Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

ZHANG YiAn, LI ShiXiang, TIAN JingChun, ZHOU XinPing, YANG Tian. Sedimentation Types of Deep-water Gravity Flow, Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 297-309. doi: 10.14027/j.issn.1000-0550.2020.095
Citation: ZHANG YiAn, LI ShiXiang, TIAN JingChun, ZHOU XinPing, YANG Tian. Sedimentation Types of Deep-water Gravity Flow, Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 297-309. doi: 10.14027/j.issn.1000-0550.2020.095

Sedimentation Types of Deep-water Gravity Flow, Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2020.095
Funds:

National Natural Science Foundation of China 42072126, 41802127

The Research Project of Science and Technology Innovation Fund of CNPC in 2019 2019D-5007-0106

  • Received Date: 2020-07-30
  • Publish Date: 2021-04-23
  • The deep-water gravity-flow deposits in the Chang7 member of the Upper Triassic Yanchang Formation, Ordos Basin, were the object of this study. The types and characteristics of deep-water gravity-flow deposits were determined by detailed analysis of a drill core from well Z43. The results suggest that sandy debris-flow deposits (debrites), low-density turbidity current deposits and hybrid event beds were developed in the region penetrated by well Z43. Most of the sandy debrites were featured by structureless medium- to fine-grained sandstone. Several amalgamation surfaces were observed, indicating different stages of vertical stacking of the deposits. Low-density turbidity current deposits were characteried by vertical stacking of medium- to thinly bedded sandstone having normal grading. The upper part of this sandstone featured a high mud content with clear sandstone/mudstone interbedding. Hybrid event beds were primarily characterized by a bipartite structure,of which the lower part is clean structureless fine-grained sandstone and the upper part is sandy mudstone or muddy sandstone with deformed mud clasts. The argillaceous base may indicate erosion by the turbidity current that caused an increase in the clay content of the current. The presence of mud clasts and/or clay content may have been the key element driving flow transformation from low-density turbidity current to muddy debris flow. This transformation resulted in the event beds that are characteristically observed as muddy debrite to low-density turbidite couplets. The fact that several types of deep-water gravity-flow deposits appear at the same location indicating a complicated gravity flow evolution process. An accurate recognition of gravity-flow types might contribute to understanding the flow transformation and the distribution of their deposits. This advancement could provide theoretical guidance on deep-water gravity-flow deposits and conventional and unconventional oil and gas exploration and development in the Ordos Basin.
  • [1] Shanmugam G. New perspectives on deep-water sandstones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 316-324.
    [2] Talling P J, Masson D G, Sumner E J, et al. Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology, 2012, 59(7): 1937-2003.
    [3] 操应长,王思佳,王艳忠,等. 滑塌型深水重力流沉积特征及沉积模式:以渤海湾盆地临南洼陷古近系沙三中亚段为例[J]. 古地理学报,2017,19(3):419-432.

    Cao Yingchang, Wang Sijia, Wang Yanzhong, et al. Sedimentary characteristics and depositional model of slumping deep-water gravity flow deposits: A case study from the middle member 3 of Paleogene Shahejie Formation in Linnan subsag, Bohai Bay Basin[J]. Journal of Palaeogeography, 2017, 19(3): 419-432.
    [4] 操应长,杨田,王艳忠,等. 深水碎屑流与浊流混合事件层类型及成因机制[J]. 地学前缘,2017,24(3):234-248.

    Cao Yingchang, Yang Tian, Wang Yanzhong, et al. Types and genesis of deep-water hybrid event beds comprising debris flow and turbidity current[J]. Earth Science Frontiers, 2017, 24(3): 234-248.
    [5] 金杰华,操应长,王健,等. 深水砂质碎屑流沉积:概念、沉积过程与沉积特征[J]. 地质论评,2019,65(3):689-702.

    Jin Jiehua, Cao Yingchang, Wang Jian, et al. Deep-water sandy debris flow deposits: Concepts, sedimentary processes and characteristics[J]. Geological Review, 2019, 65(3): 689-702.
    [6] 李相博,刘化清,潘树新,等. 中国湖相沉积物重力流研究的过去、现在与未来[J]. 沉积学报,2019,37(5):904-921.

    Li Xiangbo, Liu Huaqing, Pan Shuxin, et al. The past, present and future of research on deep-water sedimentary gravity flow in lake basins of China[J]. Acta Sedimentologica Sinica, 2019, 37(5): 904-921.
    [7] 吕奇奇,罗顺社,李梦杰,等. 深水碎屑流与浊流混合事件层沉积特征及分布:以鄂尔多斯盆地西南长7油层组为例[J]. 东北石油大学学报,2020,44(2):69-78.

    Qiqi Lü, Luo Shunshe, Li Mengjie, et al. Sedimentary characteristics and distribution of deep-water hybrid event beds comprising debris and turbidites: A case study of Chang7 oil formation in the southwest of Ordos Basin[J]. Journal of Northeast Petroleum University, 2020, 44(2): 69-78.
    [8] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [9] 杨田,操应长,王艳忠,等. 深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例[J]. 石油学报,2015,36(9):1048-1059.

    Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Types, sedimentary characteristics and genetic mechanisms of deep-water gravity flows: A case study of the middle submember in member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica, 2015, 36(9): 1048-1059.
    [10] 杨田,操应长,王艳忠,等. 异重流沉积动力学过程及沉积特征[J]. 地质论评,2015,61(1):23-33.

    Yang Tian, Cao Yingchang, Wang Yanzhong, et al. Sediment dynamics process and sedimentary characteristics of hyperpycnal flows[J]. Geological Review, 2015, 61(1): 23-33.
    [11] 李相博,刘化清,完颜容,等. 鄂尔多斯盆地三叠系延长组砂质碎屑流储集体的首次发现[J]. 岩性油气藏,2009,21(4):19-21.

    Li Xiangbo, Liu Huaqing, Wanyan Rong, et al. First discovery of the sandy debris flow from the Triassic Yanchang Formation, Ordos Basin[J]. Lithologic Reservoirs, 2009, 21(4): 19-21.
    [12] 邹才能,赵政璋,杨华,等. 陆相湖盆深水砂质碎屑流成因机制与分布特征:以鄂尔多斯盆地为例[J]. 沉积学报,2009,27(6):1065-1075.

    Zou Caineng, Zhao Zhengzhang, Yang Hua, et al. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin[J]. Acta Sedimentologica Sinica, 2009, 27(6): 1065-1075.
    [13] 袁选俊,林森虎,刘群,等. 湖盆细粒沉积特征与富有机质页岩分布模式:以鄂尔多斯盆地延长组长7油层组为例[J]. 石油勘探与开发,2015,42(1):34-43.

    Yuan Xuanjun, Lin Senhu, Liu Qun, et al. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(1): 34-43.
    [14] Felix M, Peakall J. Transformation of debris flows into turbidity currents: Mechanisms inferred from laboratory experiments[J]. Sedimentology, 2006, 53(1): 107-123.
    [15] Haughton P, Davis C, McCaffrey W, et al. Hybrid sediment gravity flow deposits – Classification, origin and significance[J]. Marine and Petroleum Geology, 2009, 26(10): 1900-1918.
    [16] Talling P J, Amy L A, Wynn R B, et al. Beds comprising debrite sandwiched within co‐genetic turbidite: Origin and widespread occurrence in distal depositional environments[J]. Sedimentology, 2004, 51(1): 163-194.
    [17] Yang T, Cao Y C, Wang Y Z, et al. Status and trends in research on deep-water gravity flow deposits[J]. Acta Geologica Sinica (English Edition), 2015, 89(2): 610-631.
    [18] 李存磊,任伟伟,唐明明. 流体性质转换机制在重力流沉积体系分析中应用初探[J]. 地质论评,2012,58(2):285-296.

    Li Cunlei, Ren Weiwei, Tang Mingming. Preliminary study on gravity flow depositional system based on fluid properties conversion theory[J]. Geological Review, 2012, 58(2): 285-296.
    [19] Dott R H Jr. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin, 1963, 47(1): 104-128.
    [20] Gani M R. From turbid to lucid: A straightforward approach to sediment gravity flows and their deposits[J]. The Sedimentary Record, 2004, 2(3): 4-8.
    [21] Mulder T, Alexander J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology, 2001, 48(2): 269-299.
    [22] Shanmugam G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10.
    [23] 李相博,卫平生,刘化清,等. 浅谈沉积物重力流分类与深水沉积模式[J]. 地质论评,2013,59(4):607-614.

    Li Xiangbo, Wei Pingsheng, Liu Huaqing, et al. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model[J]. Geological Review, 2013, 59(4): 607-614.
    [24] Haughton P D W, Barker S P, McCaffrey W D. ‘Linked’ debrites in sand-rich turbidite systems ⁃ origin and significance[J]. Sedimentology, 2003, 50(3): 459-482.
    [25] 杨田,操应长,田景春. 浅谈陆相湖盆深水重力流沉积研究中的几点认识[J]. 沉积学报,2021,39(1):88-111.

    Yang Tian, Cao Yingchang, Tian Jingchun. Discussion on research of deep-water gravity flow deposition in lacustrine basin[J]. Acta Sedimentologica Sinica, 2021,39(1):88-111.
    [26] 裴羽,何幼斌,李华,等. 高密度浊流和砂质碎屑流关系的探讨[J]. 地质论评,2015,61(6):1281-1292.

    Pei Yu, He Youbin, Li Hua, et al. Discuss about relationship between high-density turbidity current and sandy debris flow[J]. Geological Review, 2015, 61(6): 1281-1292.
    [27] 陈飞,罗平,张兴阳,等. 鄂尔多斯盆地东缘上三叠统延长组砂体结构与层序地层学研究[J]. 地学前缘,2010,17(1):330-338.

    Chen Fei, Luo Ping, Zhang Xingyang, et al. Stratigraphic architecture and sequence stratigraphy of Upper Triassic Yanchang Formation in the eastern margin of Ordos Basin[J]. Earth Science Frontiers, 2010, 17(1): 330-338.
    [28] 廖纪佳,朱筱敏,邓秀芹,等. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式[J]. 地学前缘,2013,20(2):29-39.

    Liao Jijia, Zhu Xiaomin, Deng Xiuqin, et al. Sedimentary characteristics and model of gravity flow in Triassic Yanchang Formation of Longdong area in Ordos Basin[J]. Earth Science Frontiers, 2013, 20(2): 29-39.
    [29] 任收麦,黄宝春. 晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J]. 地球物理学进展,2002,17(1):113-120.

    Ren Shoumai, Huang Baochun. Preliminary study on post-Late paleozoic kinematics of the main blocks of the Paleo-Asian ocean[J]. Progress in Geophysics, 2002, 17(1): 113-120.
    [30] 王子腾,王康乐,王峰,等. 鄂尔多斯盆地西缘羊虎沟组物源区分析[J]. 地球科学与环境学报,2019,41(3):281-296.

    Wang Ziteng, Wang Kangle, Wang Feng, et al. Provenance analysis of Yanghugou Formation in the western margin of Ordos Basin, China[J]. Journal of Earth Sciences and Environment, 2019, 41(3): 281-296.
    [31] 陈安清,陈洪德,侯明才,等. 鄂尔多斯盆地中—晚三叠世事件沉积对印支运动Ⅰ幕的指示[J]. 地质学报,2011,85(10):1681-1690.

    Chen Anqing, Chen Hongde, Hou Mingcai, et al. The Middle-Late Triassic event sediments in Ordos Basin: Indicators for episode I of the Indosinian Movement[J]. Acta Geologica Sinica, 2011, 85(10): 1681-1690.
    [32] 陈全红,李文厚,王亚红,等. 鄂尔多斯盆地西南部晚古生代早―中期物源分析[J]. 现代地质,2006,20(4):628-634.

    Chen Quanhong, Li Wenhou, Wang Yahong, et al. The analysis of sediment provenance in early-middle period of Late Paleozoic in the southwest of Ordos Basin[J]. Geoscience, 2006, 20(4): 628-634.
    [33] 田景春,吴琦,王峰,等. 鄂尔多斯盆地下石盒子组盒8段储集砂体发育控制因素及沉积模式研究[J]. 岩石学报,2011,27(8):2403-2412.

    Tian Jingchun, Wu Qi, Wang Feng, et al. Research on development factors and the deposition model of large area reservoir sandstones of He8 section of Xiashihezi Formation of Permian in Ordos Basin[J]. Acta Petrologica Sinica, 2011, 27(8): 2403-2412.
    [34] 葸克来,李克,操应长,等. 鄂尔多斯盆地三叠系延长组长73亚段富有机质页岩纹层组合与页岩油富集模式[J]. 石油勘探与开发,2020,47(6):1-12.

    Xi Kelai, Li Ke, Cao Yingchang, et al. Laminae combination and shale oil enrichment patterns of Chang 7 organic-rich shales in the Triassic Yanchang Formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6): 1-12.
    [35] 邓秀芹,蔺昉晓,刘显阳,等. 鄂尔多斯盆地三叠系延长组沉积演化及其与早印支运动关系的探讨[J]. 古地理学报,2008,10(2):159-166.

    Deng Xiuqin, Lin Fangxiao, Liu Xianyang, et al. Discussion on relationship between sedimentary evolution of the Triassic Yanchang Formation and the Early Indosinian Movement in Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(2): 159-166.
    [36] 张文正,杨华,彭平安,等. 晚三叠世火山活动对鄂尔多斯盆地长7优质烃源岩发育的影响[J]. 地球化学,2009,38(6):573-582.

    Zhang Wenzheng, Yang Hua, Peng Ping’an, et al. The influence of Late Triassic volcanism on the development of Chang 7 high grade hydrocarbon source rock in Ordos Basin[J]. Geochimica, 2009, 38(6): 573-582.
    [37] Patacci M, Marini M, Felletti F, et al. Origin of mud in turbidites and hybrid event beds: Insight from ponded mudstone caps of the Castagnola turbidite system (north-west Italy)[J]. Sedimentology, 2020, 67(5): 2625-2644.
    [38] 谈明轩,朱筱敏,耿名扬,等. 沉积物重力流流体转化沉积—混合事件层[J]. 沉积学报,2016,34(6):1108-1119.

    Tan Mingxuan, Zhu Xiaomin, Geng Mingyang, et al. The flow transforming deposits of sedimentary gravity flow-hybrid event bed[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1108-1119.
    [39] Talling P J. Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental analyses, and generalized models[J]. Geosphere, 2013, 9(3): 460-488.
    [40] Yang T, Cao Y, Friis H, et al. Origin and evolution processes of hybrid event beds in the Lower Cretaceous of the Lingshan Island, eastern China[J]. Australian Journal of Earth Sciences, 2018, 65(4): 517-534.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(545) PDF downloads(193) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-07-30
  • Published:  2021-04-23

Sedimentation Types of Deep-water Gravity Flow, Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin

doi: 10.14027/j.issn.1000-0550.2020.095
Funds:

National Natural Science Foundation of China 42072126, 41802127

The Research Project of Science and Technology Innovation Fund of CNPC in 2019 2019D-5007-0106

Abstract: The deep-water gravity-flow deposits in the Chang7 member of the Upper Triassic Yanchang Formation, Ordos Basin, were the object of this study. The types and characteristics of deep-water gravity-flow deposits were determined by detailed analysis of a drill core from well Z43. The results suggest that sandy debris-flow deposits (debrites), low-density turbidity current deposits and hybrid event beds were developed in the region penetrated by well Z43. Most of the sandy debrites were featured by structureless medium- to fine-grained sandstone. Several amalgamation surfaces were observed, indicating different stages of vertical stacking of the deposits. Low-density turbidity current deposits were characteried by vertical stacking of medium- to thinly bedded sandstone having normal grading. The upper part of this sandstone featured a high mud content with clear sandstone/mudstone interbedding. Hybrid event beds were primarily characterized by a bipartite structure,of which the lower part is clean structureless fine-grained sandstone and the upper part is sandy mudstone or muddy sandstone with deformed mud clasts. The argillaceous base may indicate erosion by the turbidity current that caused an increase in the clay content of the current. The presence of mud clasts and/or clay content may have been the key element driving flow transformation from low-density turbidity current to muddy debris flow. This transformation resulted in the event beds that are characteristically observed as muddy debrite to low-density turbidite couplets. The fact that several types of deep-water gravity-flow deposits appear at the same location indicating a complicated gravity flow evolution process. An accurate recognition of gravity-flow types might contribute to understanding the flow transformation and the distribution of their deposits. This advancement could provide theoretical guidance on deep-water gravity-flow deposits and conventional and unconventional oil and gas exploration and development in the Ordos Basin.

ZHANG YiAn, LI ShiXiang, TIAN JingChun, ZHOU XinPing, YANG Tian. Sedimentation Types of Deep-water Gravity Flow, Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 297-309. doi: 10.14027/j.issn.1000-0550.2020.095
Citation: ZHANG YiAn, LI ShiXiang, TIAN JingChun, ZHOU XinPing, YANG Tian. Sedimentation Types of Deep-water Gravity Flow, Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin[J]. Acta Sedimentologica Sinica, 2021, 39(2): 297-309. doi: 10.14027/j.issn.1000-0550.2020.095
  • 深水重力流作为地球上最为重要的沉积物搬运机制之一,近几十年来一直是沉积学领域的重要研究内容[1-10],深水重力流成因的碎屑岩储层更是我国鄂尔多斯盆地现阶段常规与非常规油气勘探的重要对象[11-12]。重力流沉积类型的准确识别是深入开展深水重力流沉积研究的基础,为进一步明确重力流沉积特征、成因机制、演化过程等问题提供先决条件[1-3,9-10,13]。深水重力流流体类型多样,不同类型的重力流之间可以相互转化,因此重力流沉积物大多是多种类型的重力流形成的沉积组合[4,14-18]。前人研究多将深水重力流划分为浊流和碎屑流两类,在此基础上依据流体黏度、碎屑物质浓度、支撑机制等因素进一步细分[5,19-23]。部分学者认为浊流和碎屑流之间是相互独立的互斥关系,但近期研究表明浊流和碎屑流之间存在混合过渡类型即混合重力流[4,15,24]。Haughton et al. [15]提出了混合事件层的概念,主要是指同一次重力流事件中由于流体转化形成的具有多种流变学性质的流体所形成的沉积序列[4,25]。其沉积产物主要由位于沉积序列下部的块状(细)砂岩段(H1)与位于上部的泥质砂岩段或砂质泥岩段(H3)成对组合形成。现阶段,大多数针对混合重力流沉积的研究都是以海相盆地为研究实例,湖盆中有关混合重力流的研究还极为少见,不同重力流类型的典型沉积特征和差异还不明确[25]。本次研究以鄂尔多斯盆地上三叠统延长组长7段为对象,在70余口取芯井岩芯观察的基础上,选取Z43井为典型井,对重力流沉积特征及其成因机制进行深入分析总结,为进一步研究湖盆重力流沉积提供理论依据。笔者在本文中提及的浊流为低密度浊流[1,9-10,26],将碎屑流根据杂基含量和结构的差异划分为泥质碎屑流与砂质碎屑流[3,5,9]

  • 鄂尔多斯盆地位于我国华北平原西部,是一个大型克拉通内盆地,盆地范围北至阴山,南抵秦岭,西自六盘山,东达吕梁山,面积约2.5×105 km²[27];包含伊盟隆起、渭北挠褶带、西缘冲断带、天环向斜、伊陕斜坡及晋西挠褶带六个一级构造单元[28]图1a)。研究区位于鄂尔多斯盆地西南部,北及盐池,南抵彬县,西至镇原,东达延安,大部分位于伊陕斜坡,部分属于天环向斜。鄂尔多斯盆地的构造演化主要受到北侧古亚洲洋板块及西南缘、南缘祁连—秦岭海槽及其派生的贺兰拗拉槽影响[29-30],盆地西南缘主要受到南部造山带影响,晚三叠世印支运动使祁连—秦岭强烈碰撞抬升[31],盆地南部发生快速沉降形成大规模坳陷,形成西南低、北东高的古地理格局[27,32-34]图1b)。鄂尔多斯盆地上三叠统延长组从上至下分为10个油层组,反映了三叠系内陆湖盆的形成、发展直到消亡的全过程[28]。长7油层组沉积期,研究区中部地区沉积环境为半深湖—深湖,边缘地区为滨—浅湖环境,同一时期周边邻近地区在构造活动及火山作用下向湖盆内部供给充足物源[8],为湖盆深水重力流发育提供了充足条件。长7油层组可细分为三个亚段,由下至上依次为长73亚段至长71亚段。其中,长73亚段沉积期,湖盆发育达到顶峰,长72亚段时期湖盆开始萎缩,长71亚段时期湖盆中心收缩至姬塬、华池、富县一带[13]

    Figure 1.  (a)Location of study area. (b) Distribution of Upper Triassic sedimentary facies in member3, Chang7 oil member in Ordos Basin (modified from Xi et al.[34]). (c) Yanchang Formation stratigraphy

  • 在岩芯观察的基础上,根据沉积物成分、结构、典型沉积构造、流体搬运沉降方式等差异,对鄂尔多斯盆地上三叠统延长组长7段发育的深水重力流沉积类型进行探讨。延长组长7段沉积期,研究区中部地区沉积物多为半深湖—深湖相及深水重力流沉积,沉积物以细砂岩、泥质砂岩、泥岩等粒度细的沉积物为主。边缘地区大范围发育三角洲平原亚相及前三角洲亚相沉积,东北部发育大范围的曲流河三角洲沉积,西缘、西南缘地区发育大量辫状河三角洲沉积[27,35]。Z43井处于研究区中部地区(图1b),取芯段岩芯属于长71及长72亚段,主要发育砂质碎屑流沉积、低密度浊流沉积和混合事件层(图2)。

    Figure 2.  Appearance of core rocks in well Z43

  • 研究区砂质碎屑流单砂体厚度6.85~249.92 cm,平均厚度65.78 cm,大部分在21.39~85.97 cm。砂质碎屑流沉积颜色以浅灰色至深灰色为主,粒度较细,岩性以细砂岩为主,部分为中—细砂岩或粉—细砂岩(图3a~c);沉积相序上部含泥质碎屑,通常以漂浮的泥岩撕裂屑(图3d)及漂浮泥砾(图3e)的形式出现。漂浮泥砾磨圆度较好,通常呈纺锤形;沉积构造以块状层理构造为主,顶底部与泥岩呈突变接触(图3a,f,g);底部可见基底剪切构造(图3h)。

    Figure 3.  Characteristics and recognition marks of sandy debrites

    鄂尔多斯盆地长7油层组沉积期,扬子板块与华北板块碰撞,造山程度加剧和频繁的火山活动提供充足物源,古地形高差大、水系活跃,沉积物极易在外界触发因素作用下发生滑动滑塌,形成大量砂质碎屑流沉积[9,35-36]。砂质碎屑流主要为具有塑形流变学特征的层状流[7],有较稳定的厚度,以块状构造、顶底部与泥岩突变接触、内部存在漂浮泥质碎屑、底部发育基底剪切构造等特征与其他流体类型相区别[5]。漂浮泥质碎屑的存在表明流体自身具有较强的屈服强度并指示流体具塑形流变学特征[26];部分块状砂岩内发育零散分布的漂浮泥质碎屑(图3d),也有泥质碎屑呈顺层排列趋势,指示了碎屑流上部的“刚性”筏流段的块状固结作用[9]。Z43井第7取芯回次取芯垂向上可见多个砂岩融合面,将整套块状砂岩分隔为多个小层,砂质碎屑流沉积单层厚度最小约0.5 m,最大可达2 m(图2a,b),底部与泥岩突变接触(图3a)。上述特征表明,Z43井第7取芯回次砂岩成因类型为砂质碎屑流沉积,这也证明了研究区砂质碎屑流沉积的存在。

  • 低密度浊流沉积在研究区中大范围发育,总体厚度在0.01~6.16 m,平均厚度0.52 m,普遍分布在1.3 m以内。如Z43井第8取芯回次,取芯段长度约3.8 m(图2b),沉积物粒度细,岩性以细砂岩、粉—细砂岩、泥质砂岩、泥岩为主(图4a~c),泥质含量较低的小层主要呈浅灰色、灰色,泥质含量高的小层主要呈深灰色。因泥质含量的高低变化较为频繁,从而呈现明暗相间、频繁互层的特征,是研究区低密度浊流沉积的典型识别特征之一。能量较强的浊流沉积可见正粒序层理叠置现象(图4a~d)[7],表现为浅灰色的细砂岩向上泥质含量增加,沉积物粒度变为粉—细砂岩或粉砂岩,呈渐变过渡的趋势。浊流沉积中还可见发育平行层理(图4e)、沙纹层理(图4f)、火焰状构造(图4d,g)及槽模构造(图4h)。

    Figure 4.  Characteristics and recognition marks of low⁃density turbidite

    低密度浊流属于牛顿流体,以流体扰动为主要支撑机制[9,21],通常无法携带较大的碎屑物质,因此研究区内的浊流砂质沉积的岩石粒度较细、砂质较纯、未见较大的泥质碎屑。以一层浅色砂岩与一层深色泥质砂岩或泥岩的组合,为一层低密度浊流沉积,单层厚度跨度大,从几毫米至十厘米均有分布,并且在垂向上频繁叠置。这种具有一定厚度、并且厚度变化较显著的正粒序叠置现象,说明了多期次浊流事件的存在。随着砂质碎屑流向湖盆中心搬运,环境水体进入流体顶部或头部,导致流体性质向浊流转化,流体搬运能力随之减弱,粒径大且重的砂质沉积物向流体底部下沉、粒径小且轻的泥质沉积物上升,从而形成正粒序层理构造,浊流形成的砂质沉积物厚度的变化也可以体现出浊流流体强度的变化。另外,单层低密度浊流沉积中经常可见火焰状构造(图4d,g),这种沉积构造发育在泥质含量较高的小层中,指示了砂质含量高的小层对泥质含量高的小层的差异压实作用;槽模构造的发育则指示了低密度浊流与底部泥岩冲刷呈突变接触[7]。鲍马序列通常不完整,可见ACDE(图4a)、AB(图4e)、CE(图4f)等组合类型。

  • 混合重力流主要指在一次重力流事件中,由于流体转化形成的同时具有多种流变性质的流体,其所形成的沉积序列称为混合事件层[15,25],混合事件层易于在持续时间相对较长、沉积物浓度高、流体对底部侵蚀较强的砂泥混杂流体中形成[37]。前人对混合事件层各单元的划分方案存在一定差异,有学者[4,15]认为混合事件层可由下部浊流沉积和上部泥质碎屑流沉积组合形成。Haughton et al.[15]强调将混合事件层从底到顶分为5个单元,分别是(H1)浊流形成的贫泥质砂岩,粒度较粗,可见粒序层理和泄水构造,单元顶部可见漂浮泥质碎屑;(H2)浊流与泥质碎屑流之间的过渡类型,具板状构造或二者薄互层;(H3)泥质碎屑流沉积,内部可以发育大量泥质碎屑;(H4)低密度浊流沉积,可见沙纹层理,含泥质碎屑和植物碎片;(H5)浊流形成的薄层含微弱正粒序的粉砂质泥至泥质沉积。此外,还可根据H3段泥质碎屑含量的高低,分为顶部富泥质碎屑和顶部贫泥质碎屑混合事件层。

    研究区内长7油层组发育的混合事件层大部分以H1段与H3段成对组合形成,其中,H1段主要岩性为细砂岩,厚度0.2~0.8 m,平均厚度0.56 m,0.1~0.4 m最为常见,通常泥质含量较低,部分含油性较好,颜色整体浅灰色为主,块状层理构造发育,局部可见长纺锤形的泥质碎屑(图5a),其顶底都与上下沉积单元呈突变接触(图5b,c)。H3段的主要岩性为泥质砂岩或砂质泥岩,厚度0.2~0.6 m,平均厚度0.43 m,0.1~0.3 m最为常见,整体颜色为深灰色。内部泥质含量较少时,泥质碎屑呈零星散布状(图5d),泥质含量高则表现为大量扭曲变形的泥岩撕裂屑(图5c,e,f),部分泥岩撕裂屑两端可见撕裂茬(图5c),在流体流动过程中泥质碎屑也可能被分解后呈弥散状分布(图5a,b)。

    Figure 5.  Characteristics and recognition marks of hybrid event beds

    混合重力流沉积的典型识别特征,为H1段块状(细)砂岩与H3段发育大量变形泥岩撕裂屑的泥质砂岩或砂质泥岩的沉积组合,这种典型特征使混合事件层区别于其他类型的重力流沉积,并且由于泥质杂基含量的较大差异,使H1与H3在颜色上显示出明显的区别,从而易于识别。当浊流侵蚀泥质基底时,大量泥质碎屑的混入对其湍流程度起到抑制作用,较轻的泥质成分上浮于沉积相序上部,使流体性质发生转化,泥质含量高的H3段具有层流性质。H3段与H1段之间可以存在过渡类型H2段(图5f),H2段以条带状砂泥薄互层为特征(图5g),在研究区中较为少见。整体上,H3与H1因岩性及含有物的区别呈突变接触,这一特征指示了流体性质由浊流向泥质碎屑流的转化。

  • 鄂尔多斯盆地位于华北平原西部,上三叠统延长组长7段主要发育湖泊相沉积,长73亚段湖盆发育最为繁盛,长72至长71亚段湖盆萎缩三角洲相沉积发育范围增加。研究区长7段砂质沉积成因主要分为牵引流及深水重力流两种(图6a),牵引流沉积大多属于三角洲前缘亚相,以辫状河沉积及曲流河沉积为主(图1b),长71亚段时期大量发育于盆地西南缘、北部及北东部大部分地区。重力流砂质沉积主要为滑塌成因,由三角洲前缘沉积物受外界触发因素影响发生滑动滑塌,因自身重力向湖盆中心流动演化,在流动过程中转化为碎屑流及低密度浊流[9]。笔者在岩芯观察阶段发现,位于研究区湖盆中心部位的Z43井垂向上可见砂质碎屑流沉积、低密度浊流沉积与砂质碎屑流沉积叠置、混合事件层与低密度浊流沉积叠置三者同时出现的特征,因此以Z43井为典型井进行讨论(图1b)。

    Figure 6.  Distribution of typical deep⁃water gravity flow in the Ordos Basin

  • 按照深水重力流沉积类型及分布特征,将深水重力流沉积划分为沉积近端、沉积中部及沉积远端。沉积近端一般位于靠近三角洲前缘的斜坡部位,以碎屑流沉积及滑动滑塌沉积为主,其中砂质碎屑流沉积占大多数,砂体厚度1.9~12.5 m,最大可达30.5 m,平均厚度7.97 m(图6a)。沉积中部以碎屑流沉积和低密度浊流沉积为主,流体向湖盆中心运移距离增加的同时,碎屑流沉积逐渐较少,低密度浊流沉积增加(图6b)。沉积远端以低密度浊流沉积为主,在半深湖—深湖区大面积分布,湖盆中心以北的三角洲前缘与半深湖—深湖交界处少量发育,平均累计厚度7 m左右,单口井累计厚度最大可达24 m,普遍在5.9 m左右。混合事件层在半深湖—深湖区发育最为广泛,厚度0.81~3.56 m,最大可达10.75 m,平均厚度2.38 m,分布范围和沉积厚度在湖盆中心达到最大(图6c)。现有研究认为碎屑流向浊流转化或浊流向碎屑流转化都能形成混合事件层,流体转化是其重要的成因机制之一[4,15,25,38]

    Z43取芯段自下而上为第九次取芯至第七次取芯,分别属于长72亚段及长71亚段(图7a)。第九次取芯以混合事件层为主(图7b),单层事件层厚度0.9~1.4 m,其间存在1~2 m的低密度浊流沉积,整体以混合事件层与低密度浊流沉积垂向叠置为特征。前人研究表明,泥质含量是影响混合事件层形成的重要因素 [15,39],而湖盆中心地区泥质沉积占主导地位。浊流侵蚀富泥质基底使黏土物质进入流体内部,在流体搬运过程中,泥质沉积物因重力分异作用上浮于流体上部,促使浊流上部向泥质碎屑流转化[15,25,39],使其具有弱湍流或层流特征。流体下部因泥质含量降低,以细砂岩、中—细砂岩为主,最终形成上部泥质碎屑流沉积、下部为干净浊积砂岩的混合事件层[4]

    Figure 7.  Column of typical well in Chang7 member, Yanchang Formation, Ordos Basin

    第八次取芯以低密度浊流沉积为主(图7c),由中—薄层的细砂岩与粉—细砂岩形成的正粒序垂向叠置及薄层的砂泥互层组合为特征(图2b)。取芯段深度1 813 m处见厚度1.4 m左右的块状细砂岩(图3b,c),砂岩的泥质含量低,肉眼未见泥质碎屑,与顶底都为突变接触,顶部可见弱正粒序层理。这指示了砂质碎屑流顶部的流体性质正在向浊流转化,而低密度浊流的支撑机制主要是湍流支撑[9,26],通常只能携带较细的颗粒,因此砂岩顶部粒度较下部砂岩略细。

    第七次取芯通过岩屑录井粗略识别为厚层的灰褐色细砂岩(图7a),实际观察所得岩性柱状图(图7d)识别为多套砂质碎屑流的垂向叠置,属于滑塌成因的深水重力流沉积[1]。盆地延长组沉积时期,周缘发生的火山活动和地震活动等构造运动是引发沉积物垮塌再搬运的重要触发机制。在流体搬运过程中,流体底部通过滑水作用和基底剪切润湿作用来克服与底床的剪切摩擦,流体上部因自身强度克服上覆环境水体的混入稀释[5]。研究区内砂质碎屑流通常泥质含量较低,自身强度相对较弱,在流动过程中容易与环境水体混合使自身浓度降低,从而向低密度浊流转化,这是一种动态的转化过程。

  • 剖面1为ME53井-GA94井剖面(图8),位于盆地中部,自ME53井至GA94井共由7口钻井组成,自SW向NE沿沉积物搬运方向展布,剖面两侧属于滨—浅湖亚相,中部属于半深湖—深湖亚相。长73亚段沉积期,两侧发育滨—浅湖沉积[35],ZE242井、W100井发育厚度较大的砂质碎屑流沉积,低密度浊流沉积普遍存在于半深湖—深湖沉积中,混合事件层在YJ1井及C96井发育厚度大。长72亚段沉积期,滨—浅湖沉积范围扩大,砂质碎屑流沉积在ZE242井至GA135井沉积厚度大幅增加,低密度浊流沉积主要发育于ZE242井至C96井范围,其分布范围及厚度相对长73亚段沉积期收缩减薄。长71亚段沉积期,剖面两侧三角洲前缘沉积范围进一步扩大,半深湖—深湖区面积进一步缩小,砂质碎屑流沉积的厚度和分布范围和厚度缩小,低密度浊流沉积发育范围主要在ZE242井、YJ1井、W100井,分布范围较长72亚段沉积期缩小,混合事件层分布范围进一步收缩至ZE242井及YJ1井。总体特征表现为:砂质碎屑流沉积由两侧向剖面中部厚度减薄,从长73至长71亚段整体收缩减薄,局部可能存在厚度较大的砂体;低密度浊流沉积广泛分布于剖面各井,从长73至长71亚段向剖面中部收缩减薄,只在局部厚度较大;混合事件层从长73至长71亚段,分布范围由Z242井―GA135井减小到Z242井―C96井,沉积厚度也有所减小。

    Figure 8.  Comparison profiles of sedimentary microfacies in Chang7 member, Yanchang Formation, Ordos Basin

    剖面2为XI66井-D81井剖面(图8),位于剖面1东南部,由5口钻井组成,自SW向NE沿沉积物搬运方向展布,剖面两侧滨—浅湖发育范围较剖面1小,主要发育半深湖—深湖亚相沉积。长73亚段沉积期,主要发育半深湖—深湖沉积[35],砂质碎屑流沉积主要分布在XI66井、BN30井、N36井、D81井,在D81井处厚度最大;低密度浊流沉积在XI66井至D81井均有分布,分布范围和厚度向剖面中部扩大增厚;其中,混合事件层在XI66井及BN30井发育厚度较薄。长72亚段沉积期,剖面右侧D81井处滨—浅湖沉积范围扩大,砂质碎屑流在BN30井处厚度最大,向N36井厚度减薄;低密度浊流沉积较长73亚段沉积期分布范围及厚度有所减小,主要发育于BN30井及N36井;混合事件层分布范围进一步收缩至BN30井少量发育。长71亚段沉积期,剖面两侧滨—浅湖沉积范围均有所扩大,砂质碎屑流沉积在BN30井沉积厚度最大,低密度浊流沉积较长72亚段沉积期沉积范围没有太大变化,但沉积厚度有一定减薄。总体特征表现为:砂质碎屑流沉积主要存在于剖面两侧,其沉积厚度由两侧向剖面中部减薄;低密度浊流沉积分布范围最广,从长73至长71亚段分布范围及沉积厚度都向剖面中部收缩减薄;混合事件层发育较少,其趋势表现为由剖面两侧向中部沉积厚度增加,从长73至长71亚段分布范围和沉积厚度都向剖面中部减薄。

  • 滑塌成因的深水重力流沉积中,碎屑流向浊流转化的过程已经得到了学者们的共识[4]图9a)。比如,有学者认为沉积物可以由滑动滑塌转化为砂质碎屑流再转化为浊流[1],在此过程中可以形成混合事件层[4]。鄂尔多斯盆地西南翼陡倾、东北翼宽缓,湖盆范围大,构造运动频发,为深水重力流形成提供了充足的触发因素及外部条件。大量研究表明鄂尔多斯盆地半深湖—深湖区域在长7段沉积期发育大量的滑塌成因的深水重力流沉积,流体类型以砂质碎屑流及低密度浊流为主,但本次研究结果证实盆地还存在广泛发育的混合重力流。如前文所述,Z43井岩芯中存在成对出现的沉积组合类型,其下部砂质较纯、不含或含少量漂浮泥质碎屑的细砂岩,上部突变或渐变为富含泥质碎屑、发育变形构造的泥质砂岩或砂质泥岩,这种沉积组合特征表明其流体类型应当属于碎屑流与浊流的混合类型。近期研究证实浊流可以向泥质碎屑流转化[4,7,15,18],而湖盆底部大量存在的泥质等细粒物质为这一过程提供了充足的可供侵蚀的沉积物[31],浊流在流动过程中,流体底部侵蚀泥质基底向泥质碎屑流转化的行为是极有可能发生的(图9b)。

    Figure 9.  Combination model of deep⁃water gravity flow in Chang7 Member in the Ordos basin (modified from Yang et al.[9,25] and Cao et al.[4] )

    对于混合事件层的成因机制不同学者提出了多种解释,流体转化作为其中一种,主要与黏土矿物类型及含量对湍流的抑制作用有关[40]。浊流头部侵蚀泥质基底,大量较轻的黏土物质上浮至流体顶部,使顶部的流体性质向泥质碎屑流转化,流体下部则沉积粒度较粗的细砂岩[25],从而形成上部为含泥质碎屑的泥质砂岩、下部为干净的块状细砂岩的沉积组合(图9c)。

    本文中混合事件层的成因机制,笔者认为是由浊流向泥质碎屑流转化形成,流体转化在其中起到关键作用。但不可否认的是,限于有限的岩芯观察数量及其沉积特征,笔者仍然无法断言,盆地内混合事件层的成因机制仅有低密度浊流向泥质碎屑流转化形成这一种,因此进一步的观察研究以取得更多实质性的证据极为必要。

  • (1) 鄂尔多斯盆地Z43井延长组长7段主要存在砂质碎屑流沉积、低密度浊流沉积和混合事件层这三种深水重力流沉积类型。其中,单层混合事件层由下至上主要由H3段和H1段组成,H2段发育较为少见。H1段为浅灰色、灰色的块状细砂岩、中—细砂岩,H3段为深灰色富含变形泥岩撕裂屑的粉砂质泥岩。砂质碎屑流整体块状、含油性较好,以中—细砂岩为主,内部见多个接触面,为多套碎屑流沉积叠置而成。低密度浊流沉积部分为薄层的正粒序砂岩垂向叠置,以中—薄层正粒序细砂岩与粉—细砂岩互层组成,部分深度段泥质含量相对较高,整体呈深色和浅色的砂泥互层。

    (2) 混合事件层是鄂尔多斯盆地延长组长7段重要的深水重力流沉积类型之一,主要分布于半深湖—深湖范围内,分布范围和沉积厚度向湖盆中心缩小减薄。流体转化是形成混合事件层的主要成因机制,在浊流流动过程中侵蚀泥质基底,黏土物质混入流体内部促使流体转化作用的发生,使浊流的上部向泥质碎屑流转化,最终形成下部浊流沉积上部泥质碎屑流沉积的混合事件层。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return