Advanced Search
Volume 39 Issue 2
Apr.  2021
Turn off MathJax
Article Contents

JIA YunQian, LIU ZiPing, REN XiaoHai, ZHOU YiBo, ZHENG AiLing, ZHANG Juan, HAN DengLin. Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 341-352. doi: 10.14027/j.issn.1000-0550.2020.094
Citation: JIA YunQian, LIU ZiPing, REN XiaoHai, ZHOU YiBo, ZHENG AiLing, ZHANG Juan, HAN DengLin. Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 341-352. doi: 10.14027/j.issn.1000-0550.2020.094

Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area

doi: 10.14027/j.issn.1000-0550.2020.094
Funds:

National Science and Technology Major Project 2017ZX05008-003-050

Program of Unconventional Oil and Gas Exploration and Development Research Center of Yangtze University, Chuanqing Drilling CQZT-YYQXMB-2020-JS-199

  • Received Date: 2020-07-14
  • Publish Date: 2021-04-23
  • The organic matter in shale reservoirs is not only the core factor of hydrocarbon generation, but it also generates porosity. Previous evaluations of organic matter types have shown that the hydrocarbon generation and pore formation capacity of the various types of organic matter are significantly different. However, previous identification and evaluation of organic matter types have mainly used organic geochemical procedures for destructive testing, making it impossible to quantitatively evaluate the type and content distribution of the organic matter on a microscopic scale. This study takes as an example the shale reservoirs of the Silurian Longmaxi Formation in the Weiyuan gas field in the Sichuan Basin, focusing on organic matter enrichment in the Long11 sub-segment using two-dimensional large-area multi-scale combined SEM to produce images of micro-components. The modular automated processing system (MAPS) technique was used for maceral analysis to quantitatively identify types of organic matter and analyze their vertical distribution. It was found that the organic matter in the Long11 sub-segment consists mainly of types I and II1 kerogen, with a predominance of type II1. The change in organic matter type with depth was determined as a sedimentary facies belt. Sublayers Long111 and Long113 were formed in a stranded anoxic graptolite shale microfacies sedimentary environment. Weak hydrodynamic conditions favored enrichment of types I and II1 kerogen; the Long112 and Long114 sublayers were developed in a low oxygen environment and contain graptolite shale microfacies. Strong hydrodynamic conditions were unfavorable to types I and II1 kerogen enrichment and preservation.
  • [1] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1-11.

    Jia Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
    [2] 邹才能,杨智,张国生,等. 非常规油气地质学建立及实践[J]. 地质学报,2019,93(1):12-23.

    Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1): 12-23.
    [3] 戴金星,陈践发,钟宁宁,等. 中国大气田及其气源[M]. 北京:科学出版社,2003:9-194.

    Dai Jinxing, Chen Jianfa, Zhong Ningning, et al. China's large gas fields and their gas sources[M]. Beijing: Science Press, 2003: 9-194.
    [4] 邹才能,杨智,崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发,2013,40(1):14-26.

    Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China[J]. Petroleum Exploration and Development, 2013, 40(1): 14-26.
    [5] 袁野,赵靖舟,耳闯,等. 鄂尔多斯盆地中生界及上古生界页岩孔隙类型及特征研究[J]. 西安石油大学学报(自然科学版),2014,29(2):14-19.

    Yuan Ye, Zhao Jingzhou, Chuang Er, et al. Study on types and features of the pore in Mesozoic and Upper Palaeozoic shales in Ordos Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2014, 29(2): 14-19.
    [6] Cao T T, Song Z G, Wang S B, et al. A comparative study of the specific surface area and pore structure of different shales and their kerogens[J]. Science China Earth Sciences, 2015, 58(4): 510-522.
    [7] 熊波,李贤庆,马安来,等. 全岩显微组分定量统计及其在烃源岩评价中的应用[J]. 江汉石油学院学报,2001,23(3):16-20.

    Xiong Bo, Li Xianqing, Ma Anlai, et al. Quantitative statistics of whole rock macerals and its application in evaluating source rocks[J]. Journal of Jianghan Petroleum Institute, 2001, 23(3): 16-20.
    [8] 马风华,潘进礼,马瑞赟,等. 六盘山盆地马东山组低熟泥页岩有机质类型划分[J]. 天然气地球科学,2019,30(9):1370-1377.

    Ma Fenghua, Pan Jinli, Ma Ruiyun, et al. Division of immature mud-shale organic type of Madongshan Formation in Liupanshan Basin[J]. Natural Gas Geoscience, 2019, 30(9): 1370-1377.
    [9] 刘忠宝,高波,张钰莹,等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.

    Liu Zhongbao, Gao Bo, Zhang Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31.
    [10] 牟传龙,周恳恳,梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报,2011,85(4):526-532.

    Mu Chuanlong, Zhou Kenken, Liang Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 2011, 85(4): 526-532.
    [11] 郭彤楼,张汉荣. 四川盆地焦石坝页岩气田形成与富集高产模式[J]. 石油勘探与开发,2014,41(1):28-36.

    Guo Tonglou, Zhang Hanrong. Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(1): 28-36.
    [12] 马新华. 四川盆地南部页岩气富集规律与规模有效开发探索[J]. 天然气工业,2018,38(10):1-10.

    Ma Xinhua. Enrichment laws and scale effective development of shale gas in the southern Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 1-10.
    [13] 郭英海,李壮福,李大华,等. 四川地区早志留世岩相古地理[J]. 古地理学报,2004,6(1):20-29.

    Guo Yinghai, Li Zhuangfu, Li Dahua, et al. Lithofacies palaeogeography of the Early Silurian in Sichuan area[J]. Journal of Palaeogeography, 2004, 6(1): 20-29.
    [14] 王曦蒙,刘洛夫,汪洋,等. 川南地区龙马溪组页岩岩相对页岩孔隙空间的控制[J]. 石油学报,2019,40(10):1192-1201.

    Wang Ximeng, Liu Luofu, Wang Yang, et al. Control of lithofacies on pore space of shale from Longmaxi Formation, southern Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(10): 1192-1201.
    [15] Ge X Y, Mou C L, Yu Q, et al. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian), South China, with implications for paleoweathering, provenance, tectonic setting and paleoclimate[J]. Marine and Petroleum Geology, 2019, 103: 646-660.
    [16] 苏文博,李志明,Ettensohn F R,等. 华南五峰组—龙马溪组黑色岩系时空展布的主控因素及其启示[J]. 地球科学:中国地质大学学报,2007,32(6):819-827.

    Su Wenbo, Li Zhiming, Ettensohn F R, et al. Distribution of black shale in the Wufeng-Longmaxi Formations(Ordovician-Silurian), South China: Major controlling factors and implications[J]. Earth Science: Journal of China University of Geosciences, 2007, 32(6): 819-827.
    [17] Yan C N, Jin Z J, Zhao J H, et al. Influence of sedimentary environment on organic matter enrichment in shale: A case study of the Wufeng and Longmaxi Formations of the Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 92: 880-894.
    [18] 吴蓝宇,陆永潮,蒋恕,等. 上扬子区奥陶系五峰组—志留系龙马溪组沉积期火山活动对页岩有机质富集程度的影响[J]. 石油勘探与开发,2018,45(5):806-816.

    Wu Lanyu, Lu Yongchao, Jiang Shu, et al. Effects of volcanic activities in Ordovician Wufeng-Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2018, 45(5): 806-816.
    [19] 蒲泊伶,董大忠,王凤琴,等. 沉积相带对川南龙马溪组页岩气富集的影响[J]. 中国地质,2020,47(1):111-120.

    Pu Boling, Dong Dazhong, Wang Fengqin, et al. The effect of sedimentary facies on Longmaxi shale gas in southern Sichuan Basin[J]. Geology in China, 2020, 47(1): 111-120.
    [20] Wang S F, Dong D Z, Wang Y M, et al. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale: A case study of the Lower Silurian Longmaxi Formation, southern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 28: 691-699.
    [21] 吴清民. 川南威远地区下志留统龙马溪组页岩气地质特征研究[D]. 成都:西南石油大学,2018.

    Wu Qingmin. Study on the geological characteristics of Lower Silurian Longmaxi shale gas formation in Weiyuan area of South Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2018.
    [22] Saif T, Lin Q Y, Butcher A R, et al. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM[J]. Applied Energy, 2017, 202: 628-647.
    [23] 焦淑静,张慧,薛东川,等. 泥页岩有机显微组分的扫描电镜形貌特征及识别方法[J]. 电子显微学报,2018,37(2):137-144.

    Jiao Shujing, Zhang Hui, Xue Dongchuan, et al. Morphological structure and identify method of organic macerals of shale with SEM[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(2): 137-144.
    [24] Pickel W, Kus J, Flores D, et al. Classification of liptinite–ICCP System 1994[J]. International Journal of Coal Geology, 2017, 169: 40-61.
    [25] Khan I, Zhong N N, Luo Q Y, et al. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus Basin, Pakistan[J]. International Journal of Coal Geology, 2020, 217: 103319.
    [26] 王高. 焦煤显微组分分类方法研究[D]. 马鞍山:安徽工业大学,2017.

    Wang Gao. Research on classification method of coking coal macerals[D]. Ma'anshan: Anhui University of Technology, 2017.
    [27] 曾凡刚,程克明,吴朝东. 应用海相镜质组反射率研究华北地区下古生界成熟度[J]. 地质地球化学,1998,26(3):21-24.

    Zeng Fangang, Cheng Keming, Wu Chaodong. Maturity of the Lower Palaeozoic in North China in terms of reflectivity of marine vitrinites[J]. Geology-Geochemistry, 1998, 26(3): 21-24.
    [28] 焦淑静,张慧,薛东川. 三塘湖盆地芦草沟组页岩有机显微组分扫描电镜研究[J]. 电子显微学报,2019,38(3):257-263.

    Jiao Shujing, Zhang Hui, Xue Dongchuan. SEM study on organic macerals of shale in Lucaogou Formation Santanghu Basin[J]. Journal of Chinese Electron Microscopy Society, 2019, 38(3): 257-263.
    [29] 柳广弟,张厚福. 石油地质学[M]. 4版. 北京:石油工业出版社,2009:110-140.

    Liu Guangdi, Zhang Houfu. Petroleum geology[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 110-140.
    [30] 王亚东. 有机质类型及演化特征对页岩油、气富集规律的影响研究[D]. 荆州:长江大学,2016.

    Wang Yadong. The impact of organic matter type and evolution characteristics on the enrichment regularity of shale gas and shale oil[D]. Jingzhou: Yangtze University, 2016.
    [31] 黄冬. 四川盆地南部龙马溪组富有机质页岩储层特征研究[D]. 成都:西南石油大学,2018.

    Huang Dong. Study on the characteristics of organic-rich shale reservoirs in Longmaxi Formation in southern Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2018.
    [32] 何治亮,聂海宽,张钰莹. 四川盆地及其周缘奥陶系五峰组-志留系龙马溪组页岩气富集主控因素分析[J]. 地学前缘,2016,23(2):8-17.

    He Zhiliang, Nie Haikuan, Zhang Yuying. The main factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its adjacent areas[J]. Earth Science Frontiers, 2016, 23(2): 8-17.
    [33] 戴娜,钟宁宁,邓运华,等. 中生代-新生代大陆边缘盆地海相烃源岩成因类型[J]. 石油学报,2015,36(8):940-953.

    Dai Na, Zhong Ningning, Deng Yunhua, et al. Genetic types of marine source rock in Meso-Cenozoic continental margin basins[J]. Acta Petrolei Sinica, 2015, 36(8): 940-953.
    [34] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [35] Langmann B, Zakšek K, Hort M, et al. Volcanic ash as fertiliser for the surface ocean[J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3891-3899.
    [36] 邱振,卢斌,陈振宏,等. 火山灰沉积与页岩有机质富集关系探讨:以五峰组—龙马溪组含气页岩为例[J]. 沉积学报,2019,37(6):1296-1308.

    Qiu Zhen, Lu Bin, Chen Zhenhong, et al. Discussion of the relationship between volcanic ash layers and organic enrichment of black shale: A case study of the Wufeng-Longmaxi gas shales in the Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1296-1308.
    [37] 叶子亿. 四川盆地威远—大足地区龙马溪组富有机质页岩沉积微相研究[D]. 成都:西南石油大学,2017.

    Ye Ziyi. Study on sedimentary microfacies of organic rich shale in Longmaxi Formation in Weiyuan-Dazu area, Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2017.
    [38] 李双建,肖开华,沃玉进,等. 南方海相上奥陶统—下志留统优质烃源岩发育的控制因素[J]. 沉积学报,2008,26(5):872-880.

    Li Shuangjian, Xiao Kaihua, Yujin Wo, et al. Developmental controlling factors of Upper Ordovician-Lower Silurian high quality source rocks in marine sequence, South China[J]. Acta Sedimentologica Sinica, 2008, 26(5): 872-880.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(3)

Article Metrics

Article views(1181) PDF downloads(229) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-07-14
  • Published:  2021-04-23

Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area

doi: 10.14027/j.issn.1000-0550.2020.094
Funds:

National Science and Technology Major Project 2017ZX05008-003-050

Program of Unconventional Oil and Gas Exploration and Development Research Center of Yangtze University, Chuanqing Drilling CQZT-YYQXMB-2020-JS-199

Abstract: The organic matter in shale reservoirs is not only the core factor of hydrocarbon generation, but it also generates porosity. Previous evaluations of organic matter types have shown that the hydrocarbon generation and pore formation capacity of the various types of organic matter are significantly different. However, previous identification and evaluation of organic matter types have mainly used organic geochemical procedures for destructive testing, making it impossible to quantitatively evaluate the type and content distribution of the organic matter on a microscopic scale. This study takes as an example the shale reservoirs of the Silurian Longmaxi Formation in the Weiyuan gas field in the Sichuan Basin, focusing on organic matter enrichment in the Long11 sub-segment using two-dimensional large-area multi-scale combined SEM to produce images of micro-components. The modular automated processing system (MAPS) technique was used for maceral analysis to quantitatively identify types of organic matter and analyze their vertical distribution. It was found that the organic matter in the Long11 sub-segment consists mainly of types I and II1 kerogen, with a predominance of type II1. The change in organic matter type with depth was determined as a sedimentary facies belt. Sublayers Long111 and Long113 were formed in a stranded anoxic graptolite shale microfacies sedimentary environment. Weak hydrodynamic conditions favored enrichment of types I and II1 kerogen; the Long112 and Long114 sublayers were developed in a low oxygen environment and contain graptolite shale microfacies. Strong hydrodynamic conditions were unfavorable to types I and II1 kerogen enrichment and preservation.

JIA YunQian, LIU ZiPing, REN XiaoHai, ZHOU YiBo, ZHENG AiLing, ZHANG Juan, HAN DengLin. Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 341-352. doi: 10.14027/j.issn.1000-0550.2020.094
Citation: JIA YunQian, LIU ZiPing, REN XiaoHai, ZHOU YiBo, ZHENG AiLing, ZHANG Juan, HAN DengLin. Organic Matter Type Differentiation Process and Main Control Mechanism: Case study of the Silurian Longmaxi Formation shale reservoir in Weiyuan area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 341-352. doi: 10.14027/j.issn.1000-0550.2020.094
  • 近年来,页岩油气资源引起全世界的高度重视[1-2]。对于能够自生自储自封闭油气的页岩储层而言,其内部的有机质类型是页岩生烃能力的绝对因素[3],也是影响页岩气富集的重要因素[4]

    页岩储层有机质孔的广泛发育,其所宿主的有机质类型(Ⅰ、Ⅱ、Ⅲ型干酪根)被认为是有机质孔形成演化的关键控制因素之一[5]。因此,关于页岩储层内的有机质类型特征及其分布成为众多学者关注的热点问题。前人研究表明,Ⅰ、Ⅱ型干酪根比Ⅲ型干酪根更容易裂解生烃和产生有机质孔[6],但有关有机质类型的识别及含量分析多采用宏观的有损测定[7-8],因此有关有机质类型的微观识别及成孔效率的原位表征鲜有报道。

    本次研究通过二维大区域多尺度组合电镜成像(MAPS)方法获取页岩储层微观结构图像,通过微观形貌学识别有机质显微组分类型,并采用等间距的显微数点统计方法(Point Counting),对显微图像中有机质组分进行定量统计,运用显微组分分析法计算得到样品中有机质类型及其含量。继而构建有机质类型在垂向上的层间分布模式,并在此基础上,解析其上述分布模式的控制因素。本次研究采用有机岩石学的分类体系,借鉴数字岩芯平台技术,将有机质形貌显微观察与无损定量统计有机地结合在一起,不仅构建了有机质富集机理的宏微观协同分析,为下一步有机岩石学和孔喉结构表征的结合分析奠定了工作基础,也为非常规油气沉积学中有机质富集与优质储层发育的耦合机制提供了技术支撑。

  • 中上扬子地区是我国南方重要的海相盆地,其上发育稳定克拉通盆地,以四川盆地最为典型。从早寒武世开始,盆地总体处于浅海环境,由于上升洋流的影响,使该区形成了有利于页岩和磷质物质沉积的古地理环境[9]。晚奥陶世—早志留世,四川盆地受到川中隆起、雪峰隆起、黔中隆起的包围[10-11],东西南三面包围,形成了一个有利烃源岩的局限滞留海盆环境,造成了“三隆夹一坳”的地势[12-14]图1)。奥陶纪末和志留纪初,发生了两次全球性海侵[15-17]和多期大规模火山活动[18],而以威远为代表的沉积区域,形成了五峰组—龙马溪组页岩。自龙马溪组地层开始沉积初期,威远地区整体位于深水陆棚沉积环境中[19],处于滞留安静的缺氧深水环境[20],其北部靠近川中隆起,水体相对较浅,其余大部分地区水体较深[21]

    Figure 1.  Geological map of Sichuan Basin showing shale thicknesses in Longmaxi Formation (modified from Guo et al. [13], Wang et al. [14])

  • 本次研究选取了17块代表性测试样品,来自威远地区X1、X2、X3三口井志留系龙一1亚段,样品测井深度为2 640~2 950 m。

    鉴于页岩极细粒的沉积组构特征且极强的非均质特征,本次研究采用高精度且视域较大(样品物理尺寸为厘米级)的MAPS(Modular Automated Processing System)扫描技术,该扫描技术是将样品表面区域划分为一系列规整网格,然后对每一网格进行扫描成像,获得一系列二维高精度背散射电子(BSE)扫描图像,之后将所有图像进行拼接,就可以得到一幅完整的二维高精度大视域扫描图像[22]。该技术解决了传统SEM测试视域小、代表性差的缺陷,同时,针对岩芯的无损MAPS扫描图像分析,可以精确反映岩芯内部的微观结构及组分特征。

    整个测试分析均在长江大学储层微观结构演化及数字表征实验室完成,所采用的扫描设备为HELIOS NanoLab 660,电压为5~35 kV、电流为0.01~0.4 nA,识别图像像素大小为0.5~500 nm,扫描样品大小为25 mm×2 mm,相邻拼接小图像间重叠率为6%~8%。

  • 本次研究通过扫描电镜获取的显微组分形貌学特征来判别有机质的显微组分类型[23]

  • 作为海相页岩储层的主要有机成分[24],藻类等生物遗体在还原环境下经过一系列化学作用降解形成了腐泥组沥青质体,其自身没有固定形态,也没有清晰的轮廓,外形多呈棉絮状或云雾状,属于无定形体[25]。在研究层段内腐泥组沥青质体含量较高,常充填于自生矿物孔隙空间或与自生矿物相接触,呈不规则形态(图2)。

    Figure 2.  MAPS scanning image of sapropelinite (resolution 250 nm)

    识别及统计数据表明,研究层段内有机质显微组分以腐泥组为主,平均含量为80.04%。

  • 壳质组主要来源于植物繁殖器官、表皮组织、分泌物等,因此特有的生物形态可以作为壳质组的主要识别依据。壳质组可大致分为三类,分别为孢子体、角质体以及树脂体。其中孢子体主要由植物的孢子形成,多呈圆形、椭圆形、扁环状等生物形貌(图3a),受压后成蠕虫状或线条状(图3b),有时会聚集在一起形成小孢子堆;角质体由植物的初生表皮组织形成[23],具有较强的韧性,常呈弯曲状或条带状(图4a);树脂体被认为是成烃良好的母源物质,主要由植物的树脂、树胶、蜡质和脂肪分泌物等形成[26],形态多呈圆形、椭圆形,轮廓清晰平滑,表面平坦,内部一般无特殊结构(图4b)。

    Figure 3.  MAPS scanning image of exinite (resolution 250 nm)

    Figure 4.  MAPS scanning image of exinite (resolution 250 nm)

    研究层段内不同井不同样品中壳质组含量差异较大,主要集中在X2井 1 4 小层。

  • 镜质组主要由植物的茎、叶和木质纤维组织经凝胶化作用形成,海相镜质组主要由海洋低等植物经腐殖化作用降解而成[27]。扫描电镜下,镜质组颜色较深、轮廓清晰,呈致密、均匀、平坦,宽窄不等的条带状或块状[28]。无结构镜质体中最常见的是均质镜质体,质地均匀、致密,提高放大倍数也没有更细微的结构(图5)。

    Figure 5.  MAPS scanning image of vitrinite (resolution 250 nm): Euvitrinite in well X1 ( L o n g 1 1 2 2 742 m) appears in uniform dense bands

    研究层段内镜质组无结构镜质体零星发育,且未见结构镜质体以及碎屑镜质体发育。

  • 惰质组主要由植物木质纤维素经丝炭化作用转化形成的显微组分,稳定、不活泼,为干酪根中的惰性分子。惰质组中最常见的显微组分为丝质体,是植物细胞保存最好的显微组分,扫描电镜下,图像亮度较高,丝质体的纵断面呈纤维状,常顺层排列[23]图6)。

    Figure 6.  MAPS scanning image of inertinite (resolution 250 nm): fibrous layer of fusinite in well X3 ( L o n g 1 1 3 2 653.4 m)

    研究层段内惰质组含量极少,其中 1 1 小层含量最少, 1 4 小层含量较多。

  • 在明确有机质不同显微组分含量的基础上,据T指数法公式计算得到干酪根类型(表1):

    T=(100A+50B-75C-100D)/100[29] (1)

    式中:A、B、C、D分别为腐泥组、壳质组、镜质组和惰质组的含量。

    T >80 80~40 40~0 <0
    干酪根类型 Ⅰ型 1 2 Ⅲ型

    Table 1.  Criteria for classifiying organic matter types in source rocks

    其中,Ⅰ型干酪根主要来自藻类,生烃潜力巨大;Ⅱ型干酪根主要来自海相浮游生物或陆源孢子、花粉、树脂等;Ⅲ型主要来自陆源木质纤维植物碎屑等,其生烃潜力较差[30]

  • MAPS图像具有高精度大视域的特点,如X1-18样品大小为直径25 mm、厚2 mm,250 nm像素大小的拼接图像有1 188张MAPS小图像(分辨率:250 nm)。由于样品尺度小、相邻图像成分相似、总图像数量过大,因此将拼接的1 188张MAPS小图像进行等距取点统计,来统计选取点处的显微组分(图7)。

    Figure 7.  MAPS scanning image isometric point statistics diagram of X1⁃18 sample and its kerogen type determination diagram (part)

    将选取点得到的132个MAPS小图像进行有机质显微组分识别,根据计算结果得到该样品Ⅰ型干酪根占28.79%,Ⅱ1型干酪根占57.58%,Ⅱ2型干酪根占9.09%,Ⅲ型干酪根占4.55%,即X1-18样品主要是以Ⅱ1型干酪根为主。基于此,得到了X1、X2两口井13个样品的不同有机质类型的含量统计数据(表2)。

    井号 深度/m 层位 Ⅰ型干酪根相对含量/% 1型干酪根相对含量/% 2型干酪根相对含量/% Ⅲ型干酪根相对含量/% TOC含量/%
    X1 2 721.6 龙一 1 4 14.58 71.53 13.19 0.69 3
    X1 2 728.5 龙一 1 4 53.03 44.70 2.27 0 4.18
    X1 2 734.2 龙一 1 3 56.91 41.27 1.82 0 4
    X1 2 737.6 龙一 1 3 28.79 57.58 9.09 4.55 2.28
    X1 2 738.7 龙一 1 3 5.33 86.87 7.83 0 2.28
    X1 2 742.0 龙一 1 2 4.86 79.17 13.89 2.08 3.04
    X1 2 746.0 龙一 1 1 39.10 46.54 12.95 1.41 4.5
    X1 2 748.0 龙一 1 1 85.26 14.10 0.64 0 5.04
    X2 2 923.2 龙一 1 4 6.29 89.51 4.20 0 3.21
    X2 2 936.1 龙一 1 3 53.47 46.53 0 0 4.25
    X2 2 943.6 龙一 1 2 41.84 56.13 2.03 0 2.75
    X2 2 945.9 龙一 1 1 56.06 42.42 1.52 0 4.69
    X2 2 946.7 龙一 1 1 53.97 45.27 0.76 0 4.52

    Table 2.  Different types of kerogen content proportion in each sample from wells X1 and X2

    在此基础上,借鉴中国石油川庆钻探工程有限公司页岩气勘探开发项目经理部提供的样品总有机碳测定数据,得到了不同类型干酪根的全岩含量,研究层段各有机质类型中,以Ⅰ型和Ⅱ1型干酪根为主,为研究区最主要两种有机质类型,Ⅱ2型干酪根含量较少,至于Ⅲ型干酪根仅在X1井中部分样品中零星可见,这一认识与前人在周缘地区相同层段通过干酪根镜检实验等研究结果也相吻合[31-32]

    垂向分布上,Ⅰ型干酪根主要富集于 1 1 1 3 小层,其中 1 1 小层最高,而在 1 2 1 4 小层明显减少;Ⅱ1型干酪根主要富集于 1 2 1 4 小层,而在 1 1 1 3 小层含量较低。Ⅱ1型干酪根相对含量和Ⅰ型干酪根相对含量在垂向变化上基本呈镜像对称,这是由于Ⅰ型和Ⅱ1型干酪根相对含量占总含量的绝大部分所致(图89)。

    Figure 8.  Relative content and content relation diagrams of different sublayers and organic matter types in well X1, Weiyuan area

    Figure 9.  Relative content and content relation diagrams of different sublayers and organic matter types in well X2, Weiyuan area

    在单井垂向分布上,Ⅰ型和Ⅱ1型干酪根相对含量和绝对含量大致都呈现 1 1 1 3 小层更高,而 1 2 1 4 小层较低的规律(图1011)。

    Figure 10.  Relative content and content relation diagrams of different sublayers and types I and II1 kerogen, well X1, Weiyuan area

    Figure 11.  Relative content and content relation diagrams of different sublayers and types I and II1 kerogen, well X2, Weiyuan area

  • 作为干酪根形成演化的重要物质基础,沉积有机质大致可以区分为腐泥型和腐殖型两大类。海洋环境中的浮游生物及孢子等在缺氧条件下能够形成腐泥型有机质,演化成Ⅰ型和Ⅱ1型干酪根;而腐殖型有机质主要由陆源植物在有氧条件下形成,之后演化形成Ⅱ2型和Ⅲ型干酪根[29]。威远地区志留系龙一1亚段存在大量指示藻类等水生生物的腐泥组,而相对指示陆源生物的壳质组、镜质组、惰质组含量极少[33]

    晚奥陶世五峰组—早志留世龙马溪组时期,研究区处于“三隆夹一坳”的闭塞环境,水动力弱、还原性强、具有陆源营养输入,且存在两次全球性海平面上升以及多期火山活动[34]。作为扬子地块与华夏地块碰撞形成的重要一期火山活动,志留纪龙马溪组一段沉积早期经历火山灰入水后,可迅速释放铁盐等营养物质,形成富营养海盆,促进藻类生物繁殖,同时,火山作用带来了大量的还原性气体,产生极度缺氧的环境提高了有机质的埋藏量和保存率[35-36]。龙一1亚段各小层间还原性的变化与黄冬[31]通过U/Th参数测定所显示的规律相符(表3)。

    龙一1亚段 平均U/Th 还原性
    龙一 1 4 小层 0.56 相对较弱
    龙一 1 3 小层 0.92 相对龙一 1 2 、龙一 1 4 小层较强
    龙一 1 2 小层 0.78 相对龙一 1 1 、龙一 1 3 小层较弱
    龙一 1 1 小层 3.23 相对较强

    Table 3.  Average U/Th value for each sublayer of Long11 sub⁃segment[31]

    第一次海进结束后,龙马溪组地层开始沉积。 1 1 小层处于海平面上升结束(图12a),水体较深且能量弱;海平面的快速上升,限制了陆源物质的大规模注入,使得海底缺氧环境更好地保存[38];而洋流上升,富含营养的深层海水上涌,致使海水中浮游生物大量繁殖,加之火山活动的影响,整体上使得得藻类生物大量富集,并造成了以腐泥组为代表的Ⅰ型干酪根含量高。此外,缺氧的还原环境,微弱的水动力,也利于已形成有机质的良好保存。

    Figure 12.  Sedimentary development pattern of the first subsection of the Longmaxi Formation in the Weiyuan area (modified from Ye[37])

    1 2 小层形成于第一次海退后(图12b),水体变浅,陆源物质较 1 1 小层含量高,陆源有机质含量增加,该小层镜质组、惰质组含量较 1 1 小层高,使得层段内Ⅰ型和Ⅱ1型干酪根相对含量较低。此外,深层海水和表层海水进行了混合,致使底部缺氧环境遭受破坏,还原环境较弱,造成了小层内有机质保存条件变差[36]

    1 3 小层处于第二次海进结束(图12c),陆源有机质输入较少,水体较深、水下环境稳定,保持了长时间的深水缺氧环境,为有机质富集、保存提供了有利场所,易沉积富有机质页岩。即,良好的沉积环境和保存条件使得腐泥组含量较多,镜质组、惰质组含量较少,Ⅰ型和Ⅱ1型干酪根含量较高。

    1 4 小层处于第二次海退后期(图12d),水体缓慢变浅,水动力较强,陆源有机质含量增加,不利于有机质的保存,使得小层内Ⅰ型和Ⅱ1型干酪根含量较低。

    综上,区域构造稳定、环境闭塞且海平面上升等造成的水动力弱、极度缺氧,使得有机质保存条件良好;洋流、火山活动等形成的富营养环境促进藻类等浮游生物大量繁殖,使得龙一1亚段Ⅰ型干酪根相对含量高,尤其是 1 1 小层;海平面下降、水体变浅,使得陆源物质增加且有机质保存较差, 1 2 1 4 小层Ⅰ型和Ⅱ1型干酪根含量较低。即良好的保存条件至关重要,水动力弱的深水缺氧环境是其主控因素,有机成分的存在是其必要条件,洋流、火山活动、陆源营养物质供给等因素是利于有机质富集的辅助条件。

  • (1) 研究区龙一1亚段有机质类型整体上为Ⅰ型和Ⅱ1型干酪根,其中Ⅱ1型干酪根占主导地位,Ⅱ2型、Ⅲ型干酪根含量极少。其中,Ⅰ型干酪根含量、Ⅰ型和Ⅱ1型干酪根主要富集于 1 1 1 3 小层,且在 1 1 小层含量最高,而在 1 2 1 4 小层含量较低。

    (2) 有机质类型在单井垂向上的分布规律是火山活动、海平面升降、洋流上升、水动力条件、构造条件、陆源有机质输入等因素共同影响的。水动力很弱的强滞留缺氧富笔石页岩微相沉积环境下,Ⅰ型和Ⅱ1型干酪根含量高;而水动力较强、海水较浅、氧气增加的中滞留贫氧含笔石页岩微相沉积环境下,Ⅰ型和Ⅱ1型干酪根含量较低。

    (3) 此外,保存条件对于有机质富集至关重要,水动力弱的深水缺氧环境是其富集的主控因素,而洋流、火山活动、陆源营养物质供给等因素是利于有机质富集的辅助条件。

Reference (38)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return