Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

ZHONG YiJiang, WEN HuaGuo, CHEN HongDe, LIU Lei, CHEN AnQing, WANG XingLong, WANG ZhiWei, BAI Xuan. The Role of Extracellular Polymeric Substances in Cyanobacterial Calcification and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2022, 40(1): 88-105. doi: 10.14027/j.issn.1000-0550.2020.102
Citation: ZHONG YiJiang, WEN HuaGuo, CHEN HongDe, LIU Lei, CHEN AnQing, WANG XingLong, WANG ZhiWei, BAI Xuan. The Role of Extracellular Polymeric Substances in Cyanobacterial Calcification and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2022, 40(1): 88-105. doi: 10.14027/j.issn.1000-0550.2020.102

The Role of Extracellular Polymeric Substances in Cyanobacterial Calcification and Its Geological Significance

doi: 10.14027/j.issn.1000-0550.2020.102
Funds:

National Natural Science Foundation of China 42072128, 41972102

  • Received Date: 2020-06-08
  • Rev Recd Date: 2020-10-15
  • Publish Date: 2022-01-10
  • Cyanobacteria, which have a fossil record of 3.5 billion years, have continued to flourish up to the present day. Cyanobacterial metabolic processes have influenced the ecological evolution of the earth. Scientific questions related to cyanobacteria, such as the “Precambrian enigma”, have challenged researchers. The extracellular polymeric substances of cyanobacteria play a crucial role in cyanobacterial calcification. The main characteristics of cyanobacteria and extracellular polymeric substances are systematically introduced in this study, following an analysis of several reports in the research literature from China and elsewhere. Reports of previous studies on the calcification process related to photosynthesis and the degradation process of cyanobacteria were reviewed and summarized. The role of extracellular polymeric substances of cyanobacteria in its calcification process was analyzed. The geological significance and future research prospects are addressed to provide references and clarifications regarding scientific questions about the calcification of cyanobacteria and microbial mats.
  • [1] Altermann W, Kazmierczak J, Oren A, et al. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history[J]. Geobiology, 2006, 4(3): 147-166.
    [2] 李金华,Bernard S,Benzerara K,等. 微生物矿化与微化石识别[C]//2014年中国地球科学联合学术年会:专题30:地球生物学论文集. 北京:中国地球物理学会,2014:1710. [

    Li Jinhua, Bernard S, Benzerara K, et al. Microbial mineralization and microfossil recognition[C]//Proceedings of the annual meeting of China geoscience union in 2014. Topic30: Collected Papers on Geobiology. Beijing: Chinese Geophysical Society, 2014: 1710.]
    [3] Merz-preiβ M. Calcification in cyanobacteria[M]//Riding R E, Awramik S M. Microbial sediments. Berlin Heidelberg: Springer, 2000: 50-56.
    [4] Konhauser K. Introduction to geomicrobiology[M]. Malden: Blackwell Publishing, 2007: 160-166.
    [5] Swett K, Knoll A H. Stromatolitic bioherms and microphytolites from the Late proterozoic draken conglomerate formation, spitsbergen[J]. Precambrian Research, 1985, 28(3/4): 327-347.
    [6] Knoll A H, Fairchild I J, Swett K. Calcified microbes in Neoproterozoic carbonates: Implications for our understanding of the Proterozoic/Cambrian transition[J]. PALAIOS, 1993, 8(6): 512-525.
    [7] Riding R. Evolution of algal and cyanobacterial calcification[M]//Bengtson S. Early life on earth. New York: Columbia University Press, 1994: 426-438.
    [8] Stal L J. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments[J]. Geomicrobiology Journal, 2003, 20(5): 463-478.
    [9] Richert L, Golubic S, Le Guédès R, et al. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats[J]. Current Microbiology, 2005, 51(6): 379-384.
    [10] Nicolaus B, Panico A, Lama L, et al. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria[J]. Phytochemistry, 1999, 52(4): 639-647.
    [11] 王龙,Latif K,Riaz M,等. 微生物碳酸盐岩的成因、分类以及问题与展望:来自华北地台寒武系微生物碳酸盐岩研究的启示[J]. 地球科学进展,2018,33(10):1005-1023.

    Wang Long, Latif K, Riaz M, et al. The genesis, classification, problems and prospects of microbial carbonates: Implications from the Cambrian carbonate of North China Platform[J]. Advances in Earth Science, 2018, 33(10): 1005-1023.
    [12] Pentecost A, Riding R. Calcification in cyanobacteria[M]//Leadbeater S C, Riding R. Biomineralization in Lower plants and animals. Oxford: Clarendon Press, 1986: 73-90.
    [13] Kamennaya N A, Ajo-franklin C M, Northen T, et al. Cyanobacteria as biocatalysts for carbonate mineralization[J]. Minerals, 2012, 2(4): 338-364.
    [14] Dupraz C, Visscher P T. Microbial lithification in marine stromatolites and hypersaline mats[J]. Trends in Microbiology, 2005, 13(9): 429-438.
    [15] Kawaguchi T, Decho A W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism[J]. Journal of Crystal Growth, 2002, 240(1/2): 230-235.
    [16] Kawaguchi T, Decho A W. Isolation and biochemical characterization of extracellular polymeric secretions (EPS) from modern soft marine stromatolites (Bahamas) and its inhibitory effect on CaCO3 precipitation[J]. Preparative Biochemistry & Biotechnology, 2002, 32(1): 51-63.
    [17] 梅冥相. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题[J]. 地质论评,2012,58(5):937-951.

    Mei Mingxiang. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5): 937-951.
    [18] Perry R S, McLoughlin N, Lynne B Y, et al. Defining biominerals and organominerals: Direct and indirect indicators of life[J]. Sedimentary Geology, 2007, 201(1/2): 157-179.
    [19] Défarge C, Trichet J. From biominerals to ‘organominerals’: The example of the modern lacustrine calcareous stromatolites from Polynesian atolls[C]//Allemand D, Cuif J P, (Eds.). Proceedings of the 7th international symposium of biomineralizaiton. Monaco: Bulletin de l'Institut Océanographique, 1995, 14(2): 265-271.
    [20] Trichet J, Défarge C. Non-biologically supported organomineralization[C]//Allemand D, Cuif J P, (Eds.). Proceedings of the 7th international symposium of biomineralizaiton. Monaco: Bulletin de l'Institut Océanographique, 1995, 14(2): 203-236.
    [21] Golubic S, Hofmann H J. Comparison of holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation[J]. Journal of Paleontology, 1976, 50(6): 1074-1082.
    [22] Arp G, Hofmann J, Reitner J. Microbial fabric formation in spring mounds (“Microbialites”) of alkaline Salt Lakes in the Badain Jaran Sand Sea, PR China[J]. PALAIOS, 1998, 13(6): 581-592.
    [23] Riding R. Microbial carbonates: The geological record of calcified bacterial–algal mats and biofilms[J]. Sedimentology, 2000, 47(S1): 179-214.
    [24] Whitton B A, Potts M. The ecology of cyanobacteria: Their diversity in time and space[M]. Dordrecht: Springer, 2000: 669.
    [25] Herrero A, Flores E. The cyanobacteria: Molecular biology, genomics and evolution[M]. Norwich: Caister Academic Press, 2008: 484.
    [26] 贾蓉芬,高梅影,彭先芝,等. 微生物矿化[M]. 北京:科学出版社,2009:19-20.

    Jia Rongfen, Gao Meiying, Peng Xianzhi, et al. Microbial mineralization[M]. Beijing: Science Press, 2009: 19-20.
    [27] 贡云云. 蓝细菌钙化作用[J]. 地质科技情报,2017,36(2):112-118.

    Gong Yunyun. Cyanobacterial calcification[J]. Geological Science and Technology Information, 2017, 36(2): 112-118.
    [28] 沈萍,陈向东. 微生物学[M]. 2版. 北京:高等教育出版社,2006:19-20.

    Shen Ping, Chen Xiangdong. Microbiology[M]. 2nd ed. Beijing: Higher Education Press, 2006: 19-20.
    [29] Schopf J W. The fossil record of cyanobacteria[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 26-27.
    [30] Sili C, Torzillo G, Vonshak A. Arthrospira (spirulina)[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 684.
    [31] Neu T R. Biofilms and microbial mats[C]//Krumbein W E, Paterson D M, Stal L J(Eds.). Biostabilization of sediments. Oldenburg: Bibliotheks-Informations system (BIS), 1994: 9-16.
    [32] Garcia-Pichel F, Johnson S L, Youngkin D, et al. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the colorado plateau[J]. Microbial Ecology, 2003, 46(3): 312-321.
    [33] Whitton B A, Potts M. Introduction to the cyanobacteria[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 2.
    [34] Hu C X, Gao K S, Whitton B A. Semi-arid regions and deserts[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 345-370.
    [35] Zwirglmaier K, Heywood J L, Chamberlain K, et al. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean[J]. Environmental Microbiology, 2007, 9(5): 1278-1290.
    [36] Blank C E, Sánchez-baracaldo P. Timing of morphological and ecological innovations in the Cyanobacteria- A key to understanding the rise in atmospheric oxygen[J]. Geobiology, 2010, 8(1): 1-23.
    [37] Schopf J W, Klein C. The proterozoic biosphere: A multidisciplinary study[M]. Cambridge: Cambridge University Press, 1992: 445-446.
    [38] Riding R. Temporal variation in calcification in marine cyanobacteria[J]. Journal of the Geological Society, 1992, 149(6): 979-989.
    [39] Riding R. Calcified cyanobacteria in phanerozoic reefs[C]//Proceedings of the 1st regional symposium on fossil algae. Granada, Spain: Universidad de Granada, 1989: 3-4.
    [40] Riding R. Stromatolite decline: A brief reassessment[J]. Facies, 1997, 36: 227-230.
    [41] Jansson C, Northen T. Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage[J]. Current Opinion in Biotechnology, 2010, 21(3): 365-371.
    [42] Fuhrman J. Genome sequences from the sea[J]. Nature, 2003, 424(6952): 1001-1002.
    [43] Partensk F, Blanchot J, Vaulot D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: A review[C]//Charpy L, Larkum A W D(Eds.). Marine cyanobacteria. Monaco: Musée Océanographique, 1999, 19: 457-475.
    [44] 梅冥相,高金汉. 光合作用的起源:一个引人入胜的重大科学命题[J]. 古地理学报,2015,17(5):577-592.

    Mei Mingxiang, Gao Jinhan. Origin of photosynthesis: An enchanting and important scientific theme[J]. Journal of Palaeogeography, 2015, 17(5): 577-592.
    [45] 梅冥相,孟庆芬. 大气圈氧气含量水平上升的时间进程:一个与地球动力学过程紧密相关的地球生物学过程[J]. 古地理学报,2016,18(1):1-20.

    Mei Mingxiang, Meng Qingfen. Timing of the rise of atmospheric oxygen content level: A geobiological process that is closely and genetically related to the geodynamics[J]. Journal of Palaeogeography, 2016, 18(1): 1-20.
    [46] Dupraz C, Reid R P, Braissant O, et al. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 2009, 96(3): 141-162.
    [47] Défarge C, Trichet J, Jaunet A M, et al. Texture of microbial sediments revealed by cryo-scanning electron microscopy[J]. Journal of Sedimentary Research, 1996, 66(5): 935-947.
    [48] Tourney J, Ngwenya B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132.
    [49] Sutherland I W. Biofilm exopolysaccharides: A strong and sticky framework[J]. Microbiology, 2001, 147(1): 3-9.
    [50] Sutherland I W. Exopolysaccharides in biofilms, flocs and related structures[J]. Water Science & Technology, 2001, 43(6): 77-86.
    [51] Sutherland I W. Microbial polysaccharides from Gram-negative bacteria[J]. International Dairy Journal, 2001, 11(9): 663-674.
    [52] Sutherland I W. The biofilm matrix - an immobilized but dynamic microbial environment[J]. Trends in Microbiology, 2001, 9(5): 222-227.
    [53] Wingender J, Neu T R, Flemming H C. What are bacterial extracellular polymeric substances?[M]//Wingender J, Neu T R, Flemming H C. Microbial extracellular polymeric substances. Berlin: Springer, 1999: 1-19.
    [54] De Philippis R, Sili C, Paperi R, et al. Exopolysaccharide-producing cyanobacteria and their possible exploitation: A review[J]. Journal of Applied Phycology, 2001, 13(4): 293-299.
    [55] De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications[J]. FEMS Microbiology Reviews, 1998, 22(3): 151-175.
    [56] De Philippis R, Faraloni C, Sili C, et al. Algal biocenosis in the benthic mucilaginous aggregates of the Tyrrhenian sea, with emphasis on the exopolysaccharide-producing microalgal community[J]. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 2003, 109: 487-498.
    [57] Sharma N K, Tiwari S P, Tripathi K, et al. Sustainability and cyanobacteria (blue-green algae): Facts and challenges[J]. Journal of Applied Phycology, 2011, 23(6): 1059-1081.
    [58] 张云怡. 三株蓝细菌菌株胞外多糖研究和菌种鉴定[D]. 青岛:中国海洋大学,2006.

    Zhang Yunyi. Investigation on the exopolysaccharides (EPS) from three cyanobacterial strains and identification of these strains[D]. Qingdao: Ocean University of China, 2006.
    [59] Kazmierczak J, Krumbein W E. Identification of calcified coccoid cyanobacteria forming stromatoporoid stromatolites[J]. Lethaia, 1983, 16(3): 207-213.
    [60] Williams L A. Subtidal stromatolites in Monterey Formation and other organic-rich rocks as suggested source contributors to petroleum formation[J]. AAPG Bulletin, 1984, 68(12): 1879-1893.
    [61] Chalansonnet S, Largeau C, Casadevall E, et al. Cyanobacterial resistant biopolymers. Geochemical implications of the properties of Schizothrix sp. resistant material[J]. Organic Geochemistry, 1988, 13(4/5/6): 1003-1010.
    [62] Bianchi T S. Biogeochemistry of estuaries[M]. Oxford: Oxford University Press, 2007: 581-581.
    [63] Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms[J]. Annual Review of Microbiology, 1995, 49: 711-745.
    [64] Potts M. Desiccation tolerance of prokaryotes[J]. Microbiological Reviews, 1994, 58(4): 755-805.
    [65] Decho A W. Microbial biofilms in intertidal systems: An overview[J]. Continental Shelf Research, 2000, 20(10/11): 1257-1273.
    [66] Cammarota M C, Sant’Anna Jr G L. Metabolic blocking of exopolysaccharides synthesis: Effects on microbial adhesion and biofilm accumulation[J]. Biotechnology Letters, 1998, 20(1): 1-4.
    [67] De Winder B, Staats N, Stal L J, et al. Carbohydrate secretion by phototrophic communities in tidal sediments[J]. Journal of Sea Research, 1999, 42(2): 131-146.
    [68] De Brouwer J F C, Ruddy G K, Jones T E R, et al. Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries[J]. Biogeochemistry, 2002, 61(1): 57-71.
    [69] Decho A W, Visscher P T, Reid R P. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 71-86.
    [70] Decho A W. Molecular-scale events influencing the macroscale cohesiveness of exopolymers[M]//Krumbein W E, Paterson D M, Stal L J. Biostabilization of sediments. Oldenburg: BIS, 1994: 135-148.
    [71] Défarge C, Trichet J, Maurin A, et al. Kopara in Polynesian atolls: Early stages of formation of calcareous stromatolites[J]. Sedimentary Geology, 1994, 89(1/2): 9-23.
    [72] Disnar J R. Etude expérimentale de la fixation de métaux par un matériau sédimentaire actuel d’origine algaire—II. Fixation ‘in vitro’ de UO2+2, Cu2+, Ni2+, Zn2+, Pb2+, Co2+, Mn2+, ainsi que de VO-3, MoO2-4 et GeO2-3[J]. Geochimica et Cosmochimica Acta, 1981, 45(3): 363-379.
    [73] Morris E R, Rees D A, Young G, et al. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its plant host[J]. Journal of Molecular Biology, 1977, 110(1): 1-16.
    [74] Riding R. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition[J]. Geobiology, 2006, 4(4): 299-316.
    [75] Kaplan A, Reinhold L. CO2 concentrating mechanisms in photosynthetic microorganisms[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 539-570.
    [76] Kaplan A, Badger M R, Berry J A. Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration[J]. Planta, 1980, 149(3): 219-226.
    [77] Badger M R, Price G D. CO2 concentrating mechanisms in cyanobacteria: Molecular components, their diversity and evolution[J]. Journal of Experimental Botany, 2003, 54(383): 609-622.
    [78] Price G D, Howitt S M. The cyanobacterial bicarbonate transporter BicA: Its physiological role and the implications of structural similarities with human SLC26 transporters[J]. Biochemistry and Cell Biology, 2011, 89(2): 178-188.
    [79] Riding R. Cyanophyte calcification and changes in ocean chemistry[J]. Nature, 1982, 299(5886): 814-815.
    [80] Riding R. An atmospheric stimulus for cyanobacterial-bioinduced calcification ca. 350 million years ago?[J]. PALAIOS, 2009, 24(10): 685-696.
    [81] Schultze-Lam S, Schultze-Lam S, Beveridge T J, et al. Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton[J]. Limnology and Oceanography, 1997, 42(1): 133-141.
    [82] Schultze-Lam S, Beveridge T J. Nucleation of celestite and strontianite on a cyanobacterial S-layer[J]. Applied and Environmental Microbiology, 1994, 60(2): 447-453.
    [83] Schultze-Lam S, Harauz G, Beveridge T J. Participation of a cyanobacterial S layer in fine-grain mineral formation[J]. Journal of Bacteriology, 1992, 174(24): 7971-7981.
    [84] Obst M, Dynes J J, Lawrence J R, et al. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4180-4198.
    [85] Price G D, Maeda S, Omata T, et al. Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942[J]. Functional Plant Biology, 2002, 29(3): 131-149.
    [86] Yates K K, Robbins L L. Microbial lime-mud production and its relation to climate change[M]//Gerhard L C, Harrison W E, Hanson B M. Geological perspectives of global climate change. Tulsa, Okla: American Association of Petroleum Geologists, 2001: 266-283.
    [87] Kah L C, Riding R. Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 2007, 35(9): 799-802.
    [88] Planavsky N, Reid R P, Lyons T W, et al. Formation and diagenesis of modern marine calcified cyanobacteria[J]. Geobiology, 2009, 7(5): 566-576.
    [89] Riding R. Calcified cyanobacteria[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Encyclopedia of earth sciences series. Dordrecht: Springer, 2011: 211-223.
    [90] Dittrich M, Obst M. Are picoplankton responsible for calcite precipitation in lakes?[J]. AMBIO, 2004, 33(8): 559-564.
    [91] Strong A E, Eadie B J. Satellite observations of calcium carbonate precipitations in the Great Lakes[J]. Limnology and Oceanography, 1978, 23(5): 877-887.
    [92] Morse J W, Gledhill D K, Millero F J. CaCO3 precipitation kinetics in waters from the Great Bahama Bank:: Implications for the relationship between bank hydrochemistry and whitings[J]. Geochimica et Cosmochimica Acta, 2003, 67(15): 2819-2826.
    [93] Broecker W S, Sanyal A, Takahashi T. The origin of Bahamian whitings revisited[J]. Geophysical Research Letters, 2000, 27(22): 3759-3760.
    [94] Broecker W S, Langdon C, Takahashi T, et al. Factors controlling the rate of CaCO3 precipitation on Great Bahama Bank[J]. Global Biogeochemical Cycles, 2001, 15(3): 589-596.
    [95] Verrecchia E P, Freytet P, Verrecchia K E, et al. Spherulites in calcrete laminar crusts: Biogenic CaCO3 precipitation as a major contributor to crust formation[J]. Journal of Sedimentary Research, 1995, 65A(4): 690-700.
    [96] Arp G, Reimer A, Reitner J. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans[J]. Science, 2001, 292(5522): 1701-1704.
    [97] Grotzinger J P, Knoll A H. Stromatolites in precambrian carbonates: Evolutionary mileposts or environmental dipsticks?[J]. Annual Review of Earth and Planetary Sciences, 1999, 27: 313-358.
    [98] Li F, Deng J T, Kershaw S, et al. Microbialite development through the Ediacaran-Cambrian transition in China: Distribution, characteristics, and paleoceanographic implications[J]. Global and Planetary Change, 2021, 205: 103586.
    [99] Arp G, Reimer A, Reitner J. Calcification in cyanobacterial biofilms of alkaline salt lakes[J]. European Journal of Phycology, 1999, 34(4): 393-403.
    [100] Dupraz C, Visscher P T, Baumgartner L K, et al. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas)[J]. Sedimentology, 2004, 51(4): 745-765.
    [101] Raven J A, Giordano M, Beardall J, et al. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1588): 493-507.
    [102] Merz M U E. The biology of carbonate precipitation by cyanobacteria[J]. Facies, 1992, 26(1): 81-101.
    [103] Couradeau E, Benzerara K, Gérard E, et al. An early-branching microbialite cyanobacterium forms intracellular carbonates[J]. Science, 2012, 336(6080): 459-462.
    [104] Benzerara K, Skouri-Panet F, Li J H, et al. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(30): 10933-10938.
    [105] Ragon M, Benzerara K, Moreira D, et al. 16S rDNA-based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial lineages with contrasted patterns of intracellular carbonate mineralization[J]. Frontiers in Microbiology, 2014, 5: 331.
    [106] Cam N, Georgelin T, Jaber M, et al. In vitro synthesis of amorphous Mg-, Ca-, Sr- and Ba- carbonates: What do we learn about intracellular calcification by cyanobacteria?[J]. Geochimica et Cosmochimica Acta, 2015, 161: 36-49.
    [107] Riding R. A hard life for cyanobacteria[J]. Science, 2012, 336(6080): 427-428.
    [108] Vasconcelos C, Warthmann R, McKenzie J A, et al. Lithifying microbial mats in lagoa Vermelha, Brazil: Modern precambrian relics?[J]. Sedimentary Geology, 2006, 185(3/4): 175-183.
    [109] Spadafora A, Perri E, Mckenzie J A, et al. Microbial biomineralization processes forming modern Ca:Mg carbonate stromatolites[J]. Sedimentology, 2010, 57(1): 27-40.
    [110] Défarge C. Organomineralization[M]//Reitner J, Thiel V. Encyclopedia of geobiology. Dordrecht: Springer, 2011: 697-701.
    [111] Addadi L, Weiner S. Stereochemical and structural relations between macromolecules and crystals in biomineralisation[M]//Mann S, Webb J, Williams J P. Biomineralization. Weinheim: VCH, 1989: 133-156.
    [112] Frankel R B, Bazylinski D A. Biologically induced mineralization by bacteria[M]//Dove P M, Weiner S, De Yoreo J J. Biomineralization. Washington, DC: Mineralogical Society of America, 2003: 95-114.
    [113] Weiner S, Dove P M. An overview of biomineralization and the problem of the vital effect[M]//Dove P M, Weiner S, De Yoreo J J. Biomineralization. Washington, DC: Mineralogical Society of America, 2003: 1-31.
    [114] Visscher P T, Hoeft S E, Surgeon T M L, et al. Microelectrode measurements in stromatolites: Unraveling the Earth’s past?[M]//Taillefert M, Rozan T F. Environmental electrochemistry: Analyses of trace element biogeochemistry. Washington: American Chemical Society, 2002: 265-282.
    [115] Braissant O, Decho A W, Dupraz C, et al. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2007, 5(4): 401-411.
    [116] Visscher P T, Stolz J F. Microbial mats as bioreactors: Populations, processes, and products[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 219(1/2): 87-100.
    [117] Arp G, Reimer A, Reitner J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia[J]. Journal of Sedimentary Research, 2003, 73(1): 105-127.
    [118] Kazmierczak J, Kempe S, Altermann W. Microbial origin of Precambrian carbonates: Lessons from modern analogues[M]//Eriksson P G, Altermann W, Nelson D R, et al. The precambrian earth: Tempos and events. Amsterdam: Elsevier, 2004: 545-563.
    [119] Kempe S, Kazmierczak J, Landmann G, et al. Largest known microbialites discovered in lake Van, Turkey[J]. Nature, 1991, 349(6310): 605-608.
    [120] Chafetz H S, Buczynski C. Bacterially induced lithification of microbial mats[J]. Palaios, 1992, 7(3): 277-293.
    [121] Défarge C, Trichet J, Coute A. On the appearance of cyanobacterial calcification in modern stromatolites[J]. Sedimentary Geology, 1994, 94(1/2): 11-19.
    [122] Szulc J, Smyk B. Bacterially controlled calcification of freshwater Schizothrix-stromatolites: An example from the Pieniny MTS, southern poland[M]//Bertrand-Sarfati J, Monty C. Phanerozoic stromatolites II. Dordrecht: Springer, 1994: 31-51.
    [123] Petrash D A, Lalonde S V, González-arismendi G, et al. Can Mn-S redox cycling drive sedimentary dolomite formation? A hypothesis[J]. Chemical Geology, 2015, 404: 27-40.
    [124] Slaughter M, Hill R J. The influence of organic matter in organogenic dolomitization[J]. Journal of Sedimentary Research, 1991, 61(2): 296-303.
    [125] Soetaert K, Hofmann A F, Middelburg J J, et al. The effect of biogeochemical processes on PH[J]. Marine Chemistry, 2007, 105(1/2): 30-51.
    [126] Sánchez-Román M, Vasconcelos C, Schmid T, et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record[J]. Geology, 2008, 36(11): 879-882.
    [127] Sánchez-Román M, Mckenzie J A, de Luca Rebello Wagener A, et al. Presence of sulfate does not inhibit low-temperature dolomite precipitation[J]. Earth and Planetary Science Letters, 2009, 285(1/2): 131-139.
    [128] Roberts J A, Bennett P C, González L A, et al. Microbial precipitation of dolomite in methanogenic groundwater[J]. Geology, 2004, 32(4): 277-280.
    [129] Deng S C, Dong H L, Lv G, et al. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China[J]. Chemical Geology, 2010, 278(3/4): 151-159.
    [130] Shearman D J, Skipwith P A D. Organic matter in recent and ancient limestones and its role in their diagenesis[J]. Nature, 1965, 208(5017): 1310-1311.
    [131] Bosak T, Newman D K. Microbial kinetic controls on calcite morphology in supersaturated solutions[J]. Journal of Sedimentary Research, 2005, 75(2): 190-199.
    [132] Baldermann A, Deditius A P, Dietzel M, et al. The role of bacterial sulfate reduction during dolomite precipitation: Implications from Upper Jurassic platform carbonates[J]. Chemical Geology, 2015, 412: 1-14.
    [133] Shiraishi F, Omori T, Tomioka N, et al. Characteristics of CaCO3 nucleated around cyanobacteria: Implications for calcification process[J]. Geochimica et Cosmochimica Acta, 2020, 285: 55-69.
    [134] Shiraishi F, Hanzawa Y, Okumura T, et al. Cyanobacterial exopolymer properties differentiate microbial carbonate fabrics[J]. Scientific Reports, 2017, 7(1): 11805.
    [135] Addadi L, Weiner S. Interactions between acidic proteins and crystals: Stereochemical requirements in biomineralization[J]. Proceeding of the National Academy of Sciences of the United States of America, 1985, 82(12): 4110-4114.
    [136] Westbroek P, Buddemeier B, Coleman M, et al. Strategies for the study of climate forcing by calcification[C]//Doumenge F, Allemand D, Toulemont A (Eds.). Past and present biomineralization processes. Monaco: Bulletin de l’Institut Océanographique, 1994: 37-60.
    [137] Decho A W. Microbial exopolymer secretions in ocean environments: Their role(s) in food webs and marine processes[J]. Oceanography and Marine Biology, 1990, 28: 73-154.
    [138] Decho A W, Gutierrez T. Microbial extracellular polymeric substances (EPSs) in ocean systems[J]. Frontiers in Microbiology, 2017, 8: 922.
    [139] Braissant O, Decho A W, Przekop K M, et al. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat[J]. FEMS Microbiology Ecology, 2009, 67(2): 293-307.
    [140] Stal L J. Cyanobacterial mats and stromatolites[M]//Whitton B A. Ecology of cyanobacteria II: Their diversity in space and time. Dordrecht: Springer, 2012: 65-125.
    [141] Aizenberg J, Addadi L, Weiner S, et al. Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates[J]. Advantge Materials, 1996, 8(3): 222-226.
    [142] Raz S, Weiner S, Addadi L. Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications[J]. Advanced Materials, 2000, 12(1): 38-42.
    [143] Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite[J]. Geochimica et Cosmochimica Acta, 2007, 71(5): 1197-1213.
    [144] Zavarzin G A. Microbial geochemical calcium cycle[J]. Microbiology, 2002, 71(1): 1-17.
    [145] Kulak A N, Iddon P, Li Y T, et al. Continuous structural evolution of calcium carbonate particles: A unifying model of copolymer-mediated crystallization[J]. Journal of the American Chemical Society, 2007, 129(12): 3729-3736.
    [146] Braissant O, Cailleau G, Dupraz C, et al. Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids[J]. Journal of Sedimentary Research, 2003, 73(3): 485-490.
    [147] Fernandez-Diaz L, Putnis A, Prieto M, et al. The role of magnesium in the crystallization of calcite and aragonite in a porous medium[J]. Journal of Sedimentary Research, 1996, 66(3): 482-491.
    [148] Chekroun K B, Rodriguez-Navarro C, Gonzalez-Munoz M T, et al. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates[J]. Journal of Sedimentary Research, 2004, 74(6): 868-876.
    [149] Vasconcelos C, Mckenzie J A, Bernasconi S, et al. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J]. Nature, 1995, 377(6546): 220-222.
    [150] Bontognali T R R, Mckenzie J A, Warthmann R J, et al. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria[J]. Terra Nova, 2014, 26(1): 72-77.
    [151] Roberts J A, Kenward P A, Fowle D A, et al. Surface chemistry allows for abiotic precipitation of dolomite at low temperature[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(36): 14540-14545.
    [152] Kenward P A, Fowle D A, Goldstein R H, et al. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls[J]. AAPG Bulletin, 2013, 97(11): 2113-2125.
    [153] Gebauer D, Cölfen H, Verch A, et al. The multiple roles of additives in CaCO3 crystallization: A quantitative case study[J]. Advanced Materials, 2009, 21(4): 435-439.
    [154] Han Y J, Aizenberg J. Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer[J]. Journal of the American Chemical Society, 2003, 125(14): 4032-4033.
    [155] Gibert P U P A. The organic-mineral interface in biominerals[J]. Reviews in Mineralogy and Geochemistry, 2005, 59(1): 157-185.
    [156] Wang D B, Wallace A F, De Yoreo J J, et al. Carboxylated molecules regulate magnesium content of amorphous calcium carbonates during calcification[J]. Proceeding of the National Academy of Sciences of the United States of America, 2009, 106(51): 21511-21516.
    [157] Kashchiev D. Nucleation: Basic theory with applications[M]. Oxford: Butterworth-Heinemann, 2000.
    [158] Petrash D A, Bialik O M, Bontognali T R R. Microbially catalyzed dolomite formation: From near-surface to burial[J]. Earth-Science Reviews, 2017, 171: 558-582.
    [159] Mitterer R M, Malone M J, Goodfriend G A, et al. Co-generation of hydrogen sulfide and methane in marine carbonate sediments[J]. Geophysical Research Letters, 2001, 28(20): 3931-3934.
    [160] Wilms R, Köpke B, Sass H, et al. Deep biosphere-related bacteria within the subsurface of tidal flat sediments[J]. Environmental Microbiology, 2006, 8(4): 709-719.
    [161] Wilms R, Sass H, Köpke B, et al. Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea[J]. FEMS Microbiology Ecology, 2007, 59(3): 611-621.
    [162] Batzke A, Engelen B, Sass H, et al. Phylogenetic and physiological diversity of cultured deep-biosphere bacteria from equatorial Pacific Ocean and Peru margin sediments[J]. Geomicrobiology Journal, 2007, 24(3/4): 261-273.
    [163] Wirth R. Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale[J]. Chemical Geology, 2009, 261(3/4): 217-229.
    [164] 李妍,李振兴,侯爱琴,等. 扫描电镜—拉曼光谱联用在文物研究中的应用[J]. 分析仪器,2017,34(6):34-38.

    Li Yan, Li Zhenxing, Hou Aiqin, et al. Application of hyphenated SEM-EDX and Raman spectroscopy in cultural relic research[J]. Analytical Instrumentation, 2017, 34(6): 34-38.
    [165] 李金华,潘永信. 透射电子显微镜在地球科学研究中的应用[J]. 中国科学:地球科学,2015,45(9):1359-1382.

    Li Jinhua, Pan Yongxin. Applications of transmission electron microscopy in the earth sciences[J]. Scientia Sinica Terrae, 2015, 45(9): 1359-1382.
    [166] Benzerara K, Yoon T H, Tyliszczak T, et al. Scanning transmission X-ray microscopy study of microbial calcification[J]. Geobiology, 2004, 2(4): 249-259.
    [167] Pan Y H, Hu L, Zhao T. Applications of chemical imaging techniques in paleontology[J]. National Science Review, 2019, 6(5): 1040-1053.
    [168] 梅冥相. 微生物席的特征和属性:微生物席沉积学的理论基础[J]. 古地理学报,2014,16(3):285-304.

    Mei Mingxiang. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology[J]. Journal of Palaeogeography, 2014, 16(3): 285-304.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(347) PDF downloads(97) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-08
  • Revised:  2020-10-15
  • Published:  2022-01-10

The Role of Extracellular Polymeric Substances in Cyanobacterial Calcification and Its Geological Significance

doi: 10.14027/j.issn.1000-0550.2020.102
Funds:

National Natural Science Foundation of China 42072128, 41972102

Abstract: Cyanobacteria, which have a fossil record of 3.5 billion years, have continued to flourish up to the present day. Cyanobacterial metabolic processes have influenced the ecological evolution of the earth. Scientific questions related to cyanobacteria, such as the “Precambrian enigma”, have challenged researchers. The extracellular polymeric substances of cyanobacteria play a crucial role in cyanobacterial calcification. The main characteristics of cyanobacteria and extracellular polymeric substances are systematically introduced in this study, following an analysis of several reports in the research literature from China and elsewhere. Reports of previous studies on the calcification process related to photosynthesis and the degradation process of cyanobacteria were reviewed and summarized. The role of extracellular polymeric substances of cyanobacteria in its calcification process was analyzed. The geological significance and future research prospects are addressed to provide references and clarifications regarding scientific questions about the calcification of cyanobacteria and microbial mats.

ZHONG YiJiang, WEN HuaGuo, CHEN HongDe, LIU Lei, CHEN AnQing, WANG XingLong, WANG ZhiWei, BAI Xuan. The Role of Extracellular Polymeric Substances in Cyanobacterial Calcification and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2022, 40(1): 88-105. doi: 10.14027/j.issn.1000-0550.2020.102
Citation: ZHONG YiJiang, WEN HuaGuo, CHEN HongDe, LIU Lei, CHEN AnQing, WANG XingLong, WANG ZhiWei, BAI Xuan. The Role of Extracellular Polymeric Substances in Cyanobacterial Calcification and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2022, 40(1): 88-105. doi: 10.14027/j.issn.1000-0550.2020.102
  • 蓝细菌的化石记录长达35亿年[1],通过对其矿化特征及机理研究有望找到解锁地球演变之谜的重要“密码”。然而,受成岩和变质等地质过程的长期改造,甄别古老岩石中尺寸微小(介于微米与纳米之间)且不易与其它地质矿物分辨的微生物化石[2]是找到“密码”的关键过程。钙化作用(形成含钙碳酸盐,包括低镁方解石、高镁方解石、文石和白云石)是微生物矿化作用最广泛的方式[3-4],但是直到新元古代之前,钙化的蓝细菌化石都是及其稀少或缺乏的[5-6]。碳酸盐的饱和度一直很高的元古代为什么会如此缺乏钙化的蓝细菌,也是科学家为之不解的“前寒武纪之谜(Precambrian enigma)”[7]

    蓝细菌分泌到细胞外的胞外聚合物(extracellular polymeric substances,EPS)是其新陈代谢过程与外界沟通的必然通道,也是钙化作用发生的主要场所。蓝细菌是微生物席中EPS的主要生产者[8-10],微生物碳酸盐岩就是钙化微生物席石化作用的产物[11]。蓝细菌的EPS能够提供成核位置[12-13],影响钙化的过程[14]和产物[15-16]。蓝细菌EPS的钙化作用可发生在其新陈代谢过程中,同时也可与蓝细菌活着与否无关[17-20],甚至发生在蓝细菌死亡后EPS降解的过程中[21]。大多数报道认为EPS对蓝细菌的钙化起促进作用,但是在某些环境条件下EPS也会阻止蓝细菌的钙化[22]

    因此,蓝细菌的EPS对蓝细菌及微生物席的钙化起到了至关重要的作用[23]。本文选取蓝细菌及其产生的EPS为主要剖析对象,旨在通过系统介绍蓝细菌及胞外聚合物的主要特征,回顾和总结前人在蓝细菌光合作用有关和降解过程中的钙化过程研究成果,重点剖析蓝细菌胞外聚合物在其钙化过程中的作用,旨在为探索与蓝细菌和微生物席钙化有关的系统科学问题提供借鉴和启示。

  • 蓝细菌能像真核藻类一样进行光合作用和固氮作用[24-25],早期一直被认为是一种藻类,称之为“蓝绿藻”(blue-green algae)或者“蓝藻”(blue algae)。后来人们发现其既没有藻类生物所该有的叶绿体(只是能够合成叶绿素,确切的说是叶绿素a),也没有真正的细胞核,只是一种大型的单细胞原核生物(prokaryote),并且是真细菌的一种[26]。由于藻青素(phycobilin)和藻蓝素(phycocyanin)的存在使其呈现出蓝色,因此该种细菌被称之为“蓝细菌”[24,27]

  • 按形态可将蓝细菌分为5大类群,包括29个属,并且细胞大小差异悬殊,最小的聚球蓝细菌属(Synechococcus)仅为0.5~1 μm,而巨颤蓝细菌属(Oscillatoria)可超过60 μm[28]。通常蓝细菌以单细胞(如球状蓝细菌,coccoid)的单列、多列组合、分枝状(图1[29]或以席状聚集体的细胞集群形式生存,并且周围都会被其分泌的无结构分散黏液层(unstructured diffuse mucilage)、荚膜(capsule)或者鞘(sheath)所包裹。单列蓝细菌称之为毛状体(trichomes),一个或多个毛状体被鞘(sheath)包裹起来称之为丝状体(filament)(图2[30]。鞘的存在是蓝细菌的一个分类标准[3]

    Figure 1.  Morphological features of coccoid cyanobacteria (after Schopf[29])

    Figure 2.  Morphological features of filamentous cyanobacteria Arthrospira fusiformis (after Sili et al.[30])

  • 现代蓝细菌的生存空间极其广阔,在水中主要以浮游或底栖的形式存在,包括淡水或咸水,甚至超咸水环境等极端环境,在陆地上也是无处不在,甚至荒漠里也能找到它的踪迹。水中的蓝细菌可分为三种生态类型:1)造席类,岩石、沉积物和淹没植物表面微生物席的主要建造者;2)富营养类,沿海、富营养的河流和湖泊等富营养水体中繁盛;3)微蓝细菌(直径<2 μm),通常发育在开阔海洋和干净水体的湖泊[13]。但是蓝细菌最富集的地方还是浅水环境中的微生物席。微生物席从定义上讲就是真正的生物膜(biofilm)[31],是一种由微生物自身、微生物产生和分泌的胞外聚合物以及它们捕获或者沉淀的外来物质共同组成的席状物[11]。在所有的微生物席中,由蓝细菌主导的微生物席最被关注[11]。保守估计,蓝细菌的全球生物量将达到3×1014 g或者1×1015 g[32]。相比其他真核藻类,蓝细菌对于高温、干旱、高盐度、紫外线等具有更高的耐受度[33-34],这正是蓝细菌能够在地质历史长河中存在和繁盛的重要原因。

  • 目前认为海洋中最重要的蓝细菌种属之一的Prochlorococcus于1988年便被最早报道[35]。在2.4 Ga之前,蓝细菌主要局限在淡水环境中,之后进入海水环境并呈多样化发展[36]。硅化的蓝细菌在元古宙沉积物中较为常见[37]。前寒武纪叠层石建造过程中,蓝细菌可能起到了重要作用[23,38]。虽然钙化的蓝细菌化石最早存在于1.2 Ga的中元古代,但是直到542 Ma前寒武纪和寒武纪交界之后的古生代才呈幕式产出,之前一直很少被发现[38]。因此,Riding将前寒武纪叠层石中缺乏钙化蓝细菌化石的现象称为“前寒武纪之谜(Precambrian enigma)”[7,3940]

    蓝细菌通过光合作用在整个地球历史的生态演化和持续利用太阳能同化CO2转变为有机质方面发挥了极其重要的作用[13,41]。据估计,现代地球上一半的光合作用主要由蓝细菌完成[42],且其中超过一半的部分主要由两种海相蓝细菌SynechococcusProchlorococcus完成[43]。蓝细菌的光合作用是地质历史中地球大气圈氧化的主要原因[3,41,4445],并积极推动了地球在2.0~2.5 Ga期间(Great Oxygenation Event, GOE)以及540~850 Ma期间(Neoproterozoic Oxygenation Event, NOE)的两次巨型氧化作用事件。

  • 胞外聚合物(extracellular polymeric substances,EPS)是有机高分子多聚化合物(分子量可达8至大于10 000 kDa),不仅被包括光合自养和异养微生物[46]所合成并分泌到细胞外部,同时也偶尔发现被多毛类、真菌、珊瑚和植物根所产生[47]。EPS的组成因其来源的微生物、生长媒介(特别是碳源)、生长阶段、温度及其他环境因素的不同而存在差异[48],总的来说,主要由多糖(碳水化合物)、蛋白质、糖醛酸、核酸、多肽类、非碳水化合物酸性基团(例如丙酮酸盐或琥珀酸盐)和腐殖质等组成,甚至包括硫酸盐和磷酸盐等无机化合物和细胞外DNA[49-53]。多糖和蛋白质是其主要成分,占总量的70%~80%[54]

  • 蓝细菌是微生物席中EPS的主要生产者[8-10],超过100种(隶属于22个属)蓝细菌都能产生EPS[54]。蓝细菌的EPS可分为两种类型,一类是黏附在细胞表面部分,并按照结构形态可分为三种:1)鞘(sheaths),紧密包围在细胞或细胞群体表面薄且稠密的膜状物,具有一定的外形,在光学显微镜下不用染色也能看到(图1a);2)荚膜(capsules),与细胞表面紧密联系的厚层包裹体,黏度较大,轮廓光滑(图2b);3)黏液(slimes),细胞周围分散的黏液物质,不能反映细胞形态(图2d)[55-58]。另一类是可溶解释放到周围环境中的部分[13]。EPS的不同物理状态是大分子之间的不同连接和相互作用造成的。鞘、荚膜和黏液的残余物为胶状或具有弹性,不容易被降解[59-61]

    蓝细菌的EPS中带负电的酸性功能团能够吸附大量的单价或二价阳离子,并通过双配位桥的形成而利于提高黏性和保持结构的完整性[52]。上述酸性官能团主要包括羧基(R-COOH)、羟基(R-OH)、氨基(R-NH2)、硫酸基(R-O-SO3H)、磺酸基(R-SO3H)和巯氢基(-SH)[62],其中最重要的是羧基和硫酸基官能团[46]

    许多蓝细菌的EPS包含与脂类有关的乙酰基、多肽类和像海藻糖和鼠李糖的脱氧糖,导致蓝细菌具有疏水性和乳化特征。大多数蓝细菌的EPS具有包含六种或以上单糖的异质多糖(HEPO)复合结构。正是这些大量的不同单糖产生的不同链接类型,使得EPS具有多种不同的结构和构造,并呈现出复合的重复单元[13]

    包裹在细胞表面的EPS由于能够成为细胞与其外的有机质、无机新陈代谢产物、捕食者、抗菌素和其他细菌之间的物理屏障[63],抵抗脱水作用、有机酸、噬菌体溶菌、吞噬作用、盐度、紫外线辐射、氧化压力等影响,并能够增加光照、营养摄入和固氮活动[64-65]。同时,蓝细菌的EPS也有利于细胞聚集和生物膜积聚黏附在沉积物表面,使得各种新陈代谢作用可以在微空间中共存[65-66],从而促进微生物细胞在不同的沉积水动力环境下的稳定生存[67-69]和保护生物膜结构[13,48]

  • 蓝细菌一般分布在微生物席顶部,其产生的EPS被下部的异养细菌利用过程中发生生物降解。随着埋藏深度的增加,鞘会在生物降解过程中逐渐变成分散的多糖微结构(图3a~b,图3b左—右)[70],最终重新组织成由肿胀的节点相互连接且相对牢固的三维网状(蜂窝状或肺泡状)结构(图4a,b)[47,71]。这类结构被认为是由EPS中多糖链分子内非共价键结合导致坚硬的棒状单元调解而联合成的富含天冬氨酸、谷氨酸和糖醛酸[72]的大分子单元所致[73]。在含水阶段,三维网状结构呈现次球状,直径为几十纳米到几微米,壁厚度为几纳米到1 μm。随着水分减少而干燥,结构会坍塌破坏。这个结构形成了叠层石有机质和碳酸盐沉积的框架,且一直保存到沉积物中1 m深的地方[47,71]。Défarge et al.[47]列举了现代不同环境叠层石中均发育这类源于EPS的三维网状有机结构,认为这类结构不仅是底栖微生物群体有机沉积,而且是地球表面所有生命有关沉积的重要部分。

    Figure 3.  TEM micrographs of stromatolitic layers of Kopare (after Decho[70])

    Figure 4.  Cryo⁃SEM micrographs of three⁃dimensional organic sediment framework (after Défarge et al. [47])

  • 水生生物光合作用至关重要的两个因素:一个是环境中可获取的溶解无机碳(DIC),另一个是在酶的作用下将这些无机碳进行初步固定的机制—二氧化碳浓缩机制(CO2 concentrating mechanisms, CCMs)[74]。CCMs在光合作用生物体中广泛存在,其作用是将CO2浓缩在细胞内,从而增加固碳量。虽然不同种类生物体的CCMs具有差异,甚至具体机制还未获得充分理解,但是总体过程具有一致性,包括HCO3 -的传输、CO2的扩散和转化等主动的向细胞内的碳转移[75]和碳酸酐酶(carbonic anhydrase, CA)将HCO3 -转换为CO2而为蓝细菌所用的过程(图5)。这一过程能够将细胞内CO2浓缩至细胞外的1 000倍[7677],使得CO2在水中的扩散速度是空气中的1/104的情况下也能被蓝细菌有效利用[78]

    Figure 5.  Integrated model of in vivo cyanobacterial sheath calcification by CCM⁃enhanced photosynthesis (modified from Kamennaya et al.[13], Jansson et al. [41], Riding [74])

  • CCMs导致钙化作用是多种蓝细菌的突出特征[3-4,23,74,79-80],碳酸盐饱和度的提高主要通过其中一种或两种途径:新陈代谢提高细胞周围EPS或者蛋白质表层(S-layer)微环境中的pH值和钙化所需离子浓度[3,81-84]。pH值的提高主要通过以下两个途经:1)依赖于羧酶体中碳酸酐酶的活动,消耗细胞溶质内H+(或者产生OH-),促进反应(1)向左进行,导致细胞溶质内OH-的增加,并输出或扩散到细胞外;2)通过光合作用电子在叶绿体类囊体中的传输(图5)和等离子膜中Ca2+或者H+的反向运输(输出Ca2+和输入H+),促进HCO 3 - 的平衡反应(2)和(3)向右边进行,增加细胞表面PH值和 C O 3 2 - 的浓度。离子浓度提高主要通过EPS中的碳酸酐酶将周围环境进入的或细胞质溢出的CO2转变为HCO 3 - C O 3 2 - [85],而增加其中 C O 3 2 - 的浓度;细胞周围环境Ca2+和Mg2+的补充[86]和细胞内Ca2+的输出是Ca2+和Mg2+离子浓度提高的主要途经。

    CCMs导致蓝细菌的钙化主要是EPS或S-layer内发生的碳酸钙沉淀,由于S-layer不属于EPS,本文不展开论述。如果整个鞘被碳酸钙晶体侵染,鞘的外形就能被保存下来,保留蓝细菌管状或灌木状等形态[11],这便是我们常说的“蓝细菌化石”,但它只是保持了细胞外形的EPS钙化产物而已,鞘内的单细胞或毛状体并没有发生钙化而是降解消失[11,74,87]。部分的EPS钙化后会从细胞表面脱落,而且会有新的EPS产生。如果蓝细菌细胞完全被CaCO3包埋,由于不能摄取营养物质而死去的现象也时有发生[86]图6展示了现代美国巴哈马滩中叠层石内活着的蓝细菌Dichothrix正在发生鞘的钙化现象[88]。如果只是在细胞附近沉淀了一些孤立的晶体,就无法形成一个可保留的结构,而是随着EPS的溶解而扩散到外部空间,以外来颗粒(如“白垩”)的方式释放,在湖底或者海底堆积形成大量微米级碳酸盐泥的沉积物[11,87,89]。白垩化现象是快速的大规模细粒碳酸钙和有机质的混合沉积,能够导致整个湖泊水体变成牛奶状[86,90],例如北美密西根湖就曾经发生过此类现象[81,91]。但是,现代海洋白垩化现象是如上所说浮游蓝细菌钙化还是灰泥的重新悬浮所致还存在较大的争议[92-94]

    Figure 6.  Calcification of cyanobacterial sheath of Dichothrix in a stromatolite layer in the Bahamas (after Planavsky et al.[88])

    蓝细菌通过光合作用导致鞘内发生钙化的两个条件是低的溶解无机碳和高的钙离子浓度[3,9596],且钙化现象主要发生在现代淡水环境中,很少发生在海水[97]或超咸水环境中[14, 98-100]。需要引起注意的是大多数蓝细菌都具备CCMs的能力[101],但不是所有都存在钙化现象,特别是海洋环境中,同时也有报道蓝细菌在没有光合作用的情况下也钙化的现象[102]。显然蓝细菌的钙化作用机理仍然是值得深入探讨的问题。

    C O 2 + H 2 O H + + H C O 3 - (1)
    H 2 C O 3 H C O 3 - + H + (2)
    H C O 3 - C O 3 2 - + H + (3)

    钙化作用对蓝细菌来说是把“双刃剑”,既能保护细胞,例如使生活在浅水或高海拔地区的蓝细菌免受高强度光照损害其光合作用机能,同时缓冲细胞周围微环境由于光合作用升高的PH值,从而有利于高速率的光合作用[102],也能导致蓝细菌过度钙化被包埋,特别是因钙化加重而使浮游类沉没于有利光照带以下而死亡[84]

    2012年Science上报道了活着的蓝细菌细胞内形成不定形富钙碳酸盐[103]图7)的认识打破了人们对蓝细菌只有细胞外钙化唯一方式的固有认识,并且后来的研究显示多达68种蓝细菌具有这一能力,并认为之前的研究忽视了这一重要现象[104-106]。虽然人们对蓝细菌细胞内钙化现象的机理认识还不清楚,目前也没有找到地质证据支持地质历史时期的蓝细菌也存在这一特性,但是这一进展开启了蓝细菌钙化作用研究的新领域,可能挑战着蓝细菌钙化作用的地质记录[107]

    Figure 7.  SEM micrographs of amorphous CaCO3 incorporated in a cyanobacterium cell (after Couradeau et al.[103])

  • 成熟的微生物席通常是由高度有序组织的多个层状微生物群落组成的有机共同体,包括顶部的蓝绿色蓝细菌层(生氧光合细菌)及向下紧邻的棕色需氧异养细菌、中部的微红—粉红色紫色硫细菌层(不生氧光合细菌)、中下部的绿色硫细菌层(厌氧光合细菌)以及下部的硫酸盐还原细菌层(厌氧异养细菌)[1,108-109]图8a,b)。蓝细菌是共同体中有机质(主要是EPS)的主要生产者,其他异养微生物均对EPS具有生物降解作用。

    Figure 8.  Sedimentary features of stromatolite in Vermelha Lagoon, southwestern Brazil (after Vasconcelos et al. [108];Spadafora et al. [109])

    蓝细菌死后的钙化作用主要是微生物降解过程中及降解后的钙化作用[17-20,110],其中前者是微生物席内钙化作用的主要方式。这两种钙化作用是典型的有机矿化作用,分别称之为生物诱导的矿化(biologically-induced mineralization)和生物影响的矿化(biologically-influenced mineralization),与生物控制的矿化(biologically-controlled mineralization)差异明显[17-20]。生物控制的矿化作用强调生物的活动直接控制了矿物的成核、生长、形态和最终位置,形成生物外部或内部的骨骼[111-113];生物诱导和生物影响的矿化作用则强调有机质对矿物形成过程的作用,其中前者必须是生物体存活时其新陈代谢活动改变了生物有机质中矿物的形成条件(碱度、饱和度等),因此是一种生物活动的主动过程,而后者主要是源于生物(生物体分泌或分离开,或者遗迹和死亡有机体的副产物[110])或非生物的有机物质对矿物形成(晶体形态和组成)的影响作用,因此是一种被动过程[46]。因此,之前介绍的与蓝细菌光合作用有关的钙化应该属于生物诱导的钙化作用。

    微生物席共同体建造生长过程中不同功能微生物群落代谢过程能对碳酸钙产生沉淀和溶解不同作用,大致可以分为6种主要的化学代谢反应,光合作用(包括生氧和不生氧)和硫酸盐还原反应通过增加微环境碱度(pH值)促进沉淀,而呼吸作用、硫化物的氧化反应和发酵作用产生的碳氢酸和有机酸则很可能会导致碳酸钙溶解作用的发生[11,46,114-117]图9)。因此,碳酸钙沉淀程度取决于以上代谢作用导致的溶解和沉淀之间的平衡,且蓝细菌EPS的降解过程起到了重要作用[109]

    Figure 9.  Activity of microbial communities in a microbial mat under vertical microenvironment gradients leading to carbonate precipitation and dissolution (modified from Dupraz et al. [46]; Visscher et al. [116]; Visscher et al. [114] ; Kazmierczak et al. [118])

    在海洋和超咸水微生物席中,硫酸盐还原细菌在整个的微生物群落导致碱度变化而促进碳酸钙沉淀过程中起到关键作用[46],超过90%的缺氧呼吸作用都是硫酸盐还原细菌完成[114]。硫酸盐还原细菌生物降解EPS能够释放其中的Ca2+和Mg2+等离子,同时消耗了 S O 4 2 - 和有机碳化合物,提高环境碱度[14,46,115],从而产生生物诱导的钙化作用。EPS降解后的钙化作用主要发生在微生物席底部,微生物席的这部分环境更为封闭,EPS在上部微生物降解带内被硫酸盐还原细菌、产甲烷细菌等“终极”细菌降解后残余的EPS能为碳酸盐矿物的沉淀提供成核中心,同时其离子束缚能力在持续的离子供给条件下达到饱和,能产生自由的Ca2+和Mg2+等离子,影响微生物席底部的微环境地化性质,进而在残余的EPS内形成钙化作用的场所,促进了碳酸盐的沉淀[11,46,115116],产生生物影响的钙化作用。碱性水体季节性上涌后的蒸发作用能形成以上条件产生钙化作用[117]

    大量研究显示蓝细菌死亡后的有机物质在降解过程中,由于异氧微生物的作用形成有别于蓝细菌活体钙化矿物的半球状镁方解石/文石[108]图8c~e)、亚微米级的不定形文石颗粒[118-119]、纳米级球状镁方解石[99]、哑铃状高镁方解石[120-122],并且在已成鞘的丝状体中,鞘的降解导致了厚度和连续性都可变的不规则的外壳[120],鞘的形态和大小都发生了变化[27]。这些现象的普遍揭露甚至使得Altermann et al.[1]认为海相环境下蓝细菌席的钙化主要是被动过程,蓝细菌的直接钙化潜力和光合作用对钙化过程的影响很微小,碳酸钙的沉淀主要是通过在黏质鞘和EPS里的自溶和菌溶作用形成。

    研究者注意到白云石的形成,包括成核和稳定生长过程都与蓝细菌的EPS降解有很大的关系[123]。在氨基酸和源于氨基酸的有机质降解带内非常高镁含量的方解石和不完全有序的钙白云石等富镁碳酸盐沉淀,形成白云石的先驱矿物[116,124125]。值得重视的是,硫酸盐还原菌[126],适度适盐需氧细菌[127]和产甲烷古细菌[128]等产生的EPS也是控制白云石沉淀的重要因素[129]

  • 蓝细菌新陈代谢过程中产生的EPS形成了与外界物质交换的通道,并提供了微生物席内异养生物重要的营养供给。Shearman et al.[130]于1965年第一次提到了EPS在蓝细菌钙化中的作用。Merz-preiß[3]在2000年注意到自然条件下分泌鞘的蓝细菌才钙化,而缺乏鞘的蓝细菌不钙化的现象,但也并不意味着所有在碳酸盐丰富环境和具有鞘包裹的蓝细菌都会有钙化现象,并引起了广大学者关于EPS与钙化作用关系的研究。

    微生物席内异养细菌,例如硫酸盐还原细菌的EPS生产潜力也被证实[131-132],上述适度适盐需氧细菌[127]、产甲烷古细菌[128]等其他微生物的EPS在钙化中的作用也受到重视。本文仅以微生物席内最重要的EPS生产者蓝细菌为论述对象,介绍对与其有关的微生物钙化作用的影响。

  • EPS形成蓝细菌表面带负电的微环境,能够从周围水环境中黏合Ca2+和Mg2+等二价离子并减少扩散速率[93],改变矿物成核和晶体生长的动力学路径[48],有利于碳酸盐的饱和而促进CaCO3的成核生长。EPS中带负电的有机物质(例如多糖)控制了不定型碳酸钙前驱的稳定性[133]

  • 细胞表面EPS中的谷氨酸、天冬氨酸或者羧基、磺酸基等束缚Ca2+或者Mg2+的有序负电酸性功能团能成为初始的CaCO3成核位置[134],同时EPS还能降低方解石成核核心的界面自由能[84],而促进蓝细菌的钙化作用。大多数蓝细菌的鞘或者荚膜中碳酸钙的饱和度都很高,但是方解石在多糖中的成核速率是由其酸度决定的。现代泉华中主要由丝状蓝细菌产生酸性外聚物提供一致的显微成核位置,形成层状结构的叠层石;球状和丝状蓝细菌产生酸性或非酸性的外聚物,提供非均一的显微成核位置,形成了凝结结构的凝块石[134]

  • 有利于离子的聚集和浓缩[52],促进Ca2+和Mg2+的吸附聚集。高含水的EPS中部分有机大分子由于附着在晶体表面而限制晶体生长,但是如果这些大分子稳固的附着在固体的基质上时就有利于晶体的结核生长[135-137]

  • EPS的内部特性(例如物理化学特性)通过影响饱和度和可用的成核位置对蓝细菌降解过程中的钙化作用起到了阻碍和促进碳酸钙形成的双重作用[46,138]。初始生成的EPS由于对阳离子的吸附而阻碍钙化作用,但生物(生物降解作用)或非生物(水解和紫外线的光解作用)的作用能够改变EPS对钙化的阻碍作用[14,139]

  • 酸性多糖等有机高分子能够通过他们所组成的自由羧酸盐、酸性氨基酸(例如天冬氨酸和谷氨酸)和(或)硫酸盐基团来吸引和黏结二价阳离子,如Ca2+、Mg2+、Sr2+,并与其发生反应[17,70],但聚阴离子(能够发生离子聚合反应的阴离子)与Ca2+的结合能阻止其与 C O 3 2 - 的成核和结晶生长。EPS的离子吸附能力导致自由的Ca2+从周围溶液中移走而被消耗,从而限制了周围环境中钙碳酸盐的沉淀[46]。具有丰富糖醛酸的多糖通过黏合Ca2+对钙化晶体成核和生长具有调节功能,否则不受控制的钙化会导致细胞的损伤[1]。因此,在碱性水体中即使对于文石或方解石是超饱和的,由于没有自由的Ca2+而不能沉淀[46],形成生物限制的“抗钙化作用”[136]

  • 由于异氧细菌以蓝细菌的EPS多糖为食物,细胞溶素作用以及自动分解和水解作用使得EPS和多糖-蛋白质复合物中的Ca2+、Mg2+或者HCO 3 - 释放,促进碳酸盐过饱和以及沉淀,产生生物诱导的矿化作用,并且由此产生具有一定的离子有序度的CaCO3及其他矿物的微小不定型前驱[140-142]。通过现代研究实例证明,通过光合作用产生的总碳中有3%~4%来源于生成的EPS,之后在24小时内有40%~60%的新生成EPS会被降解,净EPS产率较低且维持在产生与消耗的动态平衡中[65]。新生成的EPS通过络合钙离子并不能直接形成钙化,当离子络合达到饱和[117],或者当EPS通过微生物或化学过程降解时,大量的钙离子被释放,形成自由的Ca2+、Mg2+或者HCO 3 - ,促进钙化的产生[14]

  • 蓝细菌微生物席中CaCO3成核实验证实EPS在钙化层引导了文石晶体的形成;在非钙化层引导了方解石的形成。EPS的生物地球化学组成,特别是小的蛋白质影响了CaCO3的矿物形成[15-16]。EPS中部分的溶解有机碳影响了Ca2+的络合作用,从而降低了碳酸盐的过饱和,使得溶解度低的方解石沉淀而不利于溶解度高的球霰石沉淀,并且EPS中的有机分子能阻止球霰石向方解石转化[143]

  • 由于EPS有机分子吸附在晶体表面并影响表面活性,同时胶状的特性影响钙离子的扩散、吸收、络合[46],从而限制了晶体的快速生长,形成球状、哑铃状或光滑的菱形晶体表面[144]。EPS能使得更小、更多和更圆的晶体形成,同时还能促进基于聚集的晶体生长机制[48,145],形成球形小晶体聚集体[146]。但是需要注意的是,具有胶状特性的非生物的硅胶中也能形成球状、哑铃状、麦穗状束或菱形的碳酸盐矿物[147]。因此,化石记录中球状或哑铃状的形状不是EPS有关的有机矿化直接证据[148]

  • 细胞外内层紧密结合的EPS的数量、有机地化组成和结构控制了其中沉淀的不定形碳酸钙先驱矿物形成后向热力学更稳定方解石的转化过程,有机大分子能稳定不定形碳酸钙,形成蓝细菌免受细胞外不受控制碳酸钙沉淀包埋的“保护机制”[84]

  • 蓝细菌降解过程中,重新组织成相互连接且相对牢固的三维网状结构能够为钙化形成叠层石提供稳定的框架。同时形成的局限空间也能限制碳酸钙矿物晶体的生长,约束晶体的大小[47]

  • 自从Vasconcelos et al.[149]在巴西LagoaVermelha海岸潟湖发现了与硫酸盐还原细菌共生的铁白云石,且通过模拟实验证实嗜硫细菌明显诱导了白云石的形成后,地质学家普遍认为新陈代谢活动是低温白云石沉淀的关键因素,“微生物白云岩”的概念开始盛行。但是随后的实验和实地考察中发现在没有微生物参与或新陈代谢不活跃的情况下,一些有机大分子、尤其是羧基或羧基化聚合物仍然能够诱导白云石的沉淀,说明起作用的并非微生物的生理活性[150-152]。值得注意的是包括蓝细菌在内的各种微生物的EPS是白云石成核和生长的主要场所,为白云石成核提供了有机模板和有利的化学微环境,且EPS中有机大分子能够减缓碳酸盐矿物从晶核状态向化学计量晶体转化的进程[153]

    (1) 白云石初始成核:低温情况下,不同降解速率的EPS内重新排列的酸性功能团组,可能导致糖类和氨基酸中带负电的配体具有不同的调整几何结构和吸附Ca2+和Mg2+的特征[69,116,139,142,154-155],使其能够成为白云石初始成核模板[20,156]。降解过程中EPS中逐渐释放到周围溶液中的离子沉淀成不定形碳酸盐矿物[141],可能阻碍了一定程度的阳离子排列[142]。一旦有利的物理化学条件在稳定情况下存在,不定形碳酸盐矿物便能导致白云石的生长[156]

    实验证实形成稳定的超级核心(比临界尺寸大的团簇)很关键,因为他们能自发生长[157]。EPS中羧酸盐有机物质和细胞壁中的羧基具有使镁脱水的功能是成核的主要机制[151-152]。死亡细胞由于排出水分子而使EPS中羧基官能团吸附的[Mg(H2O62+]形成[Mg(H2O)5(R-COO)]+复合体,随后 C O 3 2 - 替代水分子在细胞壁外形成表层的MgCO3(H2O)4(R-COO)复合体,并在碱性条件下成为附着的Ca2+和另外的 C O 3 2 - 成核模板成为团簇。这个机制需要稳定提高的PH值而保持溶液中相对高的 C O 3 2 - 离子活性[158]

    (2) 白云石的稳定生长:EPS中的有机大分子在降解和浅埋藏的成岩过程中持续提供的离子保持有利于白云石形成的Mg∶Ca离子比例,持续保持浅埋藏白云石的沉淀反应[123]。EPS中羧化的高渗透性复合物对硫酸盐还原和产甲烷微生物至关重要[159],且对生物反应的金属离子进入浅埋藏成岩作用的贡献对白云岩成核后的继续稳定生长具有重要作用[123]。因此,在地表下埋藏沉积物中EPS的降解过程可以控制成岩白云石的形成。值得注意的是,大陆边缘埋藏于几百米下的腐泥中通过16S RNA分析发现具有和现代潮缘环境非常相似的微生物群体[160-162],而且新近系与EPS共生的深海细晶白云石的存在是否预示更深的成岩白云石与EPS有关呢?

  • 蓝细菌钙化化石及生物(有机)矿物可以记录整个地质历史时期新陈代谢演化过程[108]。蓝细菌的钙化产物是其与地球系统协同演化留下的宝贵地质记录,为我们打开了一扇窥探地球演化历史及生命起源和演化奥秘的窗口。蓝细菌的EPS在与其有关的微生物钙化过程中作用研究的地质意义体现在以下三个方面:

    (1) 蓝细菌钙化化石本质为细胞外鞘的钙化作用的结果,微生物碳酸盐岩就是微生物席内EPS有机矿化作用的产物。在完整微生物化石缺失的情况下,钙化的EPS也记录着微生物与环境协同演化的重要信息。以蓝细菌EPS与微生物席钙化之间的关系为主要线索,探寻岩石记录中微生物化石、生物(有机)矿物和EPS矿化产物与EPS之间的成因联系,将有望获得微生物地质记录形成原因的新认识。

    (2) 由现代蓝细菌EPS的属性差异控制不同微生物碳酸盐形成的研究结果引申出蓝细菌进化和绝灭事件过程中EPS属性变化控制了元古代和寒武纪界线凝块石和钙化蓝细菌的爆发事件的重要推论[134],为我们提供了一个从地质事件中蓝细菌EPS属性变化的角度探索地质历史时期微生物碳酸盐岩的形成和演化的新视角。

    (3) 通过对比分析能够建立蓝细菌EPS属性的变化与早期地球环境的一些边界条件之间的关系,有望搭建微生物新陈代谢过程与古环境、古气候协同变化之间的重要桥梁。探索古环境和古气候波动过程中蓝细菌EPS的变化响应及其导致的化石、生物(有机)矿物和EPS残余物及矿化产物的相应变化可能是我们获得微生物新陈代谢活动与地球系统协同演化过程认识的新思路。但是,如何从矿化记录中提取物理和化学信息重构EPS的变化,反演微生物矿化过程是我们面临的一个重要难题。

  • 蓝细菌EPS在微生物钙化过程中的作用研究日益受到地质微生物学、微生物工程学和仿生学等不同领域研究者的重视,但只是触及到冰山一角,关键机理问题还不得而知。受复杂成岩作用和变质作用影响,EPS残余物及矿化产物将受到极大的改变,而且在取样过程中EPS的残余记录仍然会发生改变甚至完全丢失。因此,在地质记录中探寻蓝细菌EPS的变化及其与微生物钙化作用的关系显得尤为困难。针对上述困难和问题,就本文讨论内容提出以下研究展望:

    (1) 充分利用好“将今论古”这把金钥匙,加强现代各类环境中蓝细菌EPS和与其有关的微生物钙化成因联系和实验模拟研究,以期获得地质记录的现代对等物和各类成因指标。同时,也要参考地质时期的环境、气候、构造、生命演化等变量的影响,建立上述变量和蓝细菌EPS有关的微生物钙化之间成因联系,并谨慎使用“将今论古”这把钥匙。

    (2) 除蓝细菌以外的各类微生物同样也具有产生EPS的潜力[131132]。它们在个体的矿化和微生物席的矿化过程中EPS发挥的作用同样应受到重视,并注意它们与蓝细菌EPS的识别和区分。

    (3) 微生物地质学家们在探寻地质记录中微生物化石的同时,应注重EPS残余物和矿化产物的特征分析,建立EPS与微生物矿化以及生物(有机)矿物之间的成因联系。

    (4) 现代沉积和模拟实验分析均已揭示白云石的形成与微生物EPS有很大关系[150,158]。加强地质历史中白云石分布与成因和微生物EPS之间的成因联系研究,有望获得白云石成因的新线索。

    (5) 充分利用现代高精度实验技术和手段进行地质样品中EPS残余物和矿化产物原位微区取样和物理和化学信息的提取。原位微区取样技术主要是扫描电镜联用的聚焦离子束,实验过程要注意镓离子和剥蚀对象的污染和对样品的损害[163]。原位的地球化学分析包括扫描电镜和拉曼光谱联用[164]、透射电镜及选区电子衍射[165]、扫描透射X射线显微镜及X射线吸收谱[166]、纳米二次离子质谱技术等[167],能够获得显微成像、有机分子、晶体学、元素及同位素等原位信息。

    (6) 加强EPS的埋藏学分析,包括岩石记录中的EPS残余物和EPS的埋藏实验模拟两个方面。EPS的埋藏多样性与微生物席的沉积记录存在最为紧密的成因关联[168]。EPS残余物分析包括保存形态、物质化学组分和生物分子等方面,目的是还原EPS的物理和化学属性。同时,EPS的埋藏实验模拟主要是分析EPS在埋藏过程中的物理和化学性质变化,为岩石记录中残余EPS的属性反演提供模拟参数。

Reference (168)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return