Advanced Search
Volume 39 Issue 3
Jun.  2021
Turn off MathJax
Article Contents

SU ChengPeng, LI Fei, TAN XiuCheng, WANG XiaoFang, GONG QiaoLin, LI MingLong, LU FeiFan, TANG Hao, DENG JiaTing, LI Hong. Origin and Significance of Authigenic Argillaceous Components on the Ancient Carbonate Platform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 550-570. doi: 10.14027/j.issn.1000-0550.2020.072
Citation: SU ChengPeng, LI Fei, TAN XiuCheng, WANG XiaoFang, GONG QiaoLin, LI MingLong, LU FeiFan, TANG Hao, DENG JiaTing, LI Hong. Origin and Significance of Authigenic Argillaceous Components on the Ancient Carbonate Platform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 550-570. doi: 10.14027/j.issn.1000-0550.2020.072

Origin and Significance of Authigenic Argillaceous Components on the Ancient Carbonate Platform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan

doi: 10.14027/j.issn.1000-0550.2020.072
Funds:

National Natural Science Foundation of China 41872119, 41502115

Science and Technology Project of Sichuan Province 20YYJC1185

  • Received Date: 2020-06-24
  • Rev Recd Date: 2020-08-26
  • Publish Date: 2021-06-10
  • Terrigenous fine-grained components developed on the platform settings can record massive amounts of information on source-to-sink processes and palaeoenvironmental evolutions, which can be used as an archive for the reconstruction of ancient climate and provenance. Yet, authigenic clays are visible in carbonate rocks, and their formation mechanism and diagenetic effect deserve more attention. Here, the authigenic marl components developed in carbonate rocks of the Maokou Formation (Middle Permian) at the Shangsi section have been studied in order to understand their origin and formation processes. The argillaceous component is mainly composed of the diagenetic clay mineral sepiolite, and a small amount of talc and montmorillonite. The source of Mg in sepiolite is speculated to be derived from the pore water inherited from seawater and the release of metastable carbonate minerals (e.g., high-Mg calcites), while Si may be sourced from the supply of hydrothermal fluid diffused from an active fault on the upper Yangtze platform. In addition, talc and montmorillonite minerals are likely derived from the alteration of sepiolite during the burial phase based on petrological and mineralogical evidence. Even so, a small amount of montmorillonite may originate from volcanic materials. In sum, authigenic argillaceous components are very common in the strata of the Maokou Formation, which are widely mixed with terrigenous fine-grained fractions in sedimentary records. These diagenetic clays would potentially affect the reliability of palaeoclimatic and palaeoenvironmental analyses if their contamination effects cannot be eliminated. In addition, the study of authigenic clays has potential significance in the understanding of diagenetic process and the identification of diagenetic geochemical signatures.
  • [1] Thiry M. Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin[J]. Earth-Science Reviews, 2000, 49(1/2/3/4): 201-221.
    [2] Madhavaraju J, Ramasamy S, Ruffell A, et al. Clay mineralogy of the Late Cretaceous and Early Tertiary successions of the Cauvery Basin (southeastern India): Implications for sediment source and palaeoclimates at the K/T boundary[J]. Cretaceous Research, 2002, 23(2): 153-163.
    [3] Fürsich F T, Singh I B, Joachimski M, et al. Palaeoclimate reconstructions of the Middle Jurassic of Kachchh (western India): An integrated approach based on palaeoecological, oxygen isotopic, and clay mineralogical data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 217(3/4): 289-309.
    [4] Jiménez Berrocoso Á, Zuluaga M C, Elorza J. Diagenesis, palaeoclimate and tectono-sedimentary influences on clay mineralogy and stable isotopes from Upper Cretaceous marine successions of the Basque-Cantabrian Basin (N Spain)[J]. Cretaceous Research, 2008, 29(3): 386-404.
    [5] Goodbred Jr S L. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade[J]. Sedimentary Geology, 2003, 162(1/2): 83-104.
    [6] Foreman B Z, Heller P L, Clementz M T. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary[J]. Nature, 2012, 491(7422): 92-95.
    [7] Mason C C, Fildani A, Gerber T, et al. Climatic and anthropogenic influences on sediment mixing in the Mississippi source-to-sink system using detrital zircons: Late Pleistocene to recent[J]. Earth and Planetary Science Letters, 2017, 466: 70-79.
    [8] Strasser A, Hilgen F J, Heckel P H. Cyclostratigraphy – concepts, definitions, and applications[J]. Newsletters on Stratigraphy, 2006, 42(2): 75-114.
    [9] Eldrett J S, Ma C, Bergman S C, et al. Origin of limestone–marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA[J]. Earth and Planetary Science Letters, 2015, 423: 98-113.
    [10] Pittet B, Strasser A, Mattioli E. Depositional Sequences in deep-shelf environments: A response to sea-level changes and shallow-platform carbonate productivity (Oxfordian, Germany and Spain)[J]. Journal of Sedimentary Research, 2000, 70(2): 392-407.
    [11] Boulila S, de Rafélis M, Hinnov L A, et al. Orbitally forced climate and sea-level changes in the Paleoceanic Tethyan domain (marl–limestone alternations, Lower Kimmeridgian, SE France)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(1/2): 57-70.
    [12] Fang Q, Wu H C, Hinnov L A, et al. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2018, 163: 97-108.
    [13] Giorgioni M, Weissert H, Bernasconi S M, et al. Orbital control on carbon cycle and oceanography in the mid‐Cretaceous greenhouse[J]. Paleoceanography, 2012, 27(1): PA1204.
    [14] 杨江海,马严. 源—汇沉积过程的深时古气候意义[J]. 地球科学,2017,42(11):1910-1921.

    Yang Jianghai, Ma Yan. Paleoclimate perspectives of source-to-sink sedimentary processe[J]. Earth Science, 2017, 42(11): 1910-1921.
    [15] Castelltort S, van Den Driessche J. How plausible are high-frequency sediment supply-driven cycles in the stratigraphic record?[J]. Sedimentary Geology, 2003, 157(1/2): 3-13.
    [16] Romans B W, Castelltort S, Covault J A, et al. Environmental signal propagation in sedimentary systems across timescales[J]. Earth-Science Reviews, 2016, 153: 7-29.
    [17] Pizzuto J, Keeler J, Skalak K, et al. Storage filters upland suspended sediment signals delivered from watersheds[J]. Geology, 2017, 45(2): 151-154.
    [18] 孔为伦,李双应,万秋,等. 海洋粘土矿物的古环境含意辨析[J]. 安徽大学学报(自然科学版),2011,35(5):100-108.

    Kong Weilun, Li Shuangying, Wan Qiu, et al. Differentiation and discrimination of marine clay minerals as indicators of paleoenvironment[J]. Journal of Anhui University (Natural Science Edition), 2011, 35(5): 100-108.
    [19] Lanson B, Beaufort D, Berger G, et al. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: A review[J]. Clay Minerals, 2002, 37(1): 1-22.
    [20] Boles J R, Franks S G. Clay diagenesis in wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation[J]. Journal of Sedimentary Petrology, 1979, 49(1): 55-70.
    [21] Yan J X, Munnecke A, Steuber T, et al. Marine sepiolite in middle permian carbonates of South China: Implications for secular variation of phanerozoic seawater chemistry[J]. Journal of Sedimentary Research, 2005, 75(3): 328-338.
    [22] Su C P, Li F, Tan X C, et al. Recognition of diagenetic contribution to the formation of limestone-marl alternations: A case study from Permian of South China[J]. Marine and Petroleum Geology, 2020, 111: 765-785.
    [23] 苏成鹏. 川东地区茅口组眼球状石灰岩成因机制及地质意义[D]. 成都:西南石油大学,2017.

    Su Chengpeng. Genesis and geological significance of eyeball-shaped limestone of Maokou Formation in eastern Sichuan Basin[D]. Chengdu: Southwest Petroleum University, 2017.
    [24] 朱洪发,王恕一. 苏南、皖南三叠纪瘤状灰岩、蠕虫状灰岩的成因[J]. 石油实验地质,1992,14(4):454-460.

    Zhu Hongfa, Wang Shuyi. The origins of the Triassic nodular and vermicular limestones in South Jiangsu—South Anhui provinces[J]. Experimental Petroleum Geology, 1992, 14(4): 454-460.
    [25] 蓝光志,张廷山,高卫东. 川西北地区早志留世瘤状灰岩的类型、成因及意义[J]. 西南石油学院学报,1994,16(3):1-5.

    Lan Guangzhi, Zhang Tingshan, Gao Weidong. Classification, genesis and significance of nodular limestone of Early Silurian in NW Sichuan[J]. Journal of Southwestern Petroleum Institute, 1994, 16(3): 1-5.
    [26] 苏成鹏,谭秀成,李飞,等. 华南中二叠统碳酸盐岩致密气储层特征及形成机理[C]//第十五届全国古地理学及沉积学学术会议摘要集. 成都:中国矿物岩石地球化学学会岩相古地理专业委员会,中国矿物岩石地球化学学会沉积学专业委员会,中国地质学会沉积地质专业委员会,中国地质学会地层古生物专业委员会,中国石油学会石油地质专业委员会,SEPM(Society for Sedimentary Geology),2018. [

    Su Chengpeng, Tan Xiucheng, Li Fei, et al. Characteristics and formation mechanism of tight gas reservoirs in carbonate rocks of Middle Permian in South China[C]//The 15th national palaeogeography and sedimentology academic conference. Chengdu: Lithofacies and Paleogeography Committee of the Chinese Society of Mineral Petrogeochemistry, Sedimentology Committee of the Chinese Society of Mineral Rock Geochemistry, Sedimentary Geology Committee of Chinese Geological Society, Stratigraphic Paleontology Committee of Chinese Geological Society, Petroleum Geology Committee of China Petroleum Society, SEPM (Society for Sedimentary Geology), 2018.]
    [27] 苏成鹏,谭秀成,王小芳,等. 四川盆地东部中二叠统茅口组眼球状石灰岩储层特征及成因[J]. 海相油气地质,2020,25(1):55-62.

    Su Chengpeng, Tan Xiucheng, Wang Xiaofang, et al. Characteristics of eyeball-shaped limestone reservoir and its genesis of the Middle Permian Maokou Formation in East Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(1): 55-62.
    [28] 姚威,许锦,夏文谦,等. 四川盆地涪陵地区茅一段酸解气、吸附气特征及气源对比[J]. 天然气工业,2019,39(6):45-50.

    Yao Wei, Xu Jin, Xia Wenqian, et al. A characteristic analysis between acidolysis gas and absorbed gas and its application to gas–source correlation in Mao 1 member, Fuling area, Sichuan Basin[J]. Natural Gas Industry, 2019, 39(6): 45-50.
    [29] Scotese C R, Langford R P. Pangea and the paleogeography of the Permian[M]//Scholle P A, Peryt T M, Ulmer-Scholle D S. The Permian of northern pangea: Volume1: Paleogeography, paleoclimates, stratigraphy. Berlin Heidelberg: Springer, 1995.
    [30] 王立亭,陆彦邦,赵时久,等. 中国南方二叠纪岩相古地理与成矿作用[M]. 北京:地质出版社,1994.

    Wang Liting, Lu Yanbang, Zhao Shijiu, et al. Permian lithofacies palaeogeography and mineralization in South China[M]. Beijing: Geological Publishing House, 1994.
    [31] 冯增昭,杨玉卿,金振奎,等. 中国南方二叠纪岩相古地理[J]. 沉积学报,1996,14(2):1-11.

    Feng Zengzhao, Yang Yuqing, Jin Zhenkui, et al. Lithofacies paleogeography of the Permian of South China[J]. Acta Sedimentologica Sinica, 1996, 14(2): 1-11.
    [32] Wang Y, Jin Y G. Permian palaeogeographic evolution of the Jiangnan Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160(1/2): 35-44.
    [33] 何登发,李德生,张国伟,等. 四川多旋回叠合盆地的形成与演化[J]. 地质科学,2011,46(3):589-606.

    He Dengfa, Li Desheng, Zhang Guowei, et al. Formation and evolution of multi-cycle superposed Sichuan Basin, China[J]. Chinese Journal of Geology, 2011, 46(3): 589-606.
    [34] 黄涵宇,何登发,李英强,等. 四川盆地及邻区二叠纪梁山-栖霞组沉积盆地原型及其演化[J]. 岩石学报,2017,33(4):1317-1337.

    Huang Hanyu, He Dengfa, Li Yingqiang, et al. The prototype and its evolution of the Sichuan sedimentary basin and adjacent areas during Liangshan and Qixia stages in Permian[J]. Acta Petrologica Sinica, 2017, 33(4): 1317-1337.
    [35] 田景春,郭维,黄平辉,等. 四川盆地西南部茅口期岩相古地理[J]. 西南石油大学学报(自然科学版),2012,34(2):1-8.

    Tian Jingchun, Guo Wei, Huang Pinghui, et al. Lithofacies palaeogeography of Maokou Period in southwestern Sichuan Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2012, 34(2): 1-8.
    [36] 王海真,池英柳,赵宗举,等. 四川盆地栖霞组岩溶储层及勘探选区[J]. 石油学报,2013,34(5):833-842.

    Wang Haizhen, Chi Yingliu, Zhao Zongju, et al. Karst reservoirs developed in the Middle Permian Qixia Formation of Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2013, 34(5): 833-842.
    [37] 沈树忠,张华,张以春,等. 中国二叠纪综合地层和时间框架[J]. 中国科学(D辑):地球科学,2019,49(1):160-193.

    Shen Shuzhong, Zhang Hua, Zhang Yichun, et al. Permian integrative stratigraphy and timescale of China[J]. Science China (Seri. D): Earth Sciences, 2019, 49(1): 160-193.
    [38] Sun Y D, Lai X L, Jiang H S, et al. Guadalupian (Middle Permian) conodont faunas at Shangsi Section, Northeast Sichuan province[J]. Journal of China University of Geosciences, 2008, 19(5): 451-460.
    [39] 房强,景秀春,邓胜徽,等. 川北上寺剖面罗德阶一吴家坪阶牙形石生物地层[J]. 地层学杂志,2012,36(4):692-699.

    Fang Qiang, Jing Xiuchun, Deng Shenghui, et al. Roadian–Wuchiapingian conodont biostratigraphy at the Shangsi section, northern Sichuan[J]. Journal of Stratigraphy, 2012, 36(4): 692-699.
    [40] 何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学:中国地质大学学报,2005,30(1):89-96.

    He Bin, Xu Yigang, Wang Yamei, et al. Nature of the Dongwu Movement and its temporal and spatial evolution[J]. Earth Science:Journal of China University of Geosciences, 2005, 30(1): 89-96.
    [41] Yan J X, Ma Z X, Xie X N, et al. Subdivision of Permian fossil communities and habitat types in Northeast Sichuan, South China[J]. Journal of China University of Geosciences, 2008, 19(5): 441-450.
    [42] Haq B U, Schutter S R. A chronology of Paleozoic sea-level changes[J]. Science, 2008, 322(5898): 64-68.
    [43] 苏成鹏,唐浩,黎虹玮,等. 四川盆地东部中二叠统茅口组顶部钙结壳的发现及其发育模式[J]. 古地理学报,2015,17(2):229-240.

    Su Chengpeng, Tang Hao, Li Hongwei, et al. Discovery of caliches at top of the Middle Permian Maokou Formation, eastern Sichuan Basin and their developmental model[J]. Journal of Palaeogeography, 2015, 17(2): 229-240.
    [44] Xiao D, Tan X C, Xi A H, et al. An inland facies-controlled eogenetic karst of the carbonate reservoir in the Middle Permian Maokou Formation, southern Sichuan Basin, SW China[J]. Marine and Petroleum Geology, 2016, 72: 218-233.
    [45] 张霞,林春明,凌洪飞,等. 浙西地区奥陶系砚瓦山组瘤状灰岩及其成因探讨[J]. 古地理学报,2009,11(5):481-490.

    Zhang Xia, Lin Chunming, Ling Hongfei, et al. Nodular limestone and its genesis from the Ordovician Yanwashan Formation in western Zhejiang province[J]. Journal of Palaeogeography, 2009, 11(5): 481-490.
    [46] 刘喜停,颜佳新,薛武强. 灰岩—泥灰岩韵律层的差异成岩作用[J]. 地质论评,2012,58(4):627-635.

    Liu Xiting, Yan Jiaxin, Xue Wuqiang. Differential diagenesis of limestone—marl alternations[J]. Geological Review, 2012, 58(4): 627-635.
    [47] 刘喜停,颜佳新,马志鑫,等. 华南栖霞组灰岩—泥灰岩韵律层的成因[J]. 地球科学:中国地质大学学报,2014,39(2):155-164.

    Liu Xiting, Yan Jiaxin, Ma Zhixin, et al. Origination of limestone-marl alternations from Qixia Formation of South China[J]. Earth Science:Journal of China University of Geosciences, 2014, 39(2): 155-164.
    [48] 薛武强,刘喜停,颜佳新,等. 重庆南川地区中二叠统茅口组眼球状灰岩成因[J]. 地质科学,2015,50(3):1001-1013.

    Xue Wuqiang, Liu Xiting, Yan Jiaxin, et al. The origin of eyeball-shaped limestone from Maokou Formation (Mid-Permian) in Nanchuan region, Chongqing, Southwest China[J]. Chinese Journal of Geology, 2015, 50(3): 1001-1013.
    [49] 苏成鹏,谭秀成,马腾,等. 川东地区茅口组眼球状石灰岩成因机制及对油气勘探的启示[C]//第十四届全国古地理学及沉积学学术会议论文摘要集. 焦作:中国矿物岩石地球化学学会岩相古地理专业委员会,中国矿物岩石地球化学学会沉积学专业委员会,中国地质学会沉积地质专业委员会,中国地质学会地层古生物专业委员会,中国地质学会煤田地质专业委员会,中国石油学会石油地质专业委员会,SEPM(Society for Sedimentary Geology),2016.

    Su Chengpeng, Tan Xiucheng, Ma Teng, et al. The enlightenment of genesis mechanism of eyeball-shaped limestone of Maokou Formation in eastern Sichuan Basin to oil and gas exploration[C]//The 14th national palaeogeography and sedimentology academic conference. Jiaozuo: The Special Committee of Lithofacies and Paleogeography of the Chinese Society of Mineral Petrogeochemistry, The Sedimentology Committee of the Chinese Society of Mineral Petrogeochemistry, The Committee of Sedimentary Geology, Chinese Geological Society, The Special Committee of Stratigraphy and Paleontology, Chinese Geological Society, Coalfield Geology Committee of Chinese Geological Society, Petroleum Geology Committee of China Petroleum Society, SEPM (Society for Sedimentary Geology), 2016.
    [50] 罗进雄,何幼斌,何明薇,等. 华南中二叠统眼球状石灰岩特征及成因的思考[J]. 古地理学报,2019,21(4):613-626.

    Luo Jinxiong, He Youbin, He Mingwei, et al. Thoughts on characteristics and origin of the Middle Permian eyeball-shaped limestone in South China[J]. Journal of Palaeogeography, 2019, 21(4): 613-626.
    [51] 陈芸菁,王佩英,任磊夫. 海泡石在成岩作用过程中向滑石转化的研究[J]. 科学通报,1985(4):284-287.

    Chen Yunjing, Wang Peiying, Ren Leifu. Transformation of sepiolite into talc during diagenesis[J]. Chinese Science Bulletin, 1985(4): 284-287.
    [52] Taylor S R, McLennan S M. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1981, 301(1461): 381-399.
    [53] Bayon G, Toucanne S, Skonieczny C, et al. Rare earth elements and neodymium isotopes in world river sediments revisited[J]. Geochimica et Cosmochimica Acta, 2015, 170: 17-38.
    [54] Kamber B S, Bolhar R, Webb G E. Geochemistry of Late Archaean stromatolites from Zimbabwe: Evidence for microbial life in restricted epicontinental seas[J]. Precambrian Research, 2004, 132(4): 379-399.
    [55] Della Porta G, Webb G E, McDonald I. REE patterns of microbial carbonate and cements from Sinemurian (Lower Jurassic) siliceous sponge mounds (Djebel Bou Dahar, High Atlas, Morocco)[J]. Chemical Geology, 2015, 400: 65-86.
    [56] Li F, Webb G E, Algeo T J, et al. Modern carbonate ooids preserve ambient aqueous REE signatures[J]. Chemical Geology, 2019, 509: 163-177.
    [57] McLennan S M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes[J]. Reviews in Mineralogy and Geochemistry, 1989, 21(1): 169-200.
    [58] Pozo M, Calvo J P. An overview of authigenic magnesian clays[J]. Minerals, 2018, 8(11): 520.
    [59] Tateo F, Sabbadini R, Morandi N. Palygorskite and sepiolite occurrence in Pliocene Lake deposits along the River Nile: Evidence of an arid climate[J]. Journal of African Earth Sciences, 2000, 31(3/4): 633-645.
    [60] Pozo M, Carretero M I, Galán E. Approach to the trace element geochemistry of non-marine sepiolite deposits: Influence of the sedimentary environment (Madrid Basin, Spain)[J]. Applied Clay Science, 2016, 131: 27-43.
    [61] Draidia S, El Ouahabi M, Daoudi L, et al. Occurrences and genesis of palygorskite/sepiolite and associated minerals in the Barzaman formation, United Arab Emirates[J]. Clay Minerals, 2016, 51(5): 763-779.
    [62] Cavalcante F, Belviso C, Bentivenga M, et al. Occurrence of palygorskite and sepiolite in upper Paleocene–middle Eocene marine deep sediments of the Lagonegro Basin (southern Apennines—Italy): Paleoenvironmental and provenance inferences[J]. Sedimentary Geology, 2011, 233(1/2/3/4): 42-52.
    [63] Tosca N J, Masterson A L. Chemical controls on incipient Mg-silicate crystallization at 25°C: Implications for early and Late diagenesis[J]. Clay Minerals, 2014, 49(2): 165-194.
    [64] Baldermann A, Mavromatis V, Dietzel M. Formation of hydrous Mg-silicates at low temperatures: New insights from sepiolite precipitation experiments[C]//Proceedings of the 19th EGU General Assembly Conference Abstracts. Vienna, Austria: EGU, 2017: 4349.
    [65] 章人骏. 江西乐平县耐火白土概述[J]. 地质论评,1947,12(3/4):241-248.

    Zhang Renjun. Overview of fire-resistant clay in Leping county, Jiangxi province[J]. Geological Review, 1947, 12(3/4): 241-248.
    [66] 章人骏,杨振强. 中国海泡石的产状和成因[J]. 中国地质科学院院报,1986(15):45-51.

    Zhang Renjun, Yang Zhenqiang. Occurrence and distribution of sepiolite in China[J]. Journal of Chinese Academy of Geological Science, 1987(15): 45-51.
    [67] 颜佳新. 华南地区二叠纪栖霞组碳酸盐岩成因研究及其地质意义[J]. 沉积学报,2004,22(4):579-587.

    Yan Jiaxin. Origin of Permian Chihsian carbonates from South China and its geological implications[J]. Acta Sedimentologica Sinica, 2004, 22(4): 579-587.
    [68] Isphording W C. Discussion of the occurrence and origin of sedimentary palygorskite-sepiolite deposits[J]. Clays and Clay Minerals, 1973, 21(5): 391-401.
    [69] 章人骏,丘翠薇,彭长琪,等. 湖南醴陵地区镁质粘土的特征及成因探讨[J]. 中国地质科学院宜昌地质矿产研究所所刊,1985(9):1-13.

    Zhang Renjun, Qiu Cuiwei, Peng Changqi, et al. The characteristics of magnesium-rich clay in Liling area, Hunan province and a discussion on it’s genesis[J]. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1985(9): 1-13.
    [70] 李文光,张瑛. 我国海泡石矿床成矿条件及成因类型初探[J]. 陕西地质,1999,17(1):43-47.

    Li Wenguang, Zhang Ying. A preliminary discussion on the ore-forming conditions and genetic types of sepiolite deposits in China[J]. Geology of Shaanxi, 1999, 17(1): 43-47.
    [71] 杨振强,许俊文. 萍乐坳陷海泡石的形成及后期变化[J]. 中国地质科学院宜昌地质矿产研究所所刊,1986(12):31-54.

    Yang Zhenqiang, Xu Junwen. The formation and post-sedimentary alternation of sepiolite in the Pingle Depression[J]. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1986(12): 31-54.
    [72] 任磊夫. 粘土矿物与粘土岩[M]. 北京:地质出版社,1992.

    Ren Leifu. Clay minerals and clay rocks[M]. Beijng: Geological Publishing House, 1992.
    [73] 杨振强. 扬子地台东南边缘早二叠世海泡石沉积与盆地缺氧环境[J]. 中国地质科学院宜昌地质矿产研究所所刊,1992(18):111-121.

    Yang Zhenqiang. Early Permian sepiolite sedimentation and basin anoxic environments at the southeastern edge of Yangtze Platform[J]. Bulletin of Yichang Institute of Geology and Mineral Resources, Chinese Academy of Geological Sciences, 1992(18): 111-121.
    [74] 颜佳新,施春华,李军虹,等. 华南地区栖霞组菊花状天青石的交代及其地质意义[J]. 岩石矿物学杂志,2001,20(1):75-83.

    Yan Jiaxin, Shi Chunhua, Li Junhong, et al. Replacement of chrysanthemum-shaped celestite in the Chihsia Formation of South China and its geological implications[J]. Acta Petrologica et Mineralogica, 2001, 20(1): 75-83.
    [75] Yan J X, Carlson E H. Nodular celestite in the Chihsia Formation (Middle Permian) of South China[J]. Sedimentology, 2003, 50(2): 265-278.
    [76] Wilkinson B H, Algeo T J. Sedimentary carbonate record of calcium-magnesium cycling[J]. American Journal of Science, 1989, 289(10): 1158-1194.
    [77] Stanley S M, Hardie L A. Secular oscillations in the carbonate mineralogy of reef-building and sediment- producing organisms driven by tectonically forced shifts in seawater chemistry[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 144(1/2): 3-19.
    [78] Lowenstein T K, Timofeeff M N, Brennan S T, et al. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions[J]. Science, 2001, 294(5544): 1086-1088.
    [79] Horita J, Zimmermann H, Holland H D. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites[J]. Geochimica et Cosmochimica Acta, 2002, 66(21): 3733-3756.
    [80] 吕炳全,蔡进功,刘峰,等. 栖霞组中台缘斜坡上升流沉积相及其与烃源岩的关系[J]. 海洋地质与第四纪地质,2010,30(5):109-118.

    Bingquan Lü, Cai Jingong, Liu Feng, et al. Upwelling deposits at the marginal slope of a carbonate platform in Qixia Stage and its relation with hydrocarbon source rocks[J]. Marine Geology & Quaternary Geology, 2010, 30(5): 109-118.
    [81] Cai Z X, Li J, Chen H R, et al. Genesis of Mg-phyllosilicate occurrences in the Middle Permian marine successions of South China[J]. Applied Clay Science, 2019, 181: 105242.
    [82] Murchey B L, Jones D L. A mid-Permian chert event: Widespread deposition of biogenic siliceous sediments in coastal, island arc and oceanic basins[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 96(1/2): 161-174.
    [83] Kidder D L, Erwin D H. Secular distribution of biogenic silica through the Phanerozoic: Comparison of silica-replaced fossils and bedded cherts at the series level[J]. The Journal of Geology, 2001, 109(4): 509-522.
    [84] Kametaka M, Takebe M, Nagai H, et al. Sedimentary environments of the Middle Permian phosphorite–chert complex from the northeastern Yangtze Platform, China; the Gufeng Formation: A continental shelf radiolarian chert[J]. Sedimentary Geology, 2005, 174(3/4): 197-222.
    [85] Hesse R. Silica diagenesis: Origin of inorganic and replacement cherts[J]. Earth-Science Reviews, 1989, 26(1/2/3): 253-284.
    [86] 沙庆安,吴望始,傅家谟. 黔桂地区二叠系综合研究:兼论含油气性[M]. 北京:科学出版社,1990.

    Sha Qing’an, Wu Wangshi, Fu Jiamo. Comprehensive research on permian in Guizhou: Guangxi area and its petroleum potential[M]. Beijing: Science Press, 1990.
    [87] Qiu Z, Wang Q C. Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi, China[J]. Science China Earth Sciences, 2011, 54(7): 1011-1023.
    [88] Gao P, He Z L, Lash G G, et al. Mixed seawater and hydrothermal sources of nodular chert in Middle Permian limestone on the eastern Paleo-Tethys margin (South China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 551: 109740.
    [89] 赵振洋,李双建,王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展,2020,35(2):137-153.

    Zhao Zhenyang, Li Shuangjian, Wang Genhou. Discussion on sedimentary environments, origin and source of Middle Permian Gufeng Formation bedded cherts in the northern margin of the Middle-Lower Yangtze area[J]. Advances in Earth Science, 2020, 35(2): 137-153.
    [90] 芦飞凡,谭秀成,钟原,等. 四川盆地西北部二叠系栖霞组准同生期砂糖状白云岩成因及地质意义[J]. 石油勘探与开发,2020,47(6):1134-1148.

    Lu Feifan, Tan Xiucheng, Zhong Yuan, et al. Origin of the penecontemporaneous sucrosic dolomite and its geological implications in the Permian Qixia Formation, northwestern Sichuan Basin, Southwest China[J]. Petroleum Exploration and Development, 2020,47(6):1134-1148.
    [91] Luo Z L, Jin Y Z, Zhao X K. The Emei Taphrogenesis of the upper Yangtze Platform in South China[J]. Geological Magazine, 1990, 127(5): 393-405.
    [92] 程成,李双应,赵大千,等. 扬子地台北缘中上二叠统层状硅质岩的地球化学特征及其对古地理、古海洋演化的响应[J]. 矿物岩石地球化学通报,2015,34(1):155-166.

    Cheng Cheng, Li Shuangying, Zhao Daqian, et al. Geochemical characteristics of the Middle-Upper Permian bedded cherts in the northern margin of the Yangtze Block and its response to the evolution of paleogeography and paleo-ocean[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34(1): 155-166.
    [93] Wang Y, Peate I U, Luo Z H, et al. Rifting in SW China: Structural and sedimentary investigation of the initial crustal response to emplacement of the Permian Emeishan LIP[J]. Geological Magazine, 2019, 156(4): 745-758.
    [94] Hecht L, Freiberger R, Gilg H A, et al. Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: Genetic implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge, Germany)[J]. Chemical Geology, 1999, 155(1/2): 115-130.
    [95] Shin D, Lee I. Carbonate-hosted talc deposits in the contact aureole of an igneous intrusion (Hwanggangri mineralized zone, South Korea): Geochemistry, phase relationships, and stable isotope studies[J]. Ore Geology Reviews, 2003, 22(1/2): 17-39.
    [96] Bjerga A, Konopásek J, Pedersen R B. Talc–carbonate alteration of ultramafic rocks within the Leka Ophiolite Complex, Central Norway[J]. Lithos, 2015, 227: 21-36.
    [97] Dekov V M, Cuadros J, Shanks W C, et al. Deposition of talc — kerolite–smectite — smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies[J]. Chemical Geology, 2008, 247(1/2): 171-194.
    [98] Hodgkinson M R S, Webber A P, Roberts S, et al. Talc-dominated seafloor deposits reveal a new class of hydrothermal system[J]. Nature Communications, 2015, 6(1): 10150.
    [99] Wan Y, Wang X L, Chou I M, et al. An experimental study of the formation of Talc through CaMg(CO3)2–SiO2–H2O Interaction at 100-200°C and vapor-saturation pressures[J]. Geofluids, 2017, 2017:3942826.
    [100] 张如柏. 四川发现层控滑石矿床[J]. 科学通报,1981(19):1215.

    Zhang Rubai. Stratabound talc deposit in Sichuan province[J]. Chinese Science Bulletin, 1981(19): 1215.
    [101] Erosion Hillier S., sedimentation and sedimentary origin of clays[M]//Velde B. Origin and mineralogy of clays. Berlin Heidelberg: Springer, 1995.
    [102] Jiménez-Espinosa R, Jiménez-Millán J. Calcrete development in mediterranean colluvial carbonate systems from SE Spain[J]. Journal of Arid Environments, 2003, 53(4): 479-489.
    [103] Khoury H N, Eberl D D, Jones B F. Origin of magnesium clays from the Amargosa Desert, Nevada[J]. Clays and Clay Minerals, 1982, 30(5): 327-336.
    [104] Hover V C, Walter L M, Peacor D R, et al. Mg-smectite authigenesis in a marine evaporative environment, Salina Ometepec, Baja California[J]. Clays and Clay Minerals, 1999, 47(3): 252-268.
    [105] Birsoy R. Formation of sepiolite-palygorskite and related minerals from solution[J]. Clays and Clay Minerals, 2002, 50(6): 736-745.
    [106] Nakajima Y, Watanabe T, Sudo T. Fourier analysis of the line profiles of talc synthesized from sepiolite[J]. Journal of Applied Crystallography, 1972, 5(4): 275-278.
    [107] Otsuka R, Sakamoto T, Hara Y. Phase transformations of sepiolite under hydrothermal conditions[J]. Journal of the Clay Science Society of Japan, 1974, 14(1): 8-19.
    [108] Güven N, Carney L L. The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides[J]. Clays and Clay Minerals, 1979, 27(4): 253-260.
    [109] Wu Q, Ramezani J, Zhang H, et al. Calibrating the guadalupian series (Middle Permian) of South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 361-372.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(3)

Article Metrics

Article views(701) PDF downloads(138) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-24
  • Revised:  2020-08-26
  • Published:  2021-06-10

Origin and Significance of Authigenic Argillaceous Components on the Ancient Carbonate Platform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan

doi: 10.14027/j.issn.1000-0550.2020.072
Funds:

National Natural Science Foundation of China 41872119, 41502115

Science and Technology Project of Sichuan Province 20YYJC1185

Abstract: Terrigenous fine-grained components developed on the platform settings can record massive amounts of information on source-to-sink processes and palaeoenvironmental evolutions, which can be used as an archive for the reconstruction of ancient climate and provenance. Yet, authigenic clays are visible in carbonate rocks, and their formation mechanism and diagenetic effect deserve more attention. Here, the authigenic marl components developed in carbonate rocks of the Maokou Formation (Middle Permian) at the Shangsi section have been studied in order to understand their origin and formation processes. The argillaceous component is mainly composed of the diagenetic clay mineral sepiolite, and a small amount of talc and montmorillonite. The source of Mg in sepiolite is speculated to be derived from the pore water inherited from seawater and the release of metastable carbonate minerals (e.g., high-Mg calcites), while Si may be sourced from the supply of hydrothermal fluid diffused from an active fault on the upper Yangtze platform. In addition, talc and montmorillonite minerals are likely derived from the alteration of sepiolite during the burial phase based on petrological and mineralogical evidence. Even so, a small amount of montmorillonite may originate from volcanic materials. In sum, authigenic argillaceous components are very common in the strata of the Maokou Formation, which are widely mixed with terrigenous fine-grained fractions in sedimentary records. These diagenetic clays would potentially affect the reliability of palaeoclimatic and palaeoenvironmental analyses if their contamination effects cannot be eliminated. In addition, the study of authigenic clays has potential significance in the understanding of diagenetic process and the identification of diagenetic geochemical signatures.

SU ChengPeng, LI Fei, TAN XiuCheng, WANG XiaoFang, GONG QiaoLin, LI MingLong, LU FeiFan, TANG Hao, DENG JiaTing, LI Hong. Origin and Significance of Authigenic Argillaceous Components on the Ancient Carbonate Platform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 550-570. doi: 10.14027/j.issn.1000-0550.2020.072
Citation: SU ChengPeng, LI Fei, TAN XiuCheng, WANG XiaoFang, GONG QiaoLin, LI MingLong, LU FeiFan, TANG Hao, DENG JiaTing, LI Hong. Origin and Significance of Authigenic Argillaceous Components on the Ancient Carbonate Platform: A case study from the Maokou Formation of the Middle Permian at the Shangsi section, Guangyuan[J]. Acta Sedimentologica Sinica, 2021, 39(3): 550-570. doi: 10.14027/j.issn.1000-0550.2020.072
  • 近年来,海相泥质沉积,尤其是滨海泥质沉积在物源分析、沉积动力学,以及古气候与古环境恢复方面的独特价值受到了研究者的广泛关注[1-4]。已有研究表明,泥质组分中不同矿物组合类型与气候变化(大于1万年)存在耦合关系[5-7],且泥质组分的旋回沉积与地球轨道参数的周期性变化存在关联[8-9]。海相沉积中陆源泥质通量既受到源区化学和物理风化程度的影响,又受到相对海平面升降以及大陆冰盖发育程度的控制[9-12],因而可以作为研究陆源风化(源)与海洋沉积过程(汇)的良好载体[13-14]

    需要注意的是,沉积物中泥质组分的形成过程复杂,其中有相当一部分是化学风化和成岩改造作用的结果,并不能直接用来指示源区性质[15-17]。例如,差异沉积作用(如因水体盐度改变导致高岭石等黏土矿物絮凝沉淀于滨海地区[18])、自生作用(如砂岩埋藏过程中自生高岭石和伊利石的形成[19])、成岩作用(如页岩埋藏过程中蒙脱石向伊利石的转化[20])等。目前,国内对古代台地碳酸盐沉积中泥质组分的研究较少,尤其是与早期成岩作用有关的自生泥质组分的成因研究较为匮乏[21-22]。因此,本次研究在前期工作的基础上[22-23],以广元上寺剖面为例,通过研究华南中二叠统台地相碳酸盐岩中自生泥质组分的形貌学、矿物学与元素地球化学特征,探讨非陆源来源的台地相自生泥质组分的形成和发育机制,为进一步认识泥质沉积组分的构成、类型及地质意义提供借鉴。此外,成岩型泥质组分常可形成自生自储型致密油气藏[24-28],因而对该类型泥质组分的研究在油气勘探领域也具有一定的借鉴意义。

  • 中二叠世(约273~259 Ma)华南克拉通位于古赤道附近,其东侧为泛大洋,西侧为古特提斯洋[29]。华南克拉通由扬子板块和华夏板块拼合而成,两者之间为江南盆地和右江盆地[30]。扬子板块当时被广泛发育的浅水碳酸盐沉积物覆盖,为构造稳定沉积区[31-32]。四川盆地当时位于上扬子地区北缘(图1a),为经历多期构造演化的叠合盆地[33]。四川盆地地层记录时间跨度广,主要包括前寒武至中三叠统的海相地层,以及上三叠统至第四系的陆相地层[34]。晚石炭至早二叠世,四川盆地以构造隆升剥蚀作用为主,导致盆地范围内大部分下二叠统缺失,之后受冈瓦纳冰川消融的影响,四川盆地发生大规模海侵[35-36],使得下—中二叠统栖霞、茅口组覆盖在不同时代的地层之上[34],其沉积环境主要为浅水碳酸盐台地(图1a)。

    Figure 1.  Palaeogeography (early Guadalupian) (a), regional geological map (b), conodont zones, and lithological columns (c) of the study area

    本次研究主要关注上寺剖面茅口组下部含泥质灰岩成因。上寺剖面位于四川盆地西北部矿山梁构造背斜南东翼,中二叠统出露良好(图1b)。该剖面茅口组岩性由下至上依次为含泥质灰岩(灰岩—泥灰岩韵律),中—厚层石灰岩,燧石条带灰岩,以及页岩和硅质岩互层(图1c)。茅口组顶部(晚卡匹敦期)出现了一次全球性海平面下降事件,导致扬子地台发生了广泛的暴露[4044],并使得上寺剖面茅口组顶部缺失了6个牙形石带(图1c)。

  • 基于上寺剖面茅口组野外观察发现,台地相泥质组分主要发育于灰岩—泥灰岩韵律中的泥灰岩层。这类韵律中灰岩层颜色较浅,为浅灰色—灰色,厚度多在10~30 cm之间,主要表现为层状、顺层连续串珠状和顺层断续串珠状(透镜状),杂乱状较为少见;泥灰岩层颜色较深,为深灰色—黑灰色,厚度一般小于15 cm。根据灰岩层的产出状态,泥灰岩层常平行或者包绕紧邻的灰岩层产出,且内部常可见近平行层面的白色方解石脉(图2)。对于顺层断续串珠状(透镜状)和杂乱状灰岩―泥灰岩韵律,国内学术界常将其称为瘤状(结核状)石灰岩或眼球状石灰岩[27,45-50]

    Figure 2.  Field characteristics of the limestone-marl alternations in the Maokou Formation (Shangsi, Guangyuan)

  • 光片观察发现,灰岩—泥灰岩韵律中灰岩层和紧邻的泥灰岩层的接触关系通常表现为渐变接触。该渐变过渡区的厚度通常为毫米级,与灰岩层和泥灰岩层相比,在颜色、矿物组成和生屑保存特征方面有明显变化(图3a,d):1)靠灰岩层一侧颜色较浅,靠泥灰岩层一侧颜色较深,由褐灰色渐变加深为灰褐色;2)灰岩层向泥灰岩层渐变过程中泥质组分中海泡石含量不断增加;3)靠泥灰岩层一侧生屑含量逐渐增加,且排列方式由杂乱随机分布渐变为具近平行层面排列的特征。

    Figure 3.  Photomicrographs of the argillaceous components in the Maokou Formation (Shangsi, Guangyuan)

    偏光显微镜观察发现,泥灰岩层中泥质组分(海泡石)主要呈褐色,大量分布于生屑颗粒间,亦可见褐色海泡石交代生屑颗粒的现象(图3b)。同时,泥灰岩层中还可见大量近平行层面方向排列的白色方解石脉(图3e,f),且少量脉体被硅化;正交偏光下可见明显的硅化不完全的方解石残余(图3f)。在阴极发光显微镜下,泥灰岩层中生屑颗粒发暗红色光或不发光,海泡石发深蓝至亮蓝色光(部分不发光)(图3c)。此外,还可见海泡石中发育少量具环带结构的半自形—自形粉晶白云石,其核心发暗红色光(图3c)。

    扫描电镜下,灰岩层中纤维状海泡石(α海泡石)主要分布于微晶方解石颗粒之间(图4a),并可见海泡石逐渐向方解石颗粒内部进行交代的现象(图4b)。泥灰岩层中,常见大量纤维状海泡石单体聚集排列成羽状(图4c,d),并可见海泡石交代方解石,以及海泡石向滑石转化的现象(图4e,f),形成羽片状海泡—滑石[51]图4f)。

    Figure 4.  Scanning electron microscope (SEM) photomicrographs of argillaceous fractions in limestone⁃marl alternations from the Maokou Formation (Shangsi, Guangyuan)

  • 进一步分析前期灰岩—泥灰岩韵律样品X射线衍射(XRD)结果[22]后发现,上寺剖面茅口组灰岩—泥灰岩韵律由方解石、白云石、石英和黏土矿物构成(附表1)。其中,灰岩层样品主要为方解石,含量82%~95%,均值88.75%;其次为黏土矿物海泡石,含量4%~16%,均值9.50%;石英和白云石矿物含量极少,均值分别为1.50%和0.25%。相比之下,泥灰岩层样品方解石含量明显降低,介于18%~30%,均值25.17%;黏土矿物含量明显增加,介于58%~69%,均值62.83%,且以海泡石为主,含量43%~63%,均值55.00%,其次为滑石和蒙脱石,均值分别为5.17%和2.67%;石英和白云石矿物含量明显增加,均值分别为7.17%和4.83%。

    样品编号 样品位置/m 岩性 百分含量×10-2
    碳酸盐矿物 石英 黏土矿物
    方解石 白云石 海泡石 滑石 蒙脱石
    SS-1-1 147.2 泥灰岩 26 2 6 57 9
    SS-1-2 147.24 灰岩 82 2 16
    SS-2-1 147.7 泥灰岩 25 1 5 62 7
    SS-2-2 147.73 灰岩 95 1 4
    SS-3-1 148.2 泥灰岩 29 5 8 55 3
    SS-3-2 148.23 灰岩 88 2 10
    SS-4-1 148.7 泥灰岩 30 5 6 43 16
    SS-4-2 148.72 灰岩 90 1 1 8
    SS-5 149.2 泥灰岩 23 3 9 63 2
    SS-6 149.7 泥灰岩 18 13 9 50 10

    Table 附1.  Annexed table 1 The mineralogical compositions of the limestone⁃marl alternations in the Maokou Formation from the Shangsi section at Guangyuan

  • 背散射电子图像和能谱分析发现,灰岩层与泥灰岩层过渡层中方解石颗粒间的海泡石具有越靠近泥灰岩层含量越多的特征,同时白云石交代方解石的现象也变得常见(图5)。个别方解石颗粒边缘还可见海泡石交代方解石形成的锯齿状接触关系(图5b)。此外,不管是在灰岩层还是在泥灰岩层中,都很难获得质纯的海泡石矿物元素峰谱图,均会出现较高的钙元素峰,并常见氟和铝元素峰(图5e,g)。

    Figure 5.  Back scattered electron (BSE) and spectrum images of limestone⁃marl⁃alternation samples (Shangsi, Guangyuan)

    不同矿物主量元素分析结果见表1。其中,白云石MgO含量介于15.45%~21.19%,均值18.41%,CaO含量介于31.63%~36.47%,均值33.51%;方解石MgO含量介于0.33%~1.66%,均值0.92%,CaO含量介于52.02%~55.70%,均值54.30%;二者SiO2含量极低,均值分别为0.29%和0.17%。海泡石MgO含量介于20.05%~26.49%,均值22.90%,SiO2含量介于54.31%~57.63%,均值55.53%,含少量CaO,均值4.86%。这些矿物主量元素含量均相对稳定。此外,在进行电子探针分析测试过程中,还发现了若干过渡型(或混合型)矿物,如方解石—海泡石、方解石—石英、海泡石—石英,其主量元素含量变化极大(表1)。

    矿物 岩性 样品编号 MgO SiO2 CaO Total 矿物 岩性 样品编号 MgO SiO2 CaO Total
    白云石 泥灰岩 SS-2M-1 17.44 0.16 33.16 50.76 方解石 泥灰岩 SS-2M-12 0.62 0.09 55.00 55.71
    白云石 泥灰岩 SS-2M-3 18.90 0.39 33.72 53.01 方解石 泥灰岩 SS-2M-13 0.33 0.12 54.44 54.89
    白云石 泥灰岩 SS-2M-6 17.07 0.88 34.80 52.76 方解石 泥灰岩 SS-4M-1 0.99 0.07 54.91 55.96
    白云石 泥灰岩 SS-2M-14 18.86 0.04 33.28 52.18 方解石 泥灰岩 SS-6M-1 0.89 0.00 54.92 55.81
    白云石 泥灰岩 SS-4M-2 15.45 0.39 36.47 52.30 方解石 泥灰岩 SS-6M-4 0.92 0.00 54.72 55.63
    白云石 泥灰岩 SS-4M-3 20.01 0.00 31.92 51.94 方解石 泥灰岩 SS-6M-7 1.29 0.00 55.29 56.58
    白云石 泥灰岩 SS-6M-2 21.19 0.20 31.63 53.02 海泡石 灰岩 SS-2L-3 20.05 55.37 7.50 82.92
    白云石 泥灰岩 SS-6M-5 19.20 0.00 33.31 52.51 海泡石 泥灰岩 SS-2M-4 21.35 55.79 3.80 80.94
    白云石 泥灰岩 SS-6M-10 17.59 0.55 33.28 51.42 海泡石 泥灰岩 SS-2M-7 22.52 57.63 1.66 81.81
    方解石 灰岩 SS-2L-1 1.27 0.56 53.11 54.93 海泡石 泥灰岩 SS-2M-15 24.53 54.70 0.90 80.13
    方解石 灰岩 SS-2L-2 1.66 1.47 52.02 55.15 海泡石 泥灰岩 SS-2M-17 22.47 54.31 8.50 85.28
    方解石 灰岩 SS-4L-1 0.92 0.00 54.31 55.23 海泡石 泥灰岩 SS-6M-3 26.49 55.40 6.79 88.68
    方解石 灰岩 SS-4L-2 0.91 0.02 55.70 56.63 过渡型1 泥灰岩 SS-2M-9 18.09 29.86 17.19 65.14
    方解石 灰岩 SS-4L-3 1.13 0.07 54.64 55.83 过渡型1 泥灰岩 SS-2M-16 15.56 31.53 24.03 71.12
    方解石 灰岩 SS-4L-4 0.54 0.00 54.94 55.48 过渡型1 泥灰岩 SS-4M-4 15.06 34.60 26.91 76.56
    方解石 过渡区 SS-2T-1 0.62 0.00 53.59 54.21 过渡型1 过渡区 SS-2T-2 19.63 42.17 17.13 78.94
    方解石 过渡区 SS-4T-1 1.03 0.07 53.69 54.78 过渡型1 过渡区 SS-4T-2 18.16 44.22 14.19 76.56
    方解石 泥灰岩 SS-2M-2 0.52 0.00 54.42 54.94 石英 泥灰岩 SS-2M-10 0.15 98.91 1.48 100.54
    方解石 泥灰岩 SS-2M-5 1.38 0.21 52.70 54.29 过渡型2 泥灰岩 SS-6M-8 5.04 53.36 20.62 79.02
    方解石 泥灰岩 SS-2M-8 1.05 0.46 54.18 55.69 过渡型3 泥灰岩 SS-6M-6 17.06 55.58 5.92 78.56
    方解石 泥灰岩 SS-2M-11 0.55 0.00 54.85 55.40 过渡型3 泥灰岩 SS-6M-9 12.94 81.67 1.18 95.79

    Table 1.  Electron microprobe data of chemical compositions (%) for major minerals acquired from the limestone⁃marl alternations in the Maokou Formation (Shangsi, Guangyuan)

    将灰岩—泥灰岩韵律中方解石、海泡石及方解石海泡石化过渡矿物(过渡型1)的电子探针主量元素进行交会投图,结果显示这些矿物中SiO2和MgO含量均与CaO含量呈现出高度的线性负相关(图6),表明成岩黏土矿物海泡石在逐步交代方解石矿物的过程中,随着硅和镁元素的逐渐增加伴随着钙元素的逐步流失。

    Figure 6.  Cross plots of major elements (SiO2 vs. CaO and MgO vs. CaO) in calcite, sepiolite, and mixed calcite⁃sepiolite minerals (based on electron microprobe data)

  • 稀土元素(REE)由于其电子排列的特殊性,相互之间具有相似的地球化学特征,在环境介质性质或化学条件发生改变时,常会引起元素间发生轻度分馏形成特定的稀土元素配分模式,因而能够敏锐地记录周围环境稀土组成特点及演化信息[52]。因此,为了厘清上寺剖面茅口组灰岩—泥灰岩韵律中泥质组分形成过程中环境流体性质,笔者对最近发表的海泡石组分相关数据[22]做了进一步分析(附表2)。从灰岩—泥灰岩韵律样品原位LA-ICP-MS测试后的背散射电子图像(图7)观察发现,虽然该测试结果能有效避免有机质和生物等组分对灰泥和海泡石测试结果的干扰,但是灰泥和海泡石间的相互干扰却不可避免。如对灰岩层中灰泥组分的测试会混入少量灰泥间海泡石的干扰(图7a),而对泥灰岩层中海泡石的测试则会混入少量灰泥残余的影响(图7d)。

    样品编号 岩性 主要矿物 CaCO3 /wt.% Fe /(μg/g) Al /(μg/g) Th /(μg/g) Zr /(μg/g) Y /(μg/g) La /(μg/g) Ce /(μg/g) Pr /(μg/g) Nd /(μg/g) Sm /(μg/g) Eu /(μg/g) Gd /(μg/g) Tb /(μg/g) Dy /(μg/g) Ho /(μg/g) Er /(μg/g) Tm /(μg/g) Yb /(μg/g) Lu /(μg/g)
    SS-2L-01 灰岩 灰泥 88.6 103 328 0.029 1.13 0.66 0.557 0.670 0.073 0.422 0.035 0.017 0.094 0.004 0.067 0.010 0.040 0.002 0.024 0.011
    SS-2L-02 灰岩 灰泥 89.2 108 286 0.037 0.47 0.68 0.512 0.905 0.082 0.436 0.039 0.008 0.033 0.031 0.028 0.007 0.047 0.007
    SS-2L-03 灰岩 灰泥 92.3 438 206 0.041 0.07 0.87 0.516 0.821 0.111 0.430 0.031 0.023 0.097 0.011 0.103 0.011 0.065 0.013 0.042
    SS-2L-04 灰岩 灰泥 92.9 98 185 0.019 0.30 0.66 0.585 0.801 0.121 0.467 0.044 0.026 0.055 0.012 0.109 0.007 0.055 0.001 0.041 0.011
    SS-2L-05 灰岩 灰泥 92.3 93 185 0.038 0.51 0.73 0.420 0.779 0.099 0.355 0.074 0.015 0.027 0.007 0.049 0.026 0.034 0.003 0.047 0.001
    SS-2L-06 灰岩 灰泥 90.0 88 259 0.019 0.15 0.50 0.368 0.571 0.104 0.406 0.016 0.008 0.043 0.007 0.022 0.013 0.041 0.008 0.021
    SS-2L-07 灰岩 灰泥 88.0 86 212 0.013 0.39 0.57 0.352 0.615 0.078 0.186 0.065 0.016 0.088 0.011 0.092 0.015 0.052 0.003 0.036 0.008
    SS-2L-08 灰岩 灰泥 93.9 90 148 0.081 0.23 1.01 0.605 0.902 0.128 0.639 0.189 0.023 0.128 0.015 0.097 0.009 0.051 0.003 0.078 0.014
    SS-2L-09 灰岩 灰泥 92.3 99 185 0.075 0.16 0.84 0.382 0.607 0.070 0.362 0.032 0.004 0.059 0.002 0.069 0.011 0.047 0.003 0.022 0.010
    SS-2L-10 灰岩 灰泥 89.8 105 217 0.017 0.76 0.54 0.327 0.511 0.052 0.238 0.046 0.011 0.095 0.005 0.051 0.014 0.010 0.002 0.035 0.005
    SS-2T-01 过渡区 灰泥 82.9 240 715 0.111 0.66 2.36 2.569 4.497 0.584 2.182 0.370 0.073 0.353 0.031 0.327 0.072 0.206 0.014 0.141 0.018
    SS-2T-02 过渡区 灰泥 77.5 298 916 0.096 1.09 2.03 2.504 4.407 0.469 2.162 0.298 0.050 0.292 0.054 0.220 0.046 0.190 0.024 0.138 0.023
    SS-2T-03 过渡区 灰泥 68.6 346 1 186 0.255 4.36 2.00 2.094 4.070 0.480 1.608 0.395 0.061 0.444 0.033 0.162 0.044 0.205 0.025 0.141 0.025
    SS-2T-04 过渡区 灰泥 61.1 348 1 424 0.119 2.60 1.28 1.715 3.741 0.451 1.711 0.136 0.058 0.156 0.018 0.067 0.035 0.051 0.010 0.069 0.010
    SS-2T-05 过渡区 灰泥 63.1 343 1 445 0.160 1.60 1.40 1.964 4.189 0.423 1.589 0.268 0.064 0.150 0.022 0.178 0.025 0.024 0.026 0.065 0.019
    SS-2T-06 过渡区 灰泥 54.5 383 1 530 0.183 2.55 1.30 1.646 3.424 0.400 1.559 0.183 0.056 0.185 0.030 0.192 0.030 0.076 0.065 0.012
    SS-2M-07 泥灰岩 海泡石 18.3 674 2 864 1.074 33.85 3.60 0.469 0.999 0.184 0.544 0.211 0.105 0.344 0.037 0.347 0.082 0.412 0.049 0.351 0.043
    SS-2M-08 泥灰岩 海泡石 17.2 906 3 065 0.296 5.45 1.19 0.421 0.692 0.098 0.288 0.027 0.008 0.095 0.019 0.093 0.032 0.073 0.008 0.094 0.014
    SS-2M-09 泥灰岩 海泡石 26.9 886 2 568 0.279 4.79 1.42 0.645 1.430 0.160 0.715 0.203 0.024 0.133 0.020 0.142 0.142 0.125 0.018 0.083 0.017
    SS-2M-10 泥灰岩 海泡石 49.9 727 1 969 0.321 2.55 1.88 1.329 2.622 0.379 1.426 0.210 0.067 0.161 0.042 0.172 0.043 0.072 0.011 0.144 0.012
    SS-2M-11 泥灰岩 海泡石 40.3 1 118 2 065 0.288 4.20 2.00 0.866 1.722 0.201 0.657 0.185 0.046 0.207 0.030 0.174 0.037 0.135 0.019 0.092 0.012
    SS-2M-12 泥灰岩 海泡石 27.2 715 3 478 0.258 4.65 1.64 0.586 1.450 0.176 0.740 0.162 0.032 0.117 0.029 0.249 0.038 0.110 0.022 0.119 0.007
    SS-2M-13 泥灰岩 海泡石 31.7 911 2 351 0.273 4.45 1.79 0.582 1.126 0.115 0.495 0.194 0.038 0.169 0.025 0.246 0.020 0.128 0.022 0.127 0.022
    SS-2M-14 泥灰岩 海泡石 13.7 863 3 097 0.676 11.83 1.59 0.345 0.903 0.073 0.439 0.089 0.007 0.144 0.009 0.211 0.049 0.104 0.026 0.160 0.021
    SS-2M-15 泥灰岩 海泡石 21.0 759 2 959 0.735 8.74 2.61 0.762 2.288 0.299 1.761 0.314 0.031 0.261 0.033 0.336 0.038 0.274 0.021 0.134 0.033
    SS-3L-01 灰岩 灰泥 93.2 329 254 0.032 0.24 0.85 0.546 0.819 0.110 0.524 0.016 0.023 0.141 0.011 0.060 0.015 0.051 0.010 0.064 0.006
    SS-3L-02 灰岩 灰泥 91.9 128 296 0.015 0.81 0.73 0.315 0.570 0.066 0.293 0.080 0.031 0.015 0.006 0.061 0.015 0.015 0.002 0.029 0.010
    SS-3L-03 灰岩 灰泥 92.1 250 365 0.035 1.05 1.13 0.388 0.660 0.078 0.346 0.060 0.027 0.002 0.085 0.007 0.039 0.003 0.027 0.006
    SS-3L-04 灰岩 灰泥 92.3 120 249 0.043 0.97 0.80 0.385 0.547 0.064 0.216 0.089 0.067 0.010 0.063 0.012 0.029 0.004 0.020 0.004
    SS-3L-05 灰岩 灰泥 92.1 104 259 0.040 0.53 0.89 0.334 0.512 0.070 0.189 0.119 0.029 0.094 0.005 0.041 0.014 0.062 0.008 0.060 0.009

    Table 附2.  Annexed table 2 The element results of the limestone⁃marl alternations in the Maokou Formation from the Shangsi section at Guangyuan based on LA⁃ICP⁃MS

    Figure 7.  BSE images of limestone⁃marl alternations in the Maokou Formation (Shangsi, Guangyuan)

    测试结果显示(附表2),灰泥(CaCO3含量大于50%,均值84.2%)具有极低的Al(平均值±标准偏差=484±404 μg/g;n=35)、Th(0.07±0.06 μg/g)、Zr(0.94±0.93 μg/g)和Fe含量(199±118 μg/g)。相比之下,海泡石(CaCO3含量小于50%,均值31.5%)具有相对较高的Al(2 165±666 μg/g;n=20),较低的Th(0.29±0.25 μg/g)、Zr(5.96±6.83 μg/g)和Fe含量(576±265 μg/g)。而二者的总稀土含量均极低,且无明显差异。灰泥的总稀土含量均值3.41 μg/g,海泡石的总稀土含量均值3.34 μg/g。

    将灰岩—泥灰岩韵律测试结果(灰泥和海泡石的混合组分,图7)进行各类元素含量交会投图(图8)发现,不同组分总稀土含量极低且与CaCO3含量无相关性(R 2=0.03,图8a),说明样品中非碳酸盐组分(海泡石)中陆源风化物质非常有限。这是由于陆源碎屑物质往往具有极高的总稀土浓度(如粉砂总稀土含量为100~260 μg/g,黏土总稀土含量为110~300 μg/g),随着陆源输入物的增加,将会导致总稀土含量的显著增加,且与CaCO3含量呈现明显的负相关关系[53]。此外,Al、Th、Zr元素含量通常被用来评估陆源输入物对碳酸盐的影响[54-56],而样品中Al、Th、Zr含量极低,且均与总稀土含量无相关性(R 2分别为0.07、0.07和0.01,图8b~d),进一步说明了灰岩—泥灰岩韵律中陆源输入物含量极低,且对样品中稀土元素含量基本上无影响。值得注意的是,Al、Fe含量与CaCO3含量呈现出明显的负相关关系(图8e,f),且Al含量与CaCO3含量的相关性(R 2=0.90)明显强于Fe含量与CaCO3含量的相关性(R 2=0.60),其原因可能为海泡石交代方解石的过程中Al元素通常替换海泡石中的Mg元素,而Fe元素除了能替换海泡石中的Mg元素外,还可存在于方解石矿物的晶格中。

    Figure 8.  Cross plots of different elements acquired from the limestone⁃marl alternations in the Maokou Formation (Shangsi, based on LA⁃ICP⁃MS measurement results)

    将灰岩—泥灰岩韵律REE+Y数据进行PAAS标准化[57],并根据样品岩性进行分类投图(图9a~e)。结果显示,同一组样品的泥灰岩层稀土浓度高于(或略高于)相邻的灰岩层(图9a~c),且泥灰岩层表现出重稀土较轻稀土更为富集的趋势,无明显的La、Ce、Eu异常,具有较高的Y/Ho值(49±17)(图9e);相比之下,灰岩层具有较典型的现代海水与热液混合的REE+Y配型特征(图9d),即表现为La正异常、Ce负异常、超球粒陨石化Y/Ho值(64±32)、重稀土相对轻稀土富集以及Eu正异常。

    Figure 9.  Shale⁃normalized rare earth element (REE)+Ypatterns of different components in the limestone⁃marl alternations of the Maokou Formation at Shangsi, Guangyuan

    前已述及,不管是灰岩层还是泥灰岩层,灰泥和海泡石间的相互影响不可避免(图7)。为了更清晰地展现出海泡石在交代方解石过程中环境流体性质的变化,笔者按测试点CaCO3含量的不同进行分类投图(图9f),其中CaCO3含量大于90%的样品(n=15)代表基本不受成岩海泡石交代的影响,反映的是沉积时海底水体的性质,其较灰岩层所有样品点平均值(图9d)更为清晰的展示出氧化海水与热液混合的REE+Y配型特征(图9f紫色配型曲线),即表现为La正异常、Ce负异常、超球粒陨石化Y/Ho值(72±36)、重稀土相对轻稀土富集以及Eu正异常。而CaCO3含量介于60%~90%(n=18,图9f绿色配型曲线)、介于30%~60%(n=13,图9f红色配型曲线)以及小于30%(n=9,图9f蓝色配型曲线)代表海泡石交代方解石的程度越来越高,可能是对早期成岩作用过程中不同水—岩反应阶段的响应[22]。三者均无明显Eu异常,暗示了早成岩期孔隙水不再受沉积期热液流体的影响;Ce由负异常逐渐变化为正异常,表明随着海泡石交代方解石的进行,孔隙水的性质由氧化逐渐转变为还原状态。

  • 层状镁硅酸盐矿物主要包括纤维状海泡石和坡缕石、三八面体镁蒙脱石(硅镁石、皂石和水辉石)、蜡蛇纹石(无序滑石)和滑石、以及广泛分布于非海相和海相序列的一些混合层[58]。这些层状镁硅酸盐矿物常见于上寺剖面二叠系茅口组灰岩—泥灰岩韵律中,主要为海泡石,其次为少量滑石和蒙脱石。

  • 海泡石(sepiolite)属斜方晶系或单斜晶系层链状结构硅酸盐矿物,在扫描电镜下可以看到它们由众多细丝凝聚排列成羽状(图4c,d),化学式为Mg8Si12O30(OH)4(OH24 [51]。海泡石发育于不同的沉积或成岩环境,其形成机理尚存争议。前人常认为其是在非海洋环境中形成的自生矿物,如蒸发湖相、泥滩和沼泽[59-60],以及受限制的海洋环境,如蒸发盆地和泻湖[61]。有时,海洋环境中保存的海泡石也可能是陆源成因,即在大陆或海洋周围的环境中形成,之后被搬运至深海环境[2,62]。最近的合成实验表明,海泡石可以在常温环境下由pH,Mg、Si浓度等控制的广盐度水环境中沉淀。这表明如果有足够的时间和活性硅源,海泡石矿物可以在大多数的海相沉积和成岩环境中形成[63-64]

    海泡石在华南中二叠统分布较为广泛[65-66],常作为栖霞组与茅口组的特征矿物[67]。Isphording[68]报道了两种不同类型的海泡石矿物,推测其成因可能与海水溶解态Si和Mg浓度升高相关。因此,前人多认为华南二叠系海泡石形成主要与当时较为干旱的气候背景有关[69-70],将海泡石交代生物壳体和藻类等现象视为一种次要特征[71]。如陈芸菁等[51]认为二叠纪茅口期的江西乐平一带海泡石大量产出就是在一个富镁的咸水盆地中沉积的,也有研究者认为海泡石是由沉积—成岩作用改造[72]、同沉积—早期成岩作用交代[71,73]等机制共同控制。

    然而,Yan et al.[21]认为海泡石为早期成岩过程的产物。前人通常用与海泡石共存的天青石和正延性玉髓说明沉积时的蒸发环境条件,但是通过深入的宏微观和地化特征分析表明天青石和正延性玉髓均与强蒸发环境无关[74-75],且没有其他证据证明华南中二叠世出现过干旱—强蒸发的沉积环境。此外,干旱气候条件与华南中二叠世的沉积特征和生物特征相矛盾[67]。本次研究通过对上寺剖面茅口组灰岩—泥灰岩韵律中海泡石宏微观特征的详细观察,支持Yan et al.[21]的观点,并补充了海泡石交代方解石的微观证据(图45)。基于电子探针主量元素分析,更进一步发现海泡石在逐步交代方解石矿物的过程中存在硅和镁元素会逐渐增加并伴随钙元素流失的证据(图6)。

    对于海泡石中Mg的来源,Yan et al.[21]提出Mg/Ca值长期变化与全球层状镁硅酸盐分布发育的时间吻合,支持中二叠世“文石海”背景下海水高Mg含量[76-79]有利于海泡石的发育,具体表现为继承海水的富Mg孔隙水以及原生沉积物中亚稳定矿物高镁方解石向稳定矿物低镁方解石转化过程中释放的Mg离子是海泡石中Mg的重要来源。海泡石中Si的来源目前仍存在争议。一些研究认为Si的主要来源为热液喷口[73]或上升流[80]。Cai et al.[81]基于微量和稀土元素分析认为Si元素来源于深海热泉流体,并通过上升流带到浅海区域。Yan et al.[21]将Si源归因于全球二叠纪燧石事件期间大量的硅质化石[82-83],并认为华南二叠系燧石的发育与硅质生物骨架的溶解有关[21,84]。但是有学者怀疑碳酸盐沉积物中的硅质生物能否为形成如此大规模燧石结核提供足够的硅通量[85]。沙庆安等[86]基于黔南—桂中地区二叠系众多剖面的研究认为,沉积物中的硅质生屑含量似乎不能够形成大多数的燧石沉积。最新研究认为华南地区二叠系层状和结核状燧石以及海泡石形成所需要的大量硅质主要来源于火山和热液活动[87-88]。赵振洋等[89]梳理了已有研究成果认为峨眉山玄武岩喷发(东吴运动)初始活跃期在茅口组沉积初期,而芦飞凡等[90]根据最新的露头和钻井资料提出东吴期张裂活动可能始于更早的栖霞组沉积早期,且有学者研究发现中二叠世扬子地台内部和边缘同沉积断裂极其发育[37,91-93]。因此,上寺剖面茅口组海泡石中Si可能部分来源于同沉积期断裂热液,这与能反映原始沉积水体性质的灰岩层和质纯灰泥样品明显的Eu正异常相吻合(图9d,f)。韵律层中硅质生物的不发育(图3)也可佐证海泡石中Si可能有多种来源。此外,海泡石中常含F元素(图5e,g),阴极发光下发蓝光(图3c),推测也是受到热液作用的影响。这是因为在四川盆地东部茅口组灰岩—泥灰岩韵律中常可见到海泡石与热液矿物萤石的共生(图10),而萤石矿物在阴极发光常发出较为鲜艳的蓝光(图10d)。这种含F海泡石与萤石共生的现象在上寺剖面邻近的二郎坝剖面茅口组灰岩—泥灰岩韵律中同样存在[88]

    Figure 10.  Characteristics of fluorite in marl beds acquired from the Maokou Formation, eastern Sichuan Basin

    综上,上寺剖面中二叠统茅口组灰岩—泥灰岩韵律中主要泥质组分海泡石应为早期成岩作用的产物,其Mg、Si来源可能与当时的古海水条件以及构造活动背景有关。其中,Mg推测来源于继承海水的孔隙水以及亚稳定矿物的转化释放,Si可能有相当一部分来源于同沉积期断裂热液(生物来源Si不能完全排除)。因此,成岩成因的灰岩—海泡石页岩韵律不适合作为沉积旋回的标志,也不能反映气候的周期性变化。大量海泡石的发育可指示富镁的古海水环境,不同程度海泡石化样品的地球化学信号亦可揭示早期成岩作用过程中孔隙水性质的变化过程。

  • 滑石(化学式为Mg3Si4O10(OH)2,属三斜晶系层状结构硅酸盐矿物)被广泛认为是富含硅的热液喷口流体与周围白云岩(提供Mg2+)化学反应形成的高温矿物[94-95],也可由镁铁质和超镁铁质岩的变质作用形成[96]。此外,有报道称滑石可以在海底富Si热液(>250 ℃)与富Mg冷海水沿深海烟囱和裂缝发生反应后形成[97-98]。最近的水热实验表明,CaO-MgO-SiO2-CO2-H2O体系变质作用下滑石析出温度并不太高(<200 ℃)[99]

    关于华南二叠系栖霞组和茅口组露头上常见的黑色滑石早在上个世纪80年代初就已有报道,张如柏[100]在四川盆地东南部南桐煤矿地区的中二叠统发现了该类黑色滑石,并认为它是一种新的滑石矿床类型。该滑石矿床与岩浆作用无关,没有受到明显的热液蚀变以及变质作用。当加热到600 ℃~650 ℃时,黑色滑石转变为白色,张如柏[100]认为这与其富含有机质密切相关。该类黑色滑石的物化性质与其他成因类型的滑石有一定差异。如在进行差热分析时,其差热曲线同时表现出870 ℃和950 ℃两个宽敞的吸热谷(一般滑石只在950 ℃存在一个对称的吸热谷)。陈芸菁等[51]分析认为,这是由于海泡石在转变为滑石的过程中(3Mg8Si12O30(OH)4(OH24→8Mg3Si4O10(OH)2+4SiO2+H2O)遗留有海泡石八面体(OH)键的缘故。此外,这种滑石在低温阶段具有150 ℃的吸热谷,这很有可能是由于海泡石层链塌陷残笼水(类沸石水)的存在而引起的[51]

    本次研究通过扫描电镜细致观察发现:1)上寺剖面茅口组灰岩—泥灰岩韵律中常见大量纤维状海泡石单体聚集排列成羽状(图4c,d);2)海泡石向滑石转化的中间产物(图4e,f),即羽片状海泡—滑石(图4f)。这些证据证明滑石是由海泡石成岩转化形成的。此外,通过对四川盆地东部武隆江口剖面中二叠统茅口组含泥质灰岩样品XRD的进一步观察和分析,发现存在一系列由海泡石矿物逐渐转变为滑石矿物的衍射图谱特征(图11),表现为海泡石向滑石转化的过程中,海泡石(110)反射强度衰减扩散,滑石(001)反射向低角度一侧拖大一个底角,为不对称的峰形。当海泡石(110)反射完全消失时,滑石(001)反射则变为一个近乎对称的峰。这与前人研究海泡石向滑石转化的XRD衍射图谱特征完全一致[51]

    Figure 11.  X⁃ray diffraction spectrograms of the limestone⁃marl alternations in the Maokou Formation (Jiangkou, Wulong)

    基于以上证据,上寺剖面茅口组灰岩—泥灰岩韵律中泥质组分中的滑石应为海泡石成岩转化的产物,推测其形成于海泡石之后的埋藏成岩过程。因而该类型黏土矿物也与陆源碎屑输入无直接关系。

  • 蒙脱石化学式为(Na,Ca)0.33(Al,Mg)2[Si4O10](OH)2,属单斜晶系层状结构铝硅酸盐矿物。海相沉积物中的蒙脱石通常被认为来源于火山物质的海底改造,长石等陆源碎屑的转化,以及相邻大陆源区的搬运[18,101-102]。亦有学者报道蒙脱石可以在高盐度的环境下由海泡石转化而来[58,103-105]。水热实验也表明,当温度分别超过200 ℃和310 ℃时,海泡石可以转化为镁蒙脱石和蜡蛇纹石(无序滑石)[106-108]。这意味着层状镁硅酸盐在高温埋藏过程中可以发生成岩转化。此外,最近有学者研究认为,在自然条件下,从海泡石到镁蒙脱石的转变温度只有约140 ℃,低于水热实验所揭示的温度[81]

    针对上寺剖面茅口组下部灰岩—泥灰岩韵律泥灰岩层中存在的少量蒙脱石,考虑到当时的区域古地理背景,即茅口组沉积早期为华南二叠纪最大规模海侵时期,周缘无古陆存在[32],因而不太可能主要来源于陆源风化输入。结合样品中蒙脱石与大量海泡石共存的现象(附表1),推测蒙脱石可能主要来源于海泡石高温埋藏过程中的成岩转化[81]。值得注意的是,含蒙脱石的泥灰岩样品(n=9)相对于其它样品具有较高的Al、Th、Zr和总稀土含量(附表2),均值分别为2 713 μg/g、0.47 μg/g、8.95 μg/g和4.15 μg/g,结合该时期东吴张裂运动已开始活跃,火山喷发较为普遍[8990,109],因此不排除有部分蒙脱石来源于火山物质的海底改造。

  • (1) 上寺剖面中二叠统茅口组灰岩—泥灰岩韵律扫描电镜与背散射电子图像清晰地展示了泥质组分交代方解石的过程,这与电子探针主量元素含量变化趋势相吻合,表明茅口组碳酸盐岩中泥质组分为成岩作用产物。

    (2) 基于上寺剖面茅口组灰岩—泥灰岩韵律主、微量及页岩化稀土元素配型特征,结合周边露头特征及古地理背景,认为该层位台地相泥质组分的主要元素Mg和Si分别来源于继承海水的孔隙水和亚稳定矿物的转化释放,以及同沉积期断裂热液。其中,海泡石为早期成岩作用产物,滑石主要形成于海泡石埋藏过程中的成岩转化。蒙脱石可能具有类似滑石的成因,但不排除有少量蒙脱石来源于火山物质的海底改造。

    (3) 在特定的古海水条件和构造背景下,浅水碳酸盐台地上可发育大量自生成因黏土矿物(泥质组分),因而在利用泥质组分来恢复古气候与古环境的时候,需要保持谨慎,注意区分泥质组分成因,以提高沉积旋回识别和环境解释的准确性。

Reference (109)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return