Advanced Search
Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents

WANG XinYao, JIN ZhenKui, GUO QiHeng, WANG JinYi, REN YiLin, WANG Ling, WANG ZhaoFeng. Genesis of Calcite in Nonmarine Shale of the Lower Jurassic Da’anzhai Member, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712. doi: 10.14027/j.issn.1000-0550.2020.078
Citation: WANG XinYao, JIN ZhenKui, GUO QiHeng, WANG JinYi, REN YiLin, WANG Ling, WANG ZhaoFeng. Genesis of Calcite in Nonmarine Shale of the Lower Jurassic Da’anzhai Member, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712. doi: 10.14027/j.issn.1000-0550.2020.078

Genesis of Calcite in Nonmarine Shale of the Lower Jurassic Da’anzhai Member, Northeastern Sichuan

doi: 10.14027/j.issn.1000-0550.2020.078
Funds:

National Science and Technology Major Project 2017ZX05036004-002

  • Received Date: 2020-05-18
  • Rev Recd Date: 2020-10-10
  • Publish Date: 2021-06-10
  • Shell mudstone interbedded with limestone from the Da′anzhai member of Sichuan Basin was studied in this investigation of the genesis of calcite in nonmarine shale and its influence on reservoirs. X-ray diffraction (XRD) analysis and observation of thin sections and cores, cathodoluminescence, and electron probe microanalysis (EPMA) test methods were used to identify the calcites transformed by aragonite, and those formed by cementation and recrystallization. In the syngenetic and early diagenetic period, aragonite in the shells was transformed into micritic non-ferroan calcite, evident as orange-yellow cathode luminescence. In the early diagenetic period, the first generation of non-ferroan calcite cement was formed at the edges of the shells. In late diagenesis, granular ferroan calcite cement was formed in the intergranular pores, and the cathode luminescence appears dark. Some micritic calcite in the shells was transformed into pitted fine crystalline or columnar calcite. Depending on its form, the calcite underwent transformation, compaction, dissolution, cementation and recrystallization in the diagenetic evolution process. Dissolution improves the physical properties of the reservoir, but compaction, cementation and recrystallization processes destroy the reservoir space. Measures of fracture density indicate that the most highly developed lamellation fractures are found in the Da′anzhai member in the Yuanba area, whereas mainly lamellation fractures and dissolution fractures are found in the Da′anzhai member of the Fuling area. The study shows that the presence of calcite shells has benefited the formation of the latter fracture types.
  • [1] 邱振, 邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报, 2020, 38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1):1-29.
    [2] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报,2020,41(1):1-12.

    Zou Caineng, Pan Songqi, Jing Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12.
    [3] 朱彤,包书景,王烽. 四川盆地陆相页岩气形成条件及勘探开发前景[J]. 天然气工业,2012,32(9):16-21.

    Zhu Tong, Bao Shujing, Wang Feng. Pooling conditions of non-marine shale gas in the Sichuan Basin and its exploration and development prospect[J]. Natural Gas Industry, 2012, 32(9): 16-21.
    [4] 何发岐,朱彤. 陆相页岩气突破和建产的有利目标:以四川盆地下侏罗统为例[J]. 石油实验地质,2012,34(3):246-251.

    He Faqi, Zhu Tong. Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2012, 34(3): 246-251.
    [5] 黄东,杨光,杨智,等. 四川盆地致密油勘探开发新认识与发展潜力[J]. 天然气地球科学,2019,30(8):1212-1221.

    Huang Dong, Yang Guang, Yang Zhi, et al. New understanding and development potential of tight oil exploration and development in Sichuan Basin[J]. Natural Gas Geoscience, 2019, 30(8): 1212-1221.
    [6] Wang X Y, Jin Z K, Zhao J H, et al. Depositional environment and organic matter accumulation of Lower Jurassic nonmarine fine-grained deposits in the Yuanba area, Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2020, 116: 104352.
    [7] 朱彤,王烽,俞凌杰,等. 四川盆地页岩气富集控制因素及类型[J]. 石油与天然气地质,2016,37(3):399-407.

    Zhu Tong, Wang Feng, Yu Lingjie, et al. Controlling factors and types of shale gas enrichment in the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(3): 399-407.
    [8] 谭梦琪,刘自亮,沈芳,等. 四川盆地回龙地区下侏罗统自流井组大安寨段混积岩特征及模式[J]. 沉积学报,2016,34(3):571-581.

    Tan Mengqi, Liu Ziliang, Shen Fang, et al. Features and model of mixed sediments of Da’anzhai member in Lower Jurassic Ziliujing Formation, Huilong area, Sichuan Basin[J]. Acta Sedimentologica Sinica, 2016, 34(3): 571-581.
    [9] 魏祥峰,黄静,李宇平,等. 元坝地区大安寨段陆相页岩气富集高产主控因素[J]. 中国地质,2014,41(3):970-981.

    Wei Xiangfeng, Huang Jing, Li Yuping, et al. The main factors controlling the enrichment and high production of Da’anzhai member continental shale gas in Yuanba area[J]. Geology in China, 2014, 41(3): 970-981.
    [10] 冯荣昌,吴因业,陶士振,等. 四川盆地下侏罗统大安寨段沉积微相特征及对储层的控制[J]. 石油实验地质,2015,37(3):320-327.

    Feng Rongchang, Wu Yinye, Tao Shizhen, et al. Sedimentary microfacies characteristics and their control on reservoirs in Daanzhai member, Lower Jurassic, Sichuan Basin[J]. Petroleum Geology & Experiment, 2015, 37(3): 320-327.
    [11] 李英强,何登发. 四川盆地及邻区早侏罗世构造—沉积环境与原型盆地演化[J]. 石油学报,2014,35(2):219-232.

    Li Yingqiang, He Dengfa. Evolution of tectonic-depositional environment and prototype basins of the Early Jurassic in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2014, 35(2): 219-232.
    [12] 厚刚福,倪超,陈薇,等. 川中地区大安寨段介壳滩沉积特征及控制因素[J]. 西南石油大学学报(自然科学版),2017,39(1):25-34.

    Hou Gangfu, Ni Chao, Chen Wei, et al. Sedimentary characteristics and factors controlling the shell beach in the Da’anzhai member of the central Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 25-34.
    [13] 田泽普,宋新民,王拥军,等. 考虑基质孔缝特征的湖相致密灰岩类型划分:以四川盆地中部侏罗系自流井组大安寨段为例[J]. 石油勘探与开发,2017,44(2):213-224.

    Tian Zepu, Song Xinmin, Wang Yongjun, et al. Classification of lacustrine tight limestone considering matrix pores or fractures: A case study of Da’anzhai member of Jurassic Ziliujing Formation in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(2): 213-224.
    [14] 吕文雅,曾联波,张俊辉,等. 川中地区中下侏罗统致密油储层裂缝发育特征[J]. 地球科学与环境学报,2016,38(2):226-234.

    Wenya Lü, Zeng Lianbo, Zhang Junhui, et al. Development characteristics of fractures in the Middle-Lower Jurassic tight oil reservoirs in central Sichuan Basin[J]. Journal of Earth Sciences and Environment, 2016, 38(2): 226-234.
    [15] 何志勇,刘海涛,肖伟,等. 四川盆地元坝地区下侏罗统介壳灰岩储层分布预测[J]. 现代地质,2017,31(1):141-149.

    He Zhiyong, Liu Haitao, Xiao Wei, et al. Distribution prediction of Lower Jurassic shell limestone reservoir in Yuanba area of Sichuan Basin[J]. Geoscience, 2017, 31(1): 141-149.
    [16] 王拥军,童敏,孙圆辉,等. 四川盆地大安寨段介壳灰岩致密油储层特征[J]. 石油学报,2019,40(1):42-55.

    Wang Yongjun, Tong Min, Sun Yuanhui, et al. Reservoir characteristics of Da’anzhai shell limestone tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2019, 40(1): 42-55.
    [17] 周广照,许思勇,冉晓军,等. 川中地区大安寨段页岩储层孔隙结构特征与主控因素分析[J]. 西北大学学报(自然科学版),2018,48(5):95-105.

    Zhou Guangzhao, Xu Siyong, Ran Xiaojun, et al. Pore structure characteristics and control factors of shale in the Da'anzhai Formation centrale of Sichuan Basin[J]. Journal of Northwest University (Natural Science Edition), 2018, 48(5): 95-105.
    [18] Folk R L. Some aspects of recrystallization in ancient limestones[M]//Pray L C, Murray R C. Dolomitization and limestone diagenesis. Tulsa: SEPM Society for Sedimentary Geology, 1965: 14-48.
    [19] 田亚铭,施泽进,李庭艳,等. 姬塬地区长8油层组碳酸盐胶结物特征与成因[J]. 西安石油大学学报(自然科学版),2011,26(3):26-31.

    Tian Yaming, Shi Zejin, Li Tingyan, et al. Characteristics and origin of the carbonate cements of Chang 8 member in Jiyuan area, Ordos Basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2011, 26(3): 26-31.
    [20] 强子同,杨植江,王建民,等. 大安寨石灰岩的成岩作用与成岩圈闭[J]. 地球化学,1981(3):232-241.

    Jiang Zitong, Yang Zhijiang, Wang Jianmin, et al. Diagenesis and diagenetic trap of Da’anzhai limestone[J]. Geochimica, 1981(3): 232-241.
    [21] 程峰,于少勇,邢德敬,等. 阴极发光技术在储层研究中的应用[J]. 断块油气田,1998,5(6):17-19.

    Cheng Feng, Yu Shaoyong, Xing Dejing, et al. The application of cathodoluminescence technology in studying oil and gas reservoirs[J]. Fault-Block Oil & Gas Field, 1998, 5(6): 17-19.
    [22] Carroll D. Role of clay minerals in the transportation of iron[J]. Geochimica et Cosmochimica Acta, 1958, 14(1/2): 1-16, IN1, 17-28.
    [23] Oldershaw A E, Scoffin T P. The source of ferroan and non‐ferroan calcite cements in the Halkin and Wenlock Limestones[J]. Geological Journal, 2007, 5(2): 309-320.
    [24] 胡伟光,易小林,范春华. 四川盆地元坝地区大安寨段储层裂缝预测[J]. 物探化探计算技术,2018,40(5):565-572.

    Hu Weiguang, Yi Xiaolin, Fan Chunhua. Fracture prediction of Daanzhai member in Yuanba area, Sichuan Basin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(5): 565-572.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)  / Tables(1)

Article Metrics

Article views(528) PDF downloads(127) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-05-18
  • Revised:  2020-10-10
  • Published:  2021-06-10

Genesis of Calcite in Nonmarine Shale of the Lower Jurassic Da’anzhai Member, Northeastern Sichuan

doi: 10.14027/j.issn.1000-0550.2020.078
Funds:

National Science and Technology Major Project 2017ZX05036004-002

Abstract: Shell mudstone interbedded with limestone from the Da′anzhai member of Sichuan Basin was studied in this investigation of the genesis of calcite in nonmarine shale and its influence on reservoirs. X-ray diffraction (XRD) analysis and observation of thin sections and cores, cathodoluminescence, and electron probe microanalysis (EPMA) test methods were used to identify the calcites transformed by aragonite, and those formed by cementation and recrystallization. In the syngenetic and early diagenetic period, aragonite in the shells was transformed into micritic non-ferroan calcite, evident as orange-yellow cathode luminescence. In the early diagenetic period, the first generation of non-ferroan calcite cement was formed at the edges of the shells. In late diagenesis, granular ferroan calcite cement was formed in the intergranular pores, and the cathode luminescence appears dark. Some micritic calcite in the shells was transformed into pitted fine crystalline or columnar calcite. Depending on its form, the calcite underwent transformation, compaction, dissolution, cementation and recrystallization in the diagenetic evolution process. Dissolution improves the physical properties of the reservoir, but compaction, cementation and recrystallization processes destroy the reservoir space. Measures of fracture density indicate that the most highly developed lamellation fractures are found in the Da′anzhai member in the Yuanba area, whereas mainly lamellation fractures and dissolution fractures are found in the Da′anzhai member of the Fuling area. The study shows that the presence of calcite shells has benefited the formation of the latter fracture types.

WANG XinYao, JIN ZhenKui, GUO QiHeng, WANG JinYi, REN YiLin, WANG Ling, WANG ZhaoFeng. Genesis of Calcite in Nonmarine Shale of the Lower Jurassic Da’anzhai Member, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712. doi: 10.14027/j.issn.1000-0550.2020.078
Citation: WANG XinYao, JIN ZhenKui, GUO QiHeng, WANG JinYi, REN YiLin, WANG Ling, WANG ZhaoFeng. Genesis of Calcite in Nonmarine Shale of the Lower Jurassic Da’anzhai Member, Northeastern Sichuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 704-712. doi: 10.14027/j.issn.1000-0550.2020.078
  • 随着非常规油气的成功勘探与开发,非常规油气沉积学取得了快速发展。前人研究认为泥页岩组成矿物的成因分析,可为甜点区(段)的源岩、储集岩等特征分析及相关地质事件追溯提供基础信息[1]。然而,陆相湖盆泥页岩成分复杂且储层非均质性强,对优质储层发育机制的研究提出了挑战。

    通过老井复查和评价认识,已在四川盆地下侏罗统大安寨段湖相页岩中获得了良好的天然气显示和工业气流,展现了其良好的勘探潜力和前景[2-5]。学者们针对其岩石类型,沉积环境和有机质富集机理开展了大量研究[6-10]。研究发现,大安寨段页岩与邻近地层的岩石形成于不同的构造背景和沉积环境,且矿物成分不同,大安寨段页岩不仅包含石英和黏土矿物,还富集了大量以方解石为主的碳酸盐矿物。然而,目前针对大安寨段方解石矿物的成岩演化和其对储层影响的相关研究较少。鉴于此,本文以川东北下侏罗统大安寨段陆相页岩为研究对象,依据岩芯描述、薄片观察、阴极发光和电子探针测试手段,识别方解石矿物成因,分析其对储层物性的影响。为探讨陆相页岩储层的成岩演化,预测有利储层的分布提供理论依据。

  • 四川盆地位于扬子地台西部,以西部龙门山,北部米仓山和大巴山,东部齐耀山,南部娄山为界[3,11]。盆地面积为1.9×105 km2,是一个在上扬子克拉通基础上发展起来的叠合盆地,可划分为4个。一级构造单元:川西坳陷、川中隆起、川东高陡和川南低陡构造区(图1)。四川陆相盆地早侏罗世时期,龙门山逆冲推覆作用减弱,米仓山—大巴山逆冲推覆运动活跃,使得盆地沉积中心由龙门山前缘向米仓山—大巴山过渡,沉积环境以滨湖—浅湖沉积环境为主。下侏罗统自下而上可以分为珍珠冲段、东岳庙段、马鞍山段和大安寨段,总厚度为300~400 m。其中,大安寨段沉积期盆地沉降速度大于沉积物沉积速率,形成了四川盆地早侏罗世最大的湖盆,且发育大量瓣鳃类生物介壳化石[6,11],沉积环境以碳酸盐浅湖和碳酸盐半深湖为主[6,12]。大安寨段地层由黑色页岩、灰黑色介壳泥岩和灰色介壳灰岩组成,且分布较广[6,9-11]。介壳灰岩发育于浅湖,页岩、和介壳泥岩发育于半深湖[6,12]。纵向上,生物介壳灰岩与页岩互层沉积,构成了大安寨段独特的岩石组合特征。

    Figure 1.  Tectonic map and lithological characteristics of the Sichuan Basin

    元坝与涪陵地区构造上位于四川盆地东北部。其中,元坝地区位于川西坳陷构造区和川中隆起构造交界,涪陵地区位于川东高陡褶皱带。元坝、涪陵大安寨段地层厚度介于70~138 m,且具有良好的油气显示。如元坝21井大安寨段测试获得的工业气流为5×105 m3/d,涪陵水平井获的低产气流为1.4×104~1.7×104 m3/d[4,9]。研究发现,大安寨段页岩裂缝发育,物性较好,可作为良好的陆相页岩气储层[10,13-17]

  • 根据研究区大安寨段陆相地层页岩样品的X-射线衍射矿物组成分析可知,页岩的主要组成矿物包括石英、黏土矿物、碳酸盐矿物和少量的长石、黄铁矿。石英含量为15.3%~66.2%,平均为37.1%,黏土矿物含量介于7.9%~55.7%,平均为36.8%,碳酸盐矿物变化较大,含量介于0~63.8%,平均为21.1%(图2)。其中,碳酸盐矿物主要为方解石,白云石较少。

    Figure 2.  Mineralogy triangle diagram of the Da'anzhai member shale

    通过观察岩芯发现,大安寨段介壳泥岩和介壳灰岩中存在大量瓣鳃类介壳生物化石。介壳生物可被茜素红溶液染色,偏光显微镜下呈红色,说明其主要成分为方解石(图3)。除此之外,还可在显微镜下见到方解石胶结物和重结晶方解石。

    Figure 3.  Shell limestone interbedded with shale in the Da′anzhai member

  • 前人研究认为生物化学沉淀的文石构成了瓣鳃类生物壳[18]。在同生期和成岩早期,生物介壳中的文石转化为泥晶无铁方解石,生物介壳形态保持不变。这一过程只发生晶格和晶形的变化,不发生化学成分的变化。

    根据化学组成FeO的含量,可以将方解石类型划分为无铁方解石(0~0.5% FeO),铁方解石(0.5%~3.5% FeO)[19-20]。也可根据方解石的阴极发光颜色区分方解石类型。由于铁作为猝灭剂抑制发光,阴极发光下的铁方解石颜色较暗,而无铁方解石为橙黄色[21]。研究区大安寨段内介壳灰岩的生物介壳在阴极发光下多数表现为橙黄色,说明矿物成分为无铁方解石(图4)。介壳泥岩中,生物介壳边缘常存在自生交代石英,同时介壳在阴极发光下为暗色,说明此介壳成分为铁方解石。统计发现,整个大安寨段的生物介壳几乎都发生了文石转化作用,形成了大量介壳形态的泥晶方解石。

    Figure 4.  Plane⁃polarized light and cathodoluminescence characteristics of shell in shell mudstone

  • 根据薄片观察与电子探针分析,生物介壳间存在早晚两期方解石胶结物,即早期生成的无铁方解石胶结物和晚期生成的铁方解石胶结物。在成岩作用早期,生物介壳发生溶解作用,并在粒间孔隙中围绕着介壳沉淀出第一世代的纤维状无铁方解石胶结物,阴极发光下为橙黄色。成岩作用晚期,析出第二世代呈颗粒状的铁方解石胶结物,阴极发光较暗(图5)。方解石胶结物充填岩石孔隙,导致储集空间减少。通过介壳灰岩中无铁方解石和铁方解石的空间关系也能佐证其沉淀时间。电子探针分析发现,介壳灰岩中铁方解石充填在无铁方解石裂缝中(图6表1)。因此,铁方解石胶结物的沉淀时间要晚于无铁方解石。

    Figure 5.  Calcite cement of shell mudstone in the Da′anzhai member of well YB273

    Figure 6.  Electron probe microanalysis of shell limestone in the Da′anzhai member of well XL101 (2 126.17 m): (a) shell and cement all iron⁃free calcite; fractures with iron calcite infill; (b) fractures with iron calcite infill

    测点 SrO SiO2 Al2O3 MgO CaO FeO MnO 矿物
    6a-1 0.10 0.01 0.03 0.35 53.92 0.80 0.05 铁方解石
    6a-2 0.16 0.26 0.15 0.25 53.72 0.00 0.00 无铁方解石
    6a-3 0.05 1.10 0.88 0.49 51.07 1.18 0.05 铁方解石
    6a-4 0.19 82.24 5.99 0.53 0.39 0.70 0.00 黏土矿物
    6a-5 0.03 0.01 0.00 0.26 54.64 0.57 0.02 铁方解石
    6a-6 0.08 0.00 0.00 0.19 54.69 0.02 0.02 无铁方解石
    6b-1 0.13 0.02 0.00 0.39 52.53 0.89 0.06 铁方解石
    6b-2 0.22 0.02 0.00 0.35 53.88 0.02 0.02 无铁方解石
    6b-3 0.08 0.58 0.25 0.25 53.64 0.13 0.00 无铁方解石
    7a-1 0.16 54.71 24.54 3.38 0.31 6.88 0.03 黏土矿物
    7a-2 0.23 0.00 0.00 0.02 56.37 1.02 0.00 铁方解石
    7a-3 0.07 0.09 0.01 0.57 54.44 1.83 0.08 铁方解石
    7a-4 0.26 100.86 0.15 0.01 0.26 0.00 0.00 石英
    7a-5 0.25 100.13 0.14 0.02 0.265 0.197 0.002 石英
    7b-1 0.11 1.02 0.33 0.14 55.03 0.09 0.01 无铁方解石
    7b-2 0.03 0.02 0.04 0.42 56.87 0.40 0.01 无铁方解石

    Table 1.  Electron probe analyses of different carbonate minerals in shale

  • 在部分生物介壳内部或附近可见细晶方解石和柱状方解石(图45)。这是由于方解石介壳溶蚀后,页岩黏土矿物含量较高,阻碍了Ca2+以及 C O 3 2 - 运移,导致其浓度升高。在成岩晚期,生物介壳内或附近发生碳酸盐矿物重结晶。介壳泥晶方解石新生变形为呈镶嵌接触的斑块状细晶方解石或柱状方解石,且残留了原生物介壳特征(图4图5a,b)。镶嵌接触的重结晶方解石的晶间孔隙较小,降低了岩石孔隙度。

  • 观察大安寨段页岩岩芯和薄片发现,介壳方解石不仅发生过大规模的转化作用,而且多数介壳平行排列,弯曲变形或破裂,说明介壳方解石受压实作用影响强烈(图4)。陆相页岩在成岩过程中,受到大气水淋滤或有机酸溶解,可在各个成岩阶段发生溶解作用。大安寨段页岩碳酸盐矿物含量较多,部分生物介壳存在溶解现象(图5)。在成岩早期,部分文石质介壳被溶解,在文石边缘沉淀形成第一世代的无铁方解石胶结物。成岩作用晚期,岩石受到溶解作用,方解石产生溶孔或溶蚀缝,可被黏土矿物、有机质或第二世代的铁方解石胶结物充填。与此同时,介壳中的泥晶方解石在重结晶作用下形成大量的细晶或柱状方解石。

    除此之外,分析电子探针测点数据发现,介壳灰岩或泥岩中与黏土矿物接触的生物介壳多为铁方解石(表1、图4~7),阴极发光常为暗色。而在黏土矿物接触较少的生物介壳多为无铁方解石,阴极发光常为橙黄色(图4~7)。综合页岩成岩演化过程中黏土矿物的转化作用认为,黏土矿物携带的Fe2+与无铁方解石结合形成铁方解石。随着页岩埋藏深度的增加,成岩演化程度增加,蒙脱石向伊利石转化,析出Na+、Ca2+、Fe2+和Mg2+,可吸附在黏土矿物上。在压实作用下,黏土矿物上吸附的Fe2+,可与黏土矿物附近的方解石作用形成铁方解石。

    Figure 7.  Electron probe microanalysis of Da′anzhai member at well FY1

    因此,在成岩晚期,携带Fe2+的孔隙水在压实作用下,也可以沿裂缝运移,与孔隙水接触的方解石作用形成铁方解石(图7)。这一结论与Carroll[22]的观点相符,Carroll[22]认为黏土矿物是铁进入沉积环境的重要载体,其以下列方式携带铁:作为黏土矿物的基本组成成分;作为晶格内的组分,以氧化铁膜的形式吸附在黏土矿物表面[22-23]

  • 大安寨段方解石经历了多期次,多类型的成岩作用,包括溶解、压实、胶结和重结晶作用。溶解作用可以发生在成岩的各个阶段。在同生期和成岩早期,大气淡水溶解作用具有选择性,溶解岩石中的不稳定成分如文石,可形成溶模孔隙;成岩晚期,非选择溶解方解石,形成溶孔,溶缝。因此溶解作用可以产生次生孔隙,改善储层的物性。

    随着沉积物埋藏深度逐渐增加,在压实成岩作用下,沉积物变得致密,岩石孔隙度降低。压实作用改变了岩石内部结构,是破坏储集空间最直接的成岩作用。自生矿物从粒间孔隙中沉淀,并将矿物颗粒粘结起来,减少原生孔隙,降低孔隙度。因此,胶结作用也会减少页岩的储集空间。除此之外,部分大安寨段页岩中的方解石由于重结晶作用,占据孔隙空间,也会导致孔隙度降低,储集空间减少。

  • 通过薄片和岩芯观察可知,方解石介壳有利于裂缝发育。层理缝常常沿生物介壳长轴边缘分布(图4)。又因为方解石化学性质不稳定,介壳灰岩经历溶解作用形成溶孔或溶蚀缝[14,24]图8)。

    Figure 8.  Types of fractures of the Da′anzhai member in northeast Sichuan, well YL4

    研究区发育层理缝、溶蚀缝、高角度构造缝(>30°)和低角度构造缝(<30°)。层理缝和溶蚀缝多出现在生物介壳大量发育的页岩中。元坝地区大安寨段以介壳泥岩与页岩为主,裂缝较多。其中,层理缝最多,沿介壳发育,线密度达2.6条/m,低角度构造缝,高角度构造缝依次减少(图9);涪陵地区大安寨段中介壳灰岩较多,溶蚀缝增加。裂缝以层理缝和溶蚀缝为主,构造缝较少。其中,层理缝线密度达3.7条/m,溶蚀缝线密度达2.7条/m(图9)。大安寨段层理缝和溶蚀缝发育的特征,对其页岩油气富集和开发具有重要意义。在页岩与灰岩互层段,这些以层理缝和溶蚀缝为主的裂缝体系构成了相互交织的网状系统,为页岩油气的流动提供渗流通道,有利于油气开发。

    Figure 9.  Comparison of fracture linear density and frequency of Da′anzhai member of well XL101

    综合陆相页岩中方解石成因和方解石对储层影响的分析,可以发现在页岩储层的整个成岩过程中,矿物的变化都影响着储集物性的变化。方解石不同的成岩作用增加或减少储集空间,而方解石的含量又能控制裂缝的发育。因此,通过研究页岩中方解石的分布和成因类型,可以判断储层储集空间的类型和大小,从而预测非常规页岩储层的分布。

  • (1) 四川盆地下侏罗统大安寨段方解石矿物微观上有三种存在形式。包括研究区含量最多的以生物介壳形式存在的文石转化方解石;位于粒间孔隙中的方解石胶结物,以细小纤维状和细晶两种形式存在;以及存在于生物介壳中的重结晶方解石。

    (2) 在成岩演化过程中,大安寨段陆相页岩中的方解石经历了转化、压实、溶解、胶结和重结晶作用。其中,在各个成岩阶段方解石都可发生溶解作用。在同生期和成岩早期,文石转化形成无铁方解石。在早期成岩中,压实作用使方解石介壳平行分布、变形或破裂。第一世代纤维状无铁无方解石胶结物围绕介壳沉淀。成岩晚期第二世代细粒状铁方解石胶结物充填粒间孔隙。介壳方解石进变新生变形为细晶或柱状方解石。黏土矿物携带的Fe2+与无铁方解石结合可以形成铁方解石。

    (3) 溶解作用可以形成孔缝,改善储层物性;压实、胶结和重结晶作用则使岩石变得更加致密,降低储层孔隙度。元坝地区大安寨段层理缝发育,涪陵地区大安寨段以层理缝和溶蚀缝为主。大量的方解石介壳形成了以层理缝和溶蚀缝为主的裂缝体系,为页岩油气提供了渗流通道,有利于页岩油气开发。

Reference (24)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return