Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

LIU WenFeng, ZHANG XiaoShuan, LIU JinMing, Elliman Dorji, YANG YuanFeng. Sedimentary Characteristics of the Triassic Baijiantan Formation in the Western Slope Area of the Mahu Depression[J]. Acta Sedimentologica Sinica, 2022, 40(1): 192-202. doi: 10.14027/j.issn.1000-0550.2020.074
Citation: LIU WenFeng, ZHANG XiaoShuan, LIU JinMing, Elliman Dorji, YANG YuanFeng. Sedimentary Characteristics of the Triassic Baijiantan Formation in the Western Slope Area of the Mahu Depression[J]. Acta Sedimentologica Sinica, 2022, 40(1): 192-202. doi: 10.14027/j.issn.1000-0550.2020.074

Sedimentary Characteristics of the Triassic Baijiantan Formation in the Western Slope Area of the Mahu Depression

doi: 10.14027/j.issn.1000-0550.2020.074
Funds:

National Natural Science Foundation of China 41872118

National Science and Technology Major Project 2017ZX05070-02

  • Received Date: 2020-06-04
  • Rev Recd Date: 2020-08-28
  • Publish Date: 2022-01-10
  • Hydrocarbon resources have previously been discovered in the Triassic Baijiantan Formation sandstone in the slope area of the Mahu Depression, but the depositional genesis has not been reported to date. The present study used core pattern observation, rock composition analysis and grain-size analysis combined with logging and drilling data, among other techniques, to determine the sedimentary facies type and evolutionary processes of the Baijiantan Formation. The development of a braided river delta and lake facies was established, which comprise a braided river delta front, and pro-delta and shallow-lake subfacies. Seven microfacies were recognized in the subaqueous distributary braided channel, mouth bar, distal bar and shallow lake bar. A continuous progradational process from shallow lake to braided river delta front was very clearly observed extending from the first to the third member. Ideal trap and hydrocarbon reservoirs conditions have been developed by favorable high-quality subaqueous distributary braided channel sandstone over the greater part of the third member, with a Triassic–Jurassic unconformity and overlying Jurassic mudstone and normal faults. It is recommended that this area should be the primary target of hydrocarbon exploration on the western slope area of the Mahu Depression. This study also has significant theoretical implications for subsequent hydrocarbon exploration in the area.
  • [1] 唐勇,郭文建,王霞田,等. 玛湖凹陷砾岩大油区勘探新突破及启示[J]. 新疆石油地质,2019,40(2):127-137.

    Tang Yong, Guo Wenjian, Wang Xiatian, et al. A new breakthrough in exploration of large conglomerate oil province in Mahu Sag and its implications[J]. Xinjiang Petroleum Geology, 2019, 40(2): 127-137.
    [2] 瞿建华,杨荣荣,唐勇. 准噶尔盆地玛湖凹陷三叠系源上砂砾岩扇—断—压三控大面积成藏模式[J]. 地质学报,2019,93(4):915-927.

    Qu Jianhua, Yang Rongrong, Tang Yong. Large-area petroleum accumulation model of the Triassic glutenite reservoirs in the Mahu Sag, Junggar Basin: Triple controls of fan, fault and overpressure[J]. Acta Geologica Sinica, 2019, 93(4): 915-927.
    [3] 陈永波,潘建国,张寒,等. 准噶尔盆地玛湖凹陷斜坡区断裂演化特征及对三叠系百口泉组成藏意义[J]. 天然气地球科学,2015,26(增刊1):11-24.

    Chen Yongbo, Pan Jianguo, Zhang Han, et al. Characteristics of fault evolution in Mahu slope area of Junggar Basin and its implications to the reservoir in the Lower Triassic Baikouquan Formation[J]. Natural Gas Geoscience, 2015, 26(Suppl.1): 11-24.
    [4] 钱海涛,余兴,魏云,等. 玛西斜坡侏罗系八道湾组油气成藏特征及勘探方向[J]. 油气地质与采收率,2018,25(5):32-38.

    Qian Haitao, Yu Xing, Wei Yun, et al. Characteristics of hydrocarbon accumulation in the Jurassic Badaowan Formation of Maxi slope and its exploration direction[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 32-38.
    [5] 杨帆,曹正林,卫延召,等. 玛湖地区三叠系克拉玛依组浅水辫状河三角洲沉积特征[J]. 岩性油气藏,2019,31(1):30-39.

    Yang Fan, Cao Zhenglin, Wei Yanzhao, et al. Sedimentary characteristics of shallow-water braided delta of Karamay Formation in Mahu area[J]. Lithologic Reservoirs, 2019, 31(1): 30-39.
    [6] 宋涛,黄福喜,汪少勇,等. 准噶尔盆地玛湖凹陷侏罗系油气藏特征及勘探潜力[J]. 中国石油勘探,2019,24(3):341-350.

    Song Tao, Huang Fuxi, Wang Shaoyong, et al. Characteristics and exploration potential of Jurassic oil and gas reservoirs in Mahu Sag of the Junggar Basin[J]. China Petroleum Exploration, 2019, 24(3): 341-350.
    [7] 罗顺社,高振中,杨学文. 新疆百口泉油田百碱滩组沉积体系研究[J]. 石油天然气学报(江汉石油学院学报),2006,28(4):15-17.

    Luo Shunshe, Gao Zhenzhong, Yang Xuewen. Sedimentary system in Baixiantan Formation of Baikouquan oilfield in Xinjiang[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2006, 28(4): 15-17.
    [8] 尚建林,金振奎,王林生,等. 准噶尔盆地百口泉地区白碱滩组沉积相新认识[J]. 新疆石油地质,2011,32(6):583-585.

    Shang Jianlin, Jin Zhenkui, Wang Linsheng, et al. New understanding of sedimentary facies of Baijiantan Formation in Baikouquan area, Junggar Basin[J]. Xinjiang Petroleum Geology, 2011, 32(6): 583-585.
    [9] 何登发,张磊,吴松涛,等. 准噶尔盆地构造演化阶段及其特征[J]. 石油与天然气地质,2018,39(5):845-861.

    He Dengfa, Zhang Lei, Wu Songtao, et al. Tectonic evolution stages and features of the Junggar Basin[J]. Oil & Gas Geology, 2018, 39(5): 845-861.
    [10] 朱世发,刘欣,朱筱敏,等. 准噶尔盆地克—百逆掩断裂带上下盘储层差异性及其形成机理[J]. 沉积学报,2015,33(1):194-201.

    Zhu Shifa, Liu Xin, Zhu Xiaomin, et al. The formation mechanism of reservoir differences between the Hanging wall and the Foot wall of Ke-Bai overthrust fault, Junggar Basin[J]. Acta Sedimentologica Sinica, 2015, 33(1): 194-201.
    [11] 袁晓光,李维锋,张宝露,等. 玛北斜坡百口泉组沉积相与有利储层分布[J]. 特种油气藏,2015,22(4):70-73.

    Yuan Xiaoguang, Li Weifeng, Zhang Baolu, et al. Sedimentary facies and favorable reservoir distribution in Baikouquan Fm in Mabei slope[J]. Special Oil and Gas Reservoirs, 2015, 22(4): 70-73.
    [12] Kang X, Hu W X, Cao J, et al. Controls on reservoir quality in fan-deltaic conglomerates: Insight from the Lower Triassic Baikouquan Formation, Junggar Basin, China[J]. Marine and Petroleum Geology, 2019, 103: 55-75.
    [13] 何登发,吴松涛,赵龙,等. 环玛湖凹陷二叠—三叠系沉积构造背景及其演化[J]. 新疆石油地质,2018,39(1):35-47.

    He Dengfa, Wu Songtao, Zhao Long, et al. Tectono-depositional setting and its evolution during Permian to Triassic around Mahu Sag, Junggar Basin[J]. Xinjiang Petroleum Geology, 2018, 39(1): 35-47.
    [14] 何苗,张利伟,刘勇,等. 准噶尔盆地西北缘三叠纪沉积体系与环境[J]. 地质通报,2017,36(6):1032-1042.

    He Miao, Zhang Liwei, Liu Yong, et al. Sedimentary system and environment research on the Triassic strata in northwest Junggar Basin[J]. Geological Bulletin of China, 2017, 36(6): 1032-1042.
    [15] 刘华,陈建平. 准噶尔盆地乌夏逆冲断裂带三叠纪—侏罗纪构造控扇规律及时空演化[J]. 大地构造与成矿学,2010,34(2):204-215.

    Liu Hua, Chen Jianping. Regularities of Triassic-Jurassic structural movements controlling fans development in the Wuxia thrust belt of Junggar Basin[J]. Geotectonica et Metallogenia, 2010, 34(2): 204-215.
    [16] McPherson J G, Shanmugam G, Moiola R J. Fan-deltas and braid deltas: Varieties of coarse-grained deltas[J]. GSA Bulletin, 1987, 99(3): 331-340.
    [17] 李维锋,高振中,彭德堂,等. 库车坳陷中生界三种类型三角洲的比较研究[J]. 沉积学报,1999,17(3):430-434.

    Li Weifeng, Gao Zhenzhong, Peng Detang, et al. Comparative study of fan-deltas, braided-river deltas and meandering-river deltas of Mesozoic Erathem in Kuche Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 1999, 17(3): 430-434.
    [18] 胡潇,曲永强,胡素云,等. 玛湖凹陷斜坡区浅层油气地质条件及勘探潜力[J]. 岩性油气藏,2020,32(2):67-77.

    Hu Xiao, Qu Yongqiang, Hu Suyun, et al. Geological conditions and exploration potential of shallow oil and gas in slope area of Mahu Sag, Junggar Basin[J]. Lithologic Reservoirs, 2020, 32(2): 67-77.
    [19] 陈永波,程晓敢,张寒,等. 玛湖凹陷斜坡区中浅层断裂特征及其控藏作用[J]. 石油勘探与开发,2018,45(6):985-994.

    Chen Yongbo, Cheng Xiaogan, Zhang Han, et al. Fault characteristics and control on hydrocarbon accumulation of middle-shallow layers in the slope zone of Mahu Sag, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(6): 985-994.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Article Metrics

Article views(392) PDF downloads(84) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-04
  • Revised:  2020-08-28
  • Published:  2022-01-10

Sedimentary Characteristics of the Triassic Baijiantan Formation in the Western Slope Area of the Mahu Depression

doi: 10.14027/j.issn.1000-0550.2020.074
Funds:

National Natural Science Foundation of China 41872118

National Science and Technology Major Project 2017ZX05070-02

Abstract: Hydrocarbon resources have previously been discovered in the Triassic Baijiantan Formation sandstone in the slope area of the Mahu Depression, but the depositional genesis has not been reported to date. The present study used core pattern observation, rock composition analysis and grain-size analysis combined with logging and drilling data, among other techniques, to determine the sedimentary facies type and evolutionary processes of the Baijiantan Formation. The development of a braided river delta and lake facies was established, which comprise a braided river delta front, and pro-delta and shallow-lake subfacies. Seven microfacies were recognized in the subaqueous distributary braided channel, mouth bar, distal bar and shallow lake bar. A continuous progradational process from shallow lake to braided river delta front was very clearly observed extending from the first to the third member. Ideal trap and hydrocarbon reservoirs conditions have been developed by favorable high-quality subaqueous distributary braided channel sandstone over the greater part of the third member, with a Triassic–Jurassic unconformity and overlying Jurassic mudstone and normal faults. It is recommended that this area should be the primary target of hydrocarbon exploration on the western slope area of the Mahu Depression. This study also has significant theoretical implications for subsequent hydrocarbon exploration in the area.

LIU WenFeng, ZHANG XiaoShuan, LIU JinMing, Elliman Dorji, YANG YuanFeng. Sedimentary Characteristics of the Triassic Baijiantan Formation in the Western Slope Area of the Mahu Depression[J]. Acta Sedimentologica Sinica, 2022, 40(1): 192-202. doi: 10.14027/j.issn.1000-0550.2020.074
Citation: LIU WenFeng, ZHANG XiaoShuan, LIU JinMing, Elliman Dorji, YANG YuanFeng. Sedimentary Characteristics of the Triassic Baijiantan Formation in the Western Slope Area of the Mahu Depression[J]. Acta Sedimentologica Sinica, 2022, 40(1): 192-202. doi: 10.14027/j.issn.1000-0550.2020.074
  • 近几年来,准噶尔盆地玛湖凹陷因其二叠系、三叠系中不断发现新的大规模油气资源,成为国内陆相油气勘探的热点地区[1-2]。例如,在中二叠世下乌尔禾组(P2 w)、上二叠世上乌尔禾组(P3 w)、早三叠世百口泉组(T1 b)等砂砾岩中的油气探明资源量达到十亿吨级[1];这主要得益于来自凹陷内早二叠世佳木河组(P1 j)、风城组(P1 f)及中二叠世下乌尔禾组(P2 w)等巨厚优质烃源岩充足地油气供给,上述二叠系、三叠系地层内三角洲成因砾岩、砂岩储集层的大面积分布,以及盆地西北缘各级断裂的垂向油气运移通道与侧向油气遮挡作用等各类地质因素的良好配置[1-3]

    随着油气勘探工作的不断推进,玛湖凹陷内的中浅层—中三叠世克拉玛依组及其以上的三叠系、侏罗系和白垩系地层又成为盆地油气勘探的新目标。最近,在玛湖凹陷内的中三叠世克拉玛依组(T2 k)、晚三叠世白碱滩组(T3 b)及早侏罗世八道湾组(J1 b)、早侏罗世三工河组(J1 s)等砾岩、砂岩中均发现了工业油流[4-6]。特别地,在本文目的层白碱滩组内新发现油气资源储量达千万吨级以上,这进一步证实了玛湖凹陷“满凹含油”的油气分布格局,油气资源潜力十分可观。

    然而,目前针对晚三叠世白碱滩组的地质研究集中在盆地西北缘的克百—乌夏断裂带地区[7-8],而对于玛湖凹陷内的白碱滩组研究还未见任何公开报道。因此,本文首次以玛湖凹陷内的晚三叠世白碱滩组为研究对象,在岩心详细观察、镜下岩石成分分析以及粒度分析等基础上,结合测/钻井资料,对玛西斜坡区晚三叠世白碱滩组的沉积特征与演化规律进行系统的研究;在此基础上,结合玛湖凹陷内地层与构造发育特点,探讨白碱滩组内的有利油气勘探目标,为玛湖凹陷白碱滩组今后的油气勘探工作提供重要的理论依据。

  • 准噶尔盆地为一个石炭系—第四系的大型陆相盆地,其西北方向与扎伊尔山、哈拉阿拉特山毗邻(图1a)。中央坳陷为盆地内的一级构造单元,玛湖凹陷则为坳陷内的次级构造单元,其西北侧与克百—乌夏断裂带相邻(图1b)。玛湖凹陷内可进一步分为北斜坡、西斜坡、南斜坡及东斜坡等四个构造单元,本文研究区位于玛西斜坡,受白垩纪早期的构造影响,其现今总体表现为一向东南倾的平缓单斜状态。

    Figure 1.  Tectonic location of Mahu Sag and research area

  • 准噶尔盆地的基底产生于前寒武纪,自晚石炭世才开始接受沉积[9]。在早二叠世,盆地西北缘的前陆“隆—坳”构造形态基本成型;至中二叠世,盆地西北缘进入陆—陆碰撞的主造山期,碰撞挤压、推覆作用加剧;在二叠纪晚期,海西运动晚期阶段的构造活动使得整个盆地西北缘强烈隆起,逆冲带向前陆坳陷方向剧烈逆掩,地层上表现为克百—乌夏断裂带上盘的二叠纪地层被剥蚀等现象[10-11]

    自三叠纪早期,盆地西北缘进入陆内构造演化阶段,盆地西北缘古地貌由早期隆—坳分割格局演化为统一的缓坡湖盆[10];早三叠世,印支运动使得盆地西北缘仍以挤压推覆为主,但其断裂活动强度较前期有所减弱,在玛湖凹陷斜坡区沉积了大面积的百口泉组扇三角洲相底砾岩,其超覆沉积在海西晚期逆冲作用形成的边界隆起之上[11-12];中三叠世克拉玛依组沉积时期,西北缘基本继承了早三叠世的构造格局,仍然处于挤压冲断阶段[13];晚三叠世,也即本文目的层白碱滩组沉积时期,西北缘总体上处于构造相对平静的克拉通内坳陷阶段,伴随着三叠纪内最大的一次湖侵,以泥岩为主的白碱滩组在西北缘广泛发育,并向西北上倾方向超覆[14]。值得注意的是,在晚三叠世最晚期,也即白碱滩组三段沉积时期,源区构造活动有所增强,来自西北缘夏子街、黄羊泉及百口泉方向的碎屑物质经河流搬运,在玛湖凹陷各斜坡区形成了包括夏子街、黄羊泉及百口泉三角洲在内的多个三角洲朵体[7-9]

    早侏罗世早期,西北缘的前陆逆冲推覆构造再次激活,形成了八道湾组三角洲沉积,并与下伏晚三叠世白碱滩组为区域性不整合接触[15];至侏罗纪中期,西北缘推覆体继承性发展,但逆掩活动强度减弱;晚侏罗世—白垩纪,西北缘推覆体基本停止活动,盆地进入整体沉降—抬升的震荡发展阶段。白垩纪之后,盆地西北缘的沉积作用基本停滞。

  • 玛湖凹陷内的地层发育较为齐全,自下而上包含石炭系(C)、二叠系(P)、三叠系(T)、侏罗系(J)和白垩系(K),缺失第三系和第四系,且各系之间为区域性构造不整合接触关系。三叠系(T)内部可分为早三叠世百口泉组(T1 b)、中三叠世克拉玛依组(T2 k)和晚三叠世白碱滩组(T3 b);白碱滩组(T3b)与下伏克拉玛依组(T2 k)为整合接触,与上覆早侏罗世八道湾组(J1 b)为区域性构造不整合接触;根据地层旋回特点,将白碱滩组(T3 b)又分为白一段、白二段和白三段,分别对应一个完整的中期旋回(图2)。

    Figure 2.  Sedimentary facies histogram map of Baijiantan Formation, AH204 well

  • 研究区白碱滩组的岩性总体以灰绿色细砂岩、泥岩和粉砂岩为主,夹灰绿色中砂岩、细砾岩等。其中,厚层泥岩主要发育在白一段,厚层粉砂岩主要发育在白二段,而厚层砂岩主要发育在白三段,岩性在纵向上的分布规律十分明显(图2)。总体上,砂岩为颗粒支撑结构,分选性中等—好,磨圆度主要为次棱角状(图3a~c),泥质杂基含量多为3%~5%,胶结物类型主要为方解石,含量多为1%~2%;砂岩成分类型主要为岩屑砂岩,长石质岩屑砂岩次之(图3d)。综合沉积物颜色、沉积结构及沉积构造等,认为白碱滩组的沉积相类型为辫状河三角洲相和湖泊相,可进一步划分出3个亚相类型和7个微相类型(图24)。

    Figure 3.  Thin section pattern and composition division of sandstone of Baijiantan Formation

    Figure 4.  Core histogram map of Baijiantan Formation,AH209 well

  • 辫状河三角洲是由辫状河作为地表径流类型,进入湖泊或者海洋等水体中而形成的一种水上、水下过渡沉积体系[16-17]。其与扇三角洲最大的区别在于,辫状河三角洲平原和前缘环境内缺失碎屑流沉积的砾岩[17]。研究区位于玛湖凹陷西斜坡区,距离物源区有一定距离,辫状河在进入研究区时已经入湖。因此,在研究区内仅发育辫状河三角洲前缘和前辫状河三角洲亚相,缺失辫状河三角洲平原亚相。研究区白碱滩组内的辫状河三角洲前缘亚相主要发育在白三段内(图24)。

  • 水下分流河道微相是辫状河三角洲前缘亚相的主体部分,厚度占比可达50%以上(图4)。其岩性主体为灰绿色中—细砂岩,自下而上常显示出由底部的细砾岩或含砾砂岩至中砂岩再到顶部的细砂岩的正粒序(图4)。一期河道底部常常与下伏支流间湾泥或河道顶部细砂岩呈“冲刷—切割”接触(图5a,b),在河道底部可见泥砾(图5b)构造。一期河道沉积一般厚约60~100 cm,其内发育板状交错层理(图5b,e)、槽状交错层理(图5a,d)、平行层理(图5d,e)等沉积构造。此外,在河道砾岩、砂岩中还可见植物茎干化石(图5a,f),很可能反映当时潮湿的气候条件。粒度曲线表现为明显的“三段式”,整体以高角度跳跃组分为主,占比84.5%,其次是滚动组分和悬浮组分,分别占比11.5%和4%(图6a)。

    Figure 5.  Core sedimentary features of Baijiantan Formation

    Figure 6.  Grain⁃size analysis of each sedimentary microfacies in Baijiantan Formation

  • 支流间湾沉积发育在水下分流河道两侧,属于相对静水环境下的细粒沉积。其岩性主要为灰绿色泥岩、粉砂质泥岩,水平层理发育良好(图5b,g)。其内还可见生物钻孔构造(图5h)以及大量炭化植物茎干(图5i),在岩心的局部层段,当炭化植物大量堆积时,可形成厚10~20 cm的薄煤层(图5j)。

  • 河口砂坝沉积是辫状河三角洲沉积内最富有特色的一类沉积,其位于水下分流河道的河口处,岩性主要为灰绿色细砂岩、中砂岩,常见浪成砂纹层理(图7a)、板状交错层理以及反粒序(图7b)等沉积构造,特别地,反粒序沉积构造是河口砂坝和三角洲沉积的典型相标志[17]。一期河口砂坝沉积的厚度多为30~50 cm。粒度曲线表现为明显的“两段式”,整体以高角度跳跃组分为主,占比95.5%(图6b)。

    Figure 7.  Core sedimentary features of Baijiantan Formation in the Upper Triassic

  • 远砂坝沉积位于辫状河三角洲前缘的最远端,其岩性主要为灰绿色粉砂岩、泥质粉砂岩,常见波状层理(图7c~f)、同沉积塑性变形等沉积构造(图7c,d),以及同沉积微断层(图7e)、植物化石(图7g)等现象。一期远砂坝沉积的厚度多为25~35 cm。粒度曲线表现为明显的“两段式”,整体以跳跃组分为主,但较河口砂坝而言,其悬浮组分大大增加,达到20%左右(图6c),说明其沉积水动力条件明显减弱。

  • 基本由前三角洲泥微相构成,岩性主要为灰绿色、深灰色的泥岩、粉砂质泥岩,水平层理发育良好(图7h),可见植物叶片化石。前三角洲泥向湖盆中心方向则与浅湖泥连续过渡(图2),可统称为“前三角洲—浅湖泥”。

  • 研究区湖泊沉积仅见浅湖沉积部分,未见半深湖和深湖沉积,主要分布在白一段和白二段(图24)。

  • 在滨、浅湖地区可发育有长条状、孤立分布的砂体,岩性主要为粉砂岩、细砂岩,这些砂体主要源自于三角洲前缘的碎屑物质受到湖泊波浪和沿岸流的再改造。研究区内的浅湖砂坝微相主要分布在白二段(图4),少量分布在白一段(图2)。其岩性主要为灰色、灰绿色粉—细砂岩,浪成砂纹层理发育良好(图7i,j)。此外,还可见正粒序或反—正复合粒序等沉积构造(图4)。浅湖砂坝常呈一个个透镜状,分布在大面积的浅湖泥岩之中,单个砂坝厚度多在30~80 cm。粒度曲线表现为明显的“两段式”,整体以高角度跳跃组分为主,占比96.0%,而悬浮组分含量很低(图6d),反映了较强的水动力条件。

  • 浅湖泥微相的岩性主要为灰绿色厚层泥岩、粉砂质泥岩(图2),水平层理发育良好,可见植物叶片、淡水双壳及鱼类等化石。

  • 在单井沉积相分析的基础上,通过开展多条连井剖面上的沉积演化分析,结合砂地比、砂体厚度等值线图等,以单井优势微相为依据,绘制了白碱滩组各段沉积时期的沉积微相平面分布图(图8)。

    Figure 8.  Sedimentary facies plane map of each member of Baijiantan Formation

    白一段沉积时期,研究区全部处于浅湖沉积环境,由于物源沉积物供给不足,研究区内以浅湖泥占据绝对优势,浅湖砂坝呈透镜状局限分布在研究区的西北角和东北角方向(图8a)。白二段沉积时期,随着来自研究区西北和东北方向的碎屑物质供给的小幅增加,使得研究区内浅湖砂坝沉积所占比例明显增大,但此时研究区内仍然以浅湖泥沉积占据主导(图8b)。白三段沉积时期,随着研究区西北黄羊泉方向和东北夏子街方向的源区碎屑物质的供给速率大幅增加,使得研究区内的沉积相类型发生了重要转变——由白一段和白二段沉积时期的浅湖沉积转变为此时的辫状河三角洲沉积;此时,来自研究区西北黄羊泉方向和东北夏子街方向的辫状水道在到达研究区时已经全部进入水下,也即研究区内仅发育两大辫状河三角洲沉积的水下前缘部分;辫状河三角洲前缘沉积内又以水下分流河道沉积占据主导地位,其占据了研究区面积的80%以上,而支流间湾泥呈“透镜状”零星分布(图8c);其中,来自黄羊泉方向的辫状河三角洲前缘朵体在研究区内的延伸距离相对更远一些,可能是研究区距离西北黄羊泉方向的物源区更近的缘故。

    可以发现,白碱滩组自下而上显示出明显的沉积相带向湖盆中心方向迁移或三角洲的进积过程,考虑到上三叠统白碱滩组与下侏罗统八道湾组在盆地西北缘地区为区域性不整合接触关系,因此推测导致该相带迁移和三角洲发生进积的原因,很可能是在晚三叠世的晚期阶段,盆地西北缘地区因受到印支运动的影响,使得源区发生了缓慢的构造隆升[14-15] ,进而导致相应的沉积物供给增加的缘故。

  • 三叠系白碱滩组沉积时期,玛西斜坡地区分布最广泛的砂体为白一段和白二段时期的浅湖砂坝砂体,以及白三段时期的水下分流河道砂体。目前,研究区的油气勘探重点为浅湖砂坝的砂体,例如,在AH207井的白二段浅湖砂坝砂体中已获得工业油流。这得益于浅湖砂坝的粉—细砂岩具有较好的储集物性(图3c),其孔隙度多在4.8%~14.1%,平均9.03%,以及浅湖砂坝砂体被浅湖泥包裹形成的良好圈闭条件。尽管如此,笔者认为白三段内发育的大面积水下分流河道砂体应成为玛西斜坡区油气勘探的首选目标(图8c)。

    自上个世纪八十年代以来,辫状河三角洲内的水道砂体一直被国内外学者视为良好的油气储层[16-17]。玛西斜坡区白碱滩组三段内发育大面积的水下分流河道砂体,储集物性良好(图3a,b),物性资料表明,水下分流河道砂岩的孔隙度在7.8%~17.5%,平均12.87%;此外,在岩心上已发现含油的水下分流河道细砾岩、中—细砂岩(图5c),说明其为良好的油气储集层;三叠系白碱滩组与上覆下侏罗统八道湾组之间发育了T—J区域性不整合面,可作为油气封闭条件;此外,上覆八道湾组二段主要发育一套厚度稳定的泥岩,局部夹有煤层,可作为良好的区域盖层[18]

    断层发育方面,玛湖凹陷内共发育3期断裂组合,其一为海西期形成的近北东—南西走向的逆断层,断开地层为二叠系—下三叠统(图9);其二为印支期形成的一组近北西—南东走向的走滑断层,如大侏罗沟走滑断裂、百口泉南走滑断裂及百口泉走滑断裂等,断开地层为二叠系—下侏罗统[18-19];其三为燕山期形成的近北东—南西走向的正断层,断开地层为三叠系—下白垩统(图9)。在玛湖凹陷中浅层内主要发育印支和燕山期的小断距走滑断层和正断层[18-19],一方面,燕山期正断层可与前述T—J区域性不整合面等共同组成良好的“断层—不整合”圈闭条件(图9);另一方面,这些断层可作为良好的油气运移通道—玛西斜坡区内的较深层海西期逆断层和燕山期的中浅层、小断距正断层在垂向上呈“楼梯式”相连[19],使得来自下二叠统风城组和中二叠统下乌尔禾组的烃源岩的油气得以垂向长距离的高效运移,并在白碱滩组三段内的水下分流河道砂体中沿上倾方向横向运移、聚集成藏,形成规模可观的“断层—不整合”油气藏(图9)。

    Figure 9.  Hydrocarbon reservoir model of Baijiantan Formation in the western slope of the Mahu Depression

    值得一提的是,最近在研究区内AH12、AH204及AH208等井的白三段水下分流河道砂体中钻遇了高产油流,证实了这一论断的可靠性。因此,玛湖凹陷三叠系白碱滩组三段内的水下分流河道砂体理应成为下一步油气勘探工作的重点。

  • (1) 白碱滩组沉积时期,玛西斜坡区发育湖泊和辫状河三角洲两类沉积相,其内可分为浅湖、辫状河三角洲前缘和前三角洲共3个亚相及浅湖砂坝、浅湖泥、水下分流河道、河口砂坝、支流间湾及前三角洲泥共7个微相类型。

    (2) 白碱滩组自下而上表现为由浅湖沉积到辫状河三角洲前缘沉积的进积过程,沉积演化规律十分清楚。

    (3) 白碱滩组三段内的水下分流河道砂体储集物性好,加之与T—J区域性不整合面、八道湾组泥岩和玛湖凹陷西斜坡区内中浅层正断层等良好匹配,可形成优良的圈闭条件与油气成藏条件,应是研究区下一步油气勘探的首要目标。

Reference (19)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return