 单独油页岩矿 单独油页岩矿 单独油页岩矿 单独油页岩矿 单独油页岩矿 单独油页岩矿 与碱共生 与煤互层
    沉积构造 薄层状 块状、薄层状 块状、薄层状 块状、薄层状 块状、薄层状 块状 薄层状 块状
    最大累计 厚度/m 205 35.4 32 100 38.94 6.1 33.03 22
    最高含油率/% 22.1 11.47 10.56 7.71 16.37 8.37 7.9 24.38
    成因类型 Ⅰ~Ⅱ1 Ⅰ~Ⅱ1 1 Ⅰ~Ⅱ1 Ⅰ型 Ⅰ~Ⅱ1 Ⅰ型 Ⅰ~Ⅱ1
    湖水性质 半咸水—咸水 半咸水 淡水 淡水 淡水—半咸水 淡水 半咸水—咸水 半咸水—咸水
    氧化还原条件 还原 还原 还原 还原 还原 弱还原 还原 弱还原
    古气候 温暖湿润 半湿润—半干旱 温暖湿润 温暖湿润 温暖湿润 温暖湿润 温暖湿润 温暖湿润
    事件沉积 火山、热液 热液 火山、热液、 重力流 大洋缺氧、 火山、重力流 大洋缺氧、 火山、海侵 重力流 热液 海侵

    Table 1.  Characteristics and event deposition of oil shale in oil⁃bearing shale series in China

    本文将从我国发育的50个盆地、95个含矿区油页岩出发[1],在系统的分析其分布规律、成因和成矿条件的基础上,总结并揭示地质事件与油页岩富集的耦合作用,从而丰富油页岩成矿理论及非常规油气沉积学的理论内涵。

  • 中国油页岩资源丰富且分布广泛,分布在27个省(自治区)和50个盆地、95个含矿区。目前海相油页岩探明程度相对较低,已发现的大部分油页岩矿床多为陆相成因,且主要分布于内蒙古、山东、山西、吉林、黑龙江、陕西、辽宁、广东、新疆等9省区[24],发育于松辽、鄂尔多斯、伦坡拉、准噶尔、羌塘、柴达木、茂名、大杨树、抚顺等盆地(图1),其中松辽、鄂尔多斯和准噶尔盆地占中国油页岩总资源的一半以上。

    Figure 1.  Distribution of oil shale resources in China

    中国发育多个含油页岩盆地,沉积时期跨度大,成矿时代长且分布广泛,从晚古生代到新生代都有沉积,其中,古生代的石炭二叠纪、中生代的侏罗纪、早白垩纪以及新生代的古近纪是中国油页岩四个重要成矿期(表1)。

    新生代油页岩主要发育在古近纪始新世和渐新世,主要分布在中国东部地区,如抚顺盆地、桦甸盆地、山东黄县盆地等;其次分布在南部地区,如广东茂名盆地、北部湾地区;西部地区也有少量分布,如西藏地区的伦坡拉盆地。古近纪古新世油页岩沉积较少,只在湖南湘县盆地有发现[25]

    中生代油页岩主要发育在侏罗纪和白垩纪。侏罗纪油页岩主要形成于中侏罗世,主要分布于中国的西部地区,如西藏自治区的羌塘盆地、青海省柴达木盆地以及内蒙古自治区的河套等地区。白垩纪是中国油页岩赋存的重要时期,早白垩世油页岩主要分布在中国东北地区大型盆地如松辽盆地农安地区,晚白垩世油页岩主要集中在中国东北地区一些小型盆地,如大杨树盆地、老黑山盆地、罗子沟盆地、杨树沟盆地、朝阳盆地、阜新盆地等。

    古生代油页岩主要分布在中国西部新疆自治区的妖魔山地区,其形成时代为中二叠世。在西北地区的济宁、六盘山盆地,有少量晚石炭世的油页岩发育。

  • 有机质作为油页岩的重要组成部分,其组成及类型与沉积环境密切相关。油页岩形成环境既有湖相、湖沼相,还有海相、海陆过渡相,但中国主要为湖相成因。湖泊有机质主要来源于两部分:一部分来自于湖泊底栖生物、浮游生物、底栖藻类以及微生物的自身生产,另一部分来自从陆地上搬运的陆源生物的碎屑(图2[26-28]

    Figure 2.  Sources distribution of organic matter in lakes (modified from reference [26])

    油页岩中有机质成因类型取决于藻类和微生物的堆积和陆源高等植物碎屑堆积的比例,主要有腐泥型和混合型(腐殖—腐泥型和腐泥—腐殖型)。我国油页岩以腐泥型(Ⅰ)和腐殖腐泥型(Ⅱ1)为主,腐泥腐殖型(Ⅱ2)次之[29]图3)。

    Figure 3.  Discrimination diagram for organic matter types of oil shale in different sedimentary environments (modified from reference [29])

    有机质成因类型主要取决于沉积环境。良好的保存条件、高湖泊生产力和适当沉积速率,有利于形成高品质油页岩,腐泥型油页岩形成于大中型盆地的坳陷期深湖沉积阶段,该时期盆地于规模大、水体稳定,如松辽盆地上白垩统青山口组和嫩江组、准噶尔盆地中二叠统芦草沟组、鄂尔多斯盆地上三叠统延长组等[4]图3)。

    腐殖—腐泥型和腐泥—腐殖型油页岩在中国油页岩中比较常见,主要形成于大中型坳陷盆地边缘地区和小型断陷盆地的半深湖环境,由于其地理位置及小型断陷盆地的特点,尽管半深湖沉积具有较好的古湖泊生产力,但受陆源碎屑供给的影响比较大,带来无机矿物碎屑同时也带来了丰富的陆源有机质,导致其自身生产力比例降低。如桦甸盆地古近纪桦甸组、梅河盆地古近纪梅河组、依兰盆地古近纪达连河组、朝阳盆地九佛堂组等[4]图3)。

    油页岩中有机质成因类型取决于藻类和微生物的堆积和陆源高等植物碎屑堆积的比例,主要有腐泥型和混合型(腐殖—腐泥型和腐泥—腐殖型)。我国油页岩以腐泥型(Ⅰ)和腐殖腐泥型(Ⅱ1)为主,腐泥腐殖型(Ⅱ2)次之[29]图3)。

    有机质成因类型主要取决于沉积环境。良好的保存条件、高湖泊生产力和适当沉积速率,有利于形成高品质油页岩,腐泥型油页岩形成于大中型盆地的坳陷期深湖沉积阶段,该时期盆地于规模大、水体稳定,如松辽盆地上白垩统青山口组和嫩江组、准噶尔盆地中二叠统芦草沟组、鄂尔多斯盆地上三叠统延长组等[4]图3)。

    腐殖—腐泥型和腐泥—腐殖型油页岩在中国油页岩中比较常见,主要形成于大中型坳陷盆地边缘地区和小型断陷盆地的半深湖环境,由于其地理位置及小型断陷盆地的特点,尽管半深湖沉积具有较好的古湖泊生产力,但受陆源碎屑供给的影响比较大,带来无机矿物碎屑同时也带来了丰富的陆源有机质,导致其自身生产力比例降低。如桦甸盆地古近纪桦甸组、梅河盆地古近纪梅河组、依兰盆地古近纪达连河组、朝阳盆地九佛堂组等[4]图3)。

    腐殖—腐泥型和腐泥—腐殖型油页岩也可以发育在大中型盆地的坳陷期深湖沉积阶段,这主要受到了该时期的远源浊积岩的影响。陆源碎屑中的颗粒有机碳碎屑可由河流和洪流带入,也可以从滨岸带再沉积。洪水期,大量的颗粒有机质被带入到盆地内,这种浊流沉积在许多淡水湖泊中几乎成为了一种规律。比如,在阿尔卑斯山边缘的几个湖泊中,这种事件沉积物中陆源植物有机碳总量(TOC)较高,为2%~6%[30],我国鄂尔多斯盆地上三叠统延长组长7段的油页岩中常发育浊积岩[31]图3)。

  • 我国油页岩主要为湖相沉积,大部分学者认为其有机质主要为藻类[32-34],藻类勃发往往导致高湖泊生产力的形成[35-38],是油页岩中有机质富集的重要作用。

    近年来,随着半定量—定量生物标志化合物与生物地球化学技术迅速发展,学者已经认识到生产力不仅来自浮游藻类、底栖宏观藻类,微生物对于生物生产力的贡献也应该得到重视[39-42]

    传统模式中认为,微生物即所有的细菌和古菌以及大部分真核生物(如原生生物,一些真菌等)只是分解者,但事实上微生物既是分解者又是生产者。现代海湖研究表明,细菌也是初级生产力的重要组成部分[43-44]。化合物是识别鉴定有机质来源的重要手段,Sachsenhofer et al.[45]认为,在未成熟沉积有机质中低OEP1[OEP1=(nC17+6nC19+nC21)/(4nC18+4nC20)]和高OEP2[OEP2=(nC25+6nC27+nC29)/(4nC26+4nC28)]的正构烷烃的中长链C20-32来源于微藻类和细菌微生物的贡献。银额盆地油页岩中具有高OEP2值和低OEP1值的特点,表明有机质母质类型中藻类和细菌微生物的贡献较大,且细菌在油页岩中活动强于贫有机质泥岩(图4)。

    Figure 4.  m/z=57 mass chromatogram of saturated hydrocarbons in oil shale and organic⁃poor mudstone, Bayingebi Formation, Bagmaode area, Yin'e Basin

  • 丰富的有机质来源是油页岩形成的前提,有机质的聚集和保存则是油页岩成矿的另一个重要过程,缺氧是这个过程的最佳条件。油页岩中有机质分别来源于湖泊自身生产力和陆源有机碎屑供给,在动荡的湖泊水体条件下,绝大多数的有机质会发生降解作用,不利于油页岩中有机质的保存[46]

    研究者围绕着绿河组的Wilkins Peak段油页岩开展了大量的研究,先后建立分层湖模式[47]、干盐湖模式[48]、干盐湖复合体模式[49]、生物化学分层湖模式[50]和外因分层湖模式[51]等(图5)。这些模式都强调了水体分层在油页岩形成过程中的重要作用。在松辽盆地青山口组和嫩江组的油页岩中,Pr/Ph、δU以及β-胡萝卜烷等地球化学参数都指示了强还原—还原的稳定水体分层环境更有利于油页岩的形成[52-53]。并且,在富矿段反应还原条件的Ni/Co比值和Ni/V比值都表现出很好的稳定性,反映出富矿段的还原性主要取决于稳定的湖水分层。

    Figure 5.  Comparison between simple stratified lake and dry⁃salt lake complex model in Lvhe Basin(modified from references [20,47⁃48])

    因此,缺氧是油页岩形成过程中有机质保存的必要条件,而长期稳定的水体分层导致的缺氧条件则最有利于油页岩形成。

  • 从与神学论相结合的灾变论到新灾变论,研究者针对众多地质事件开展了详细研究,一些科学问题已成为当今地球科学领域中的研究前沿,如板块构造学的超大陆聚合与裂解[54-57]、古生物学的“五大灭绝”[58-59]、沉积学的事件沉积[60-64]等。长期的渐变过程与瞬时的突变过程是地质过程的基本方式,地质作用过程的发展正是由二者的交互决定的[65]

    在地质事件研究中,随着理论、技术和方法的发展与创新,许多的研究表明,大洋缺氧、火山喷发、热液活动以及重力流沉积等诸多地质事件在有机质的富集过程中起到了重要作用,与油页岩、页岩油气等非常规油气资源也存在着密切联系。

    有机质富集是油页岩成矿的重要先决条件,也是研究的难点。八十年代末期,Katz[66-67]开展了大量的湖泊研究工作,提出了两种平衡作用:第一种是自生生产有机质与陆源有机质的输入平衡;另一种是有机质与无机矿物的输入平衡。前者将决定有机质的性质,后者将决定有机质的含量。除上述两个平衡外,决定油页岩成矿还存在着第三个平衡,那就是有机质保存与氧化分解的平衡。

    因此,有机质富集过程中的三个平衡是油页岩成矿的关键,在此过程中地质事件作用如何影响油页岩成矿呢?本文将从有机质来源、有机质保存和有机质稀释等方面进行论述。

  • 在火山活动中,火山喷发出的气体或尘埃可以形成硫酸盐气溶胶,气溶胶—云—气候反馈系统可引起区域性气候改变从而导致水体浮游生物发生变化[68-69],同时,火山碎屑物质经风化和搬运作用进入到湖泊或土壤,也在一定程度上影响了湖泊及土壤中微生物、真菌、藻类等生物种类和数量[70-71]。火山灰含有大量的必需营养元素,例如K,P,Fe和Ca,这些元素可以溶解在水体中,通过与海水接触并快速释放使藻类在短时间内大量繁盛[72-76]

    在我国鄂尔多斯盆地三叠系延长组、三塘湖盆地二叠系芦草沟组、辽西盆地群下白垩统义县—九佛堂组、松辽盆地上白垩统青山口组和嫩江组油页岩层中均发现火山灰沉积[77-78],尤其在鄂尔多斯盆地南部延长组长7段,高含油率油页岩中发育多期凝灰岩或凝灰质夹层。

    因此,火山作用在沉积过程中虽然只表现为一个短暂的地质事件,但它对湖相的初级古生产力却做出了很大的贡献,是形成藻类勃发的重要因素[38,73]。近年来,也有一些学者研究发现过量的火山灰会降低水体的透明度,降低湖泊藻类及挺水植物对太阳能的吸收和转化效率,造成湖泊生物大量死亡。同时,频繁的火山爆发将释放大量气体,如HCl-和SO2,对气候产生强烈影响,使得区域温度持续性下降,导致初级生产者的富营养区不断减少[79-81]。因此,火山作用的过程及强度对油页岩富集的影响存在很大的差异,需要客观的系统评价。

  • 热液活动与火山活动往往同期发生,水底热液携带着大量营养物质(Si、N、P、Fe、Zn)进入湖泊或海洋[76,82-83],为有机物的富集提供物质来源。热液活动区域往往拥有更高的营养物质及热源,其周围水体中微生物也较为丰富,活动强度也更明显[84-85]。热液喷口附近的火山玻璃在水下发生氧化反应,为微生物群落提供生存所必需的养料[86-88],从而促进微生物群落生长发育[89-91]。此外,热液喷发释放出的H2S, SO2等气体造成了明显的水体分层,底部厌氧的沉积环境更有利于有机质的保存[92-95]

    近年来在中国湖相油页岩中发现了丰富的热液沉积特征[96-100],对三塘湖盆地二叠系芦草沟组、二连盆地下白垩统腾格尔组、鄂尔多斯盆地延长组长7段和渤海湾盆地古近系沙河街组的研究均可证明曾发生过湖底热液活动[77-78]。鄂尔多斯盆地延长组长7段是湖泊发育的高峰期,同时也被证实存在明显的湖底热液活动[101-103],长73段的厚层油页岩对应较为强烈的热液活动[101,103]图6)。在长7段早期,扬子板块向华北板块强烈俯冲,盆地南缘火山活动加剧,湖水沿基底断裂带与岩浆发生渗漏作用,在湖底形成大量的热液流体。P、Fe、Mn、Cu、Na等营养元素通过上升流进入湖面,促进了湖泊藻类的繁盛,为湖藻积累提供了充足的有机质来源。同时,H2S、SO2、HCl-和其他气体促进了缺氧沉积环境的形成,油页岩中较高的黄铁矿含量和硫含量指示了湖底厌氧硫化的沉积环境。热液的流入可能导致湖水盐度异常升高和水柱分层,有利于有机质的保存。

    Figure 6.  Sedimentary model of oil shale in the 7th member of the Triassic Yanchang Formation within the Mesozoic Ordos Basin, Central China (modified from reference [101])

    因此,大多数学者认为热液活动对有机质富集有着重要的促进作用,但同时,也有学者认为相对高温高压的间歇性热液流体有着较高的流体温度反而不利于生物生存,并且热液喷流产生的剧烈水体扰动也很有可能破坏湖底的缺氧环境,进而破坏有机质的富集[104]

  • 大洋缺氧事件OAE 1a的发生在国际上普遍认为与Ontong-Java太平洋超级地幔柱的喷发有关,海底大规模火成岩省(Large Igneous Provinces,LIPs)活动导致大陆边缘沉积物中甲烷水化合物的分解[105-106]。大规模火成岩省的活动,引起大气中CO2浓度升高,温室效应加强,促进了地表风化作用和水文循环活动,为湖泊藻类的繁盛提供了充足的陆源营养物质,极大地提高了古湖泊生产力[107-111]。全球性大洋缺氧事件不仅在海洋沉积黑色页岩,在陆相湖泊中也发育油页岩及暗色泥岩沉积,例如在大洋缺氧事件OAE1a时期,辽西地区的九佛堂组和酒泉盆地的下沟组均发育油页岩及暗色泥岩[112-113]。戴霜等[114]通过对六盘山盆地北部时代火石寨剖面马东山组进行研究,证实其下部发育的黑色页岩和灰岩组合受大洋缺氧事件OAE1b的影响。伊帆等[115]认为羌塘地区侏罗系油页岩形成于Toarcian缺氧(T-OAE)。胡广等[116]认为中国东南沿海地区下白垩统普遍发育的多套黑色泥页岩与大洋缺氧事件OAE2相关。晚白垩世松辽盆地青山口组的缺氧事件与全球的Albian-Cenomanian缺氧事件(OAE2)相吻合。嫩江组的缺氧事件与全球的Santonian-Campanian缺氧事件(OAE3)相吻合[117-118]。此外,在银额盆地含油页岩层系的巴音戈壁组二段发现了热河生物群的典型化石东方叶肢介(Eosestheria sp.),三尾类蜉蝣(Ephemeropsis trisetalis)和长肢裂尾甲[119]。且巴音戈壁组二段顶部结束年龄为116 Ma[120-121],这个时期正是全球大洋缺氧事件OAE1a的时期[106,109]图7)。此外,发生于55 Ma左右的古新世—始新世极热事件(PETM)引起的缺氧事件对古近系油页岩形成也具有一定的促进作用。

    Figure 7.  Geological events related to the Cretaceous global carbon cycle and their changes (modified from reference[122], geological age modified from reference [123])

  • 油页岩是一种富含有机质的岩石,藻类、低等生物及陆地高等植物为油页岩提供了丰富的物质来源,而气候又是控制地球表面古生物繁盛的重要因素。因此,温暖湿润的古气候条件是油页岩的有利形成环境[15,124-126]

    对全国50个盆地、95个含矿区的油页岩综合分析表明,油页岩成矿时期跨度大,成矿时代长,且从晚古生代到新生代都有沉积,其中一部分高品质油页岩发育于气候地质事件频发时期。

    例如,三叠纪初期的古气候继承了二叠纪末期干旱炎热的特点,中晚三叠纪的古气候逐渐向湿热过渡[127],并出现多期全球范围内的气候湿润事件,如卡尼期洪积事件(CHE)、拉丁—卡尼湿润间隔(L-CHI)等[128-131]。卡尼期湿润事件(CHE)的证据在特提斯地区的地层中被广泛记录[132-136],在CHE时期,随着降雨量的增加,海相层序的碎屑组分有所增加,碳酸盐岩沉积突然中断开始沉积陆源硅质碎屑岩,有些地区出现黑色页岩沉积[137]。陆相沉积主要表现为河流水位上升,风化作用加强,洪水引发冲积扇沉积,湖盆的陆源硅质碎屑和有机质的输入增多[136,138]。在意大利的Dolomites地区拉丁—卡尼阶界线附近碳酸盐台地的顶部发现淡水作用导致局部岩溶现象,堆积的火山陆源和火山碎屑岩层中显示出硅质碎屑输入,大量针叶树的遗骸和湿生孢粉资料都表明森林覆盖广泛,并存在显著的降雨,该时期被称为拉丁—卡尼湿润间隔(L-CHI)[130],并且在阿根廷的Mendoza地区及欧洲其他地区也出现了同时期湿润气候的指示[139-140]

    在我国华北鄂尔多斯盆地,拉丁—卡尼湿润间隔(L-CHI)和卡尼期湿润事件(CHE)分别对应延长组长7段底部和上部的油页岩层位,全球性的气候湿润事件不仅促进了海相页岩的沉积,而且为陆相富有机质沉积创造有利条件,长7段是鄂尔多斯盆地稳定沉降过程中有机质最为富集的沉积单元,发育优质烃源岩—油页岩,其有机碳最高达26.16%(图8)。长7段的古气候具有向温暖湿润转变的明显特征[101],温暖的古气候条件有利于湖泊藻类和陆生维管植物的繁盛生长,进而促进初级生产力的提高。此外,充足的降雨会增加地表径流,将大量陆源有机质及营养物质输入湖泊,从而提高初级生产力[146]。同时,温暖湿润的古气候带来的降雨有利于湖平面上升和湖水碱化。较高的古水深造成水体明显分层,加剧湖底的缺氧,有利于有机质的保存[147],古气候对油页岩的沉积起着重要作用。

    Figure 8.  Stable carbon and oxygen isotopes, paleoclimate, sea level change, volcanic and humid events and the distribution of events in Ordos Basin in the Middle⁃Late Triassic

  • 中国含油页岩盆地大多数为陆相湖盆沉积,但也有一些盆地不同程度的出现了海侵作用,海侵发生的层位与油页岩富矿富集层位具有很好的耦合性。有机质来源即高古湖泊生产力是油页岩形成的前提,海侵作用会向湖泊内带入大量海洋浮游生物,提高了古湖泊生产力,并在一定程度上改变了有机质来源的类型[148]。更重要的是,海侵作用会导致湖泊水体条件发生改变,海水中藻类所需的营养元素向湖泊输入会导致湖泊的富营养化,提高湖泊的初级生产力。此外,由于海水中碱性水体可以容纳更多的 C O 3 2 - 和CO2,为水中藻类及沉水植物的光合作用提供了碳源,因而碱性海水向湖盆的输入可以导致湖泊初级生产力升高[30]

    松辽盆地油页岩发育于上白垩统青山口组和嫩江组,学者先后发现在青一段和嫩二段存在海侵作用[149-156]。还有学者进一步讨论海侵了对油页岩成矿的影响[19,52,156]并通过对青一段和嫩一段和二段泥岩生物标志化合物中的甲藻甾烷含量和24-正丙基及24-异丙基胆甾烷的识别证实了海侵的发生[157-158]。海侵作用丰富了青一段油页岩微生物化石,除沟鞭藻、绿藻及疑源类和黄藻类外,还发现了反映淡水、半咸水环境的多刺甲藻,蝙蝠藻等,以及反映海相或半咸水三角洲及潟湖环境的沟裸藻、口堪斯藻,证实了青一段油页岩的形成与海侵事件有关[150]。此外,山东黄县油页岩的形成也与周期性海水进退有关[20,159-160]

    近年来,大量学者也开展了海侵事件对于湖泊有机质保存的影响的研究[118,161]。认为湖泊水体分层主要为温度和化学分层,当海侵事件发生时,由于湖泊与海洋相沟通,水体盐度快速升高,底部形成高盐度水体化学分层[26],在湖泊处于化学或热力分层的条件下,湖泊上下层的水体循环将会停止,造成湖泊底部水体中的氧气含量不断降低,还原性逐渐加强,为油页岩的发育提供了良好的保存条件[150]。在松辽盆地青山口和嫩江组的油页岩中,Sr/Ba、Ca/Mg和伽马蜡烷指数比值可分别高达3.05、2.15和0.48,均反映油页岩较其它泥页岩沉积时期具有半咸水—咸水性质。Pr/Ph、V/(V+Ni)、δU以及β-Carotane(β-胡萝卜烷)等参数显示油页岩沉积时期为强还原—还原环境[162]

  • 丰富的有机质聚集过程中,若受到外源陆源碎屑的输入,将会导致有机质被大量稀释。品质较好的油页岩大都形成于稳定的半深湖—深湖环境下,在该条件下重力流作用是将外源陆源碎屑带入的重要地质事件。重力流是一种重要的沉积物搬运和沉积机制,包括浊流、流体化流、颗粒流和碎屑流。近年来,很多的研究集中于重力流作用对于油气储集的影响,例如鄂尔多斯盆地中南部长7段、长6大面积分布的致密油储层是重力流事件沉积的产物。具有较好的储层物性的重力流砂体与长7段富有机质页岩相互叠置发育形成源储大面积紧密接触,聚集效率高的致密油甜点区[163]。但对比鄂尔多斯长7段和长9段油页岩发育情况发现,长9油页岩厚度较薄,含油率较低。这与长9段发育大量浊积岩有关。在鄂尔多斯盆地,重力流事件沉积发生时,岸上的陆源高等植物、浅湖生物以及大量泥砂被输入深水区,并且对原有沉积有机质造成强烈稀释,降低了有机质丰度[164-165],同样的现象也发生在依兰盆地[166]。同时,在长73段后期,由于频繁的火山活动,引发了许多地震,在深湖相中形成了浊积石沉积物,浅水中的氧气与砂体一起进入湖底,破坏了缺氧的沉积环境,有机质的保存条件变差,有机质的富集程度逐渐降低(图9)。

    Figure 9.  TOC and redox evolution of Chang 7 member of Yanchang Formation of Well ZK903 in Ordos Basin (modified from reference [101])

  • (1) 油页岩中有机质成因类型取决于藻类和微生物的堆积和陆源高等植物碎屑堆积的比例,主要有腐泥型和混合型,我国油页岩以腐泥型和腐殖腐泥型为主。藻类勃发和微生物繁盛是湖泊油页岩有机质的重要贡献。

    (2) 火山活动释放的火山灰为湖泊藻类提供了大量的营养物质,造成湖泊水体的富营养化,导致藻类和细菌的大量繁殖,有利于油页岩形成。但若过量的火山灰和频繁火山爆发释放大量气体将对油页岩富集带来不利的影响。

    (3) 热液事件与油页岩发育有着良好的耦合关系,热液携带营养元素的输入及释放的还原性气体,促进湖泊表层水体在生物的繁盛和底部厌氧的有机质保存条件,有利于油页岩富集;但也有学者研究表明相对高温高压的间歇性热液流体反而不利于生物生存并破坏稳定的缺氧环境,不利于油页岩富集。

    (4) 大洋缺氧事件普遍认为与海底大规模火成岩省有关,其引起的大气中CO2浓度升高导致的温室效应,改变了古湖泊水体条件从而引发藻类勃发和微生物繁盛,有利于油页岩富集。

    (5) 气候湿润事件不仅促进了湖泊生物和周边陆源植被的繁盛,同时,充足的降雨增加了地表径流,为湖盆提供了大量的陆源有机质,湖平面的升高促进了稳定的湖水氧化还原分层,有利于油页岩富集。

    (6) 海侵事件为陆相湖盆带来了藻类所需的营养元素,促进其勃发,同时,湖泊咸化也促进了水体盐度分层,氧化还原界面上移,有利于油页岩富集。

    (7) 重力流事件在一定程度上将原有沉积有机质造成强烈稀释,降低了有机质丰度,同时也将破坏原有的稳定还原环境,不利于油页岩富集。

  • 地球作为一个庞大而复杂的生态系统,各个因素间都有着不同程度的联系,地质事件代表了其中某个因素的改变,但往往可能导致一系列不同的结果。地球内部构造作用而引发的火山及热液活动与有机质富集的关系密切,推断火山活动释放CO2改变了区域或全球性的古气候,火山灰和热液流体可以增加水体中营养元素的输入而促进初级生产力的提高,热液活动通过营造缺氧硫化的底部水体条件为有机质提供良好的保存条件,但火山及热液活动释放的营养元素参与湖泊生态系统循环的过程及对有机质保存条件贡献的大小依然不清楚。同时,气候变暖促进海平面上升而引发的海侵事件对原有湖泊生态系统中物质循环所造成影响的研究较少。许多地质事件与有机质富集之间具有着良好的耦合关系,但缺乏从地质事件到有机质富集之间的生态变化过程的研究,如地质事件的发生对大气—陆地中各个循环系统的影响,今后需要促进多学科交叉,进一步加强多种地质事件耦合作用对油页岩成矿影响,丰富发展油页岩成矿理论与非常规油气沉积学,同时也为寻找非常规油气资源起到重要作用。

    同时,页岩层系内的非常规油气已成为全球油气勘探开发的热点,这些资源的形成与富有机质页岩密切相关,形成演化有序、空间分布上共生。油页岩是有机质成熟度较低的浅埋藏的沉积矿床,与中等成熟—中等埋深页岩油区、高成熟度—深埋页岩气区和紧邻—夹层致密砂岩油构成了页岩非常规油气的共生序列。重要地质事件的耦合作用对非常规油气资源共生序列时空分布与富集均产生重大影响,因此,从多种事件的耦合机制出发,也将成为揭示页岩非常规油气的共生序列机制的重要思路,在寻找非常规油气资源中发挥重要作用。

Reference (166)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return