Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

CHEN Xu, OU RongSheng, SI ShangHua, DONG YuWen, KE Qin. Sedimentary Facies Division and Model of Wave-Controlled Delta of N Block, Pakistan[J]. Acta Sedimentologica Sinica, 2022, 40(1): 255-266. doi: 10.14027/j.issn.1000-0550.2020.069
Citation: CHEN Xu, OU RongSheng, SI ShangHua, DONG YuWen, KE Qin. Sedimentary Facies Division and Model of Wave-Controlled Delta of N Block, Pakistan[J]. Acta Sedimentologica Sinica, 2022, 40(1): 255-266. doi: 10.14027/j.issn.1000-0550.2020.069

Sedimentary Facies Division and Model of Wave-Controlled Delta of N Block, Pakistan

doi: 10.14027/j.issn.1000-0550.2020.069
Funds:

Open Foundation of Key Laboratory of Tectonics and Petroleum Resources TPR-2021-05

Natural Science Foundation of Hubei Province 2020CFB372

  • Received Date: 2020-05-17
  • Rev Recd Date: 2020-07-31
  • Publish Date: 2022-01-10
  • Wave-controlled deltas are important reservoir types and are potential exploration targets in marine and land interaction deposition. At present, few studies have been reported in the industry regarding microfacies division, sedimentary mechanisms or modeling. Taking N Block in Pakistan as an example, sedimentary facies division and models of marine delta affected by wave flow were studied based on core logging, seismic and test data. In the Cretaceous, N Block had a high-energy coastal zone in which the delta estuary was damaged, transformed and redistributed by strong wave action, coastal currents and storm waves, forming the sedimentary wave-controlled delta. It is represented by a circum-shoreline bar extending from the delta plain to the ocean. Its framework is clearly different from usual delta facies. Underwater distributary channels and mouth bar microfacies have not been developed in the proximal delta front, and a composite sandy beach was formed on both sides of the estuary, with thick layers of pure sandstone parallel to the coastline distributed contiguously over large areas and with wide-extension scale sedimentary characteristics, which is the skeletal sandbody. The distal delta front is always washed and disturbed by waves, forming flat interbedded sheets of sand and mud. In plan, it presents a large area with a lobe shape towards the sea. Vertically, a reverse cycle of upward coarsening was formed. The sedimentary sequence is incomplete, and shows destructive characteristics. Finally, the sedimentary model of a wave-controlled delta in an sample area is summarized, providing a basis for detailed evaluation of sedimentary delta reservoirs.
  • [1] Galloway W E, Hobday D K. Terrigenous clastics depositional systems[J]. Springer Verlag New York, 1975, 69(4): 569-595.
    [2] Orton G J. A spectrum of middle Ordovician fan delta and braid plain deltas, north wales: A consequence of varying fluvial clastic input[J]. Springer Verlag New York, 1998, 92(1): 735-748.
    [3] Gong C L, Wang Y M, Pyles D R, et al. Shelf-edge trajectories and stratal stacking patterns: Their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone[J]. AAPG Bulletin, 2015, 99(7): 1211-1243.
    [4] 朱筱敏,葛家旺,赵宏超,等. 陆架边缘三角洲研究进展及实例分析[J]. 沉积学报,2017,35(5):945-957.

    Zhu Xiaomin, Ge Jiawang, Zhao Hongchao, et al. Development of shelf-edge delta researches and typical case analyses[J]. Acta Sedimentologica Sinica, 2017, 35(5): 945-957.
    [5] Dalrymple R W, Choi K, 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation[J]. Earth-Science Reviews, 2017, 81(3/4): 135-174.
    [6] Veeken P C H, van Moerkerken B. Seismic stratigraphy and depositional facies models[M]. Houten: EAGE Publications, 2013: 1-100.
    [7] 朱筱敏,钟大康,袁选俊,等. 中国含油气盆地沉积地质学进展[J]. 石油勘探与开发,2016,43(5):820-829.

    Zhu Xiaomin, Zhong Dakang, Yuan Xuanjun, et al. Development of sedimentary geology of petroliferous basins in China[J]. Petroleum Exploration and Development, 2016, 43(5): 820-829.
    [8] 王菁,李相博,刘化清,等. 陆相盆地滩坝砂体沉积特征及其形成与保存条件:以青海湖现代沉积为例[J]. 沉积学报,2019,37(5):1016-1030.

    Wang Jing, Li Xiangbo, Liu Huaqing, et al. Study of the development and preservation of lacustrine beach and bar based on the modern sedimentary characteristics of Qinghai Lake[J]. Acta Sedimentologica Sinica, 2019, 37(5): 1016-1030.
    [9] Lin C S, Jiang J, Shi H S, et al. Sequence architecture and depositional evolution of the northern continental slope of the south China sea: Responses to tectonic processes and changes in sea level[J]. Basin Research, 2018, 30(1): 568-595.
    [10] Catuneanu O. Scale in sequence stratigraphy[J]. Marine and Petroleum Geology, 2019, 106: 128-159.
    [11] El-Sorogy A, Al-Kahtany K, Almadani S, et al. Depositional architecture and sequence stratigraphy of the upper Jurassic Hanifa formation, central Saudi Arabia[J]. Journal of African Earth Sciences, 2018, 139: 367-378.
    [12] 朱筱敏,董艳蕾,曾洪流,等. 沉积地质学发展新航程:地震沉积学[J]. 古地理学报,2019,21(2):189-201.

    Zhu Xiaomin, Dong Yanlei, Zeng Hongliu, et al. New development trend of sedimentary geology: Seismic sedimentology[J]. Journal of Palaeogeography, 2019, 21(2): 189-201.
    [13] 李小平,柳保军,丁琳,等. 海相三角洲沉积单元划分及其对勘探砂体对比的意义:基于现代珠江三角洲沉积水动力综合研究[J]. 沉积学报,2016,34(3):555-562.

    Li Xiaoping, Liu Baojun, Ding Lin, et al. Depositional elements definition of marine delta and significance to sand body correlation in petroleum exploration: From hydrodynamic analysis on modern Pearl River Delta[J]. Acta Sedimentologica Sinica, 2016, 34(3): 555-562.
    [14] 于兴河,李胜利,李顺利. 三角洲沉积的结构—成因分类与编图方法[J]. 沉积学报,2013,31(5):782-797.

    Yu Xinghe, Li Shengli, Li Shunli. Texture-genetic classifications and mapping methods for deltaic deposits[J]. Acta Sedimentologica Sinica, 2013, 31(5): 782-797.
    [15] 金振奎,高白水,李桂仔,等. 三角洲沉积模式存在的问题与讨论[J]. 古地理学报,2014,16(5):569-580.

    Jin Zhenkui, Gao Baishui, Li Guizai, et al. Problems and discussions about delta depositional models[J]. Journal of Palaeogeography, 2014, 16(5): 569-580.
    [16] 秦润森,岳红林,周凤军,等. 河控浅水三角洲前缘席状砂沉积特征及沉积模式探讨:以黄河口凹陷渤中34地区明下段为例[J]. 沉积学报,2020,38(2):429-439.

    Qin Runsen, Yue Honglin, Zhou Fengjun, et al. Characteristics and sedimentary models of sheet sand in shallow lacustrine fluvial-dominated delta front: A case study from lower member of Minghuazhen Formation in BZ34 area, Huanghekou Sag[J]. Acta Sedimentologica Sinica, 2020, 38(2): 429-439.
    [17] 顾效源,鲁青原,叶思源,等. 黄河三角洲进积与滨海湿地地质环境演替模式[J]. 地质论评,2016,62(3):682-692.

    Gu Xiaoyuan, Lu Qingyuan, Ye Siyuan, et al. Yellow River Delta evolution model of coastal wetland geological environment[J]. Geological Review, 2016, 62(3): 682-692.
    [18] 孙林,陈旭,董玉文,等. 塔里木盆地台盆区三叠系大型辫状河三角洲沉积特征[J]. 石油地球物理勘探,2012,47(4):642-652.

    Sun Lin, Chen Xu, Dong Yuwen, et al. Sedimentary characteristics of the Triassic braided river delta in Tarim Basin Platform[J]. Oil Geophysical Prospecting, 2012, 47(4): 642-652.
    [19] 蔡全升,胡明毅,胡忠贵,等. 退积型浅水三角洲沉积演化特征及砂体展布规律:以松辽盆地北部临江地区下白垩统泉头组四段为例[J]. 石油与天然气地质,2016,37(6):903-914.

    Cai Quansheng, Hu Mingyi, Hu Zhonggui, et al. Sedimentary evolution and distribution of sand bodies of retrogradational shallow-water delta: A case study from 4th member of the Cretaceous Quantou Formation in the Lingjiang area, Songliao Basin[J]. Oil & Gas Geology, 2016, 37(6): 903-914.
    [20] 刘君龙,纪友亮,杨克明,等. 浅水湖盆三角洲岸线控砂机理与油气勘探意义:以川西坳陷中段蓬莱镇组为例[J]. 石油学报,2015,36(9):1060-1073,1155.

    Liu Junlong, Ji Youliang, Yang Keming, et al. Mechanism of lake shoreline control on shoal water deltaic sandbodies and its significance for petroleum exploration: A case study of Penglaizhen Formation in the middle part of western Sichuan Depression[J]. Acta Petrolei Sinica, 2015, 36(9): 1060-1073, 1155.
    [21] 孙永河,李雪松,刘志达,等. 尼日尔三角洲东部斜向背斜形成演化特征[J]. 石油勘探与开发,2018,45(1):51-61.

    Sun Yonghe, Li Xuesong, Liu Zhida, et al. Formation and evolution of oblique anticline in eastern Niger Delta[J]. Petroleum Exploration and Development, 2018, 45(1): 51-61.
    [22] 马德波,贾进华,申银民,等. 塔里木盆地吉拉克地区东河砂岩尖灭线地震预测技术与应用[J]. 石油地球物理勘探,2017,52(1):94-104.

    Ma Debo, Jia Jinhua, Shen Yinmin, et al. Seismic prediction of Donghe sandstone pinch-out line in Jilake, Tarim Basin[J]. Oil Geophysical Prospecting, 2017, 52(1): 94-104.
    [23] 李林涛, 李运振, 赵厚祥, 等. 印度河前陆盆地油气富集规律与成藏主控因素[J]. 石油天然气学报, 2015, 37(9/10): 7-13.

    Li Lintao, Li Yunzhen, Zhao Houxiang, et al. Hydrocarbon accumulation rules and main control factors in Indus foreland basin[J]. Journal of Oil and Gas Technology, 2015, 37(9/10): 7-13.
    [24] 刘铁树,常迈,贾怀存,等. 南亚地区油气地质综合研究与区域优选[J]. 中国石油勘探,2013,18(4):58-67.

    Liu Tieshu, Chang Mai, Jia Huaicun, et al. Petroleum geology research and favorable area optimization of south Asia[J]. China Petroleum Exploration, 2013, 18(4): 58-67.
    [25] Huang Z X, Wang Y M, Wang Y C. Sequence stratigraphy and tectonics in Middle Indus Basin, Pakistan[J]. Petroleum Exploration and Development, 2005, 32(1): 134-140.
    [26] 陈旭,刘彩芹,王红梅,等. 印度河盆地T区块构造特征与油气成藏[J]. 石油地球物理勘探,2017,52(6):1305-1314.

    Chen Xu, Liu Caiqin, Wang Hongmei, et al. Tectonic characteristics and hydrocarbon accumulation in the Block T, Indus River Basin[J]. Oil Geophysical Prospecting, 2017, 52(6): 1305-1314.
    [27] 钱凯,孙晓惠,许小琼,等. 下印度河盆地石油地质、油气分布及油气富集区特征[J]. 天然气地球科学,2017,28(12):1797-1809.

    Qian Kai, Sun Xiaohui, Xu Xiaoqiong, et al. Petroleum geology, hydrocarbon distribution and accumulation fairway study in the Lower Indus Basin[J]. Natural Gas Geoscience, 2017, 28(12): 1797-1809.
    [28] 林卫东. 印度河盆地含油气系统特征与成藏模式[J]. 天然气工业,2008,28(8):19-21.

    Lin Weidong. Features of Petroluem system and patterns of hydrocarbon pooling in the Indus Basin[J]. Natural Gas Industry, 2008, 28(8): 19-21.
    [29] Carmichael S M, Akhter S, Bennett J K, et al. Geology and hydrocarbon potential of the offshore Indus Basin, Pakistan[J]. Petroleum Geoscience, 2009, 15(2): 107-116.
    [30] Ahmad Z, Akhter G, Bashir F, et al. Structural interpretation of seismic profiles integrated with reservoir characteristics of Bitrism block (Sind province), Pakistan[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 32(4): 303-314.
    [31] 陈旭,王红梅,谢锐杰,等. 印度河盆地下白垩统海相三角洲沉积与油气富集规律[J]. 地质科技情报,2017,36(5):69-75.

    Chen Xu, Wang Hongmei, Xie Ruijie, et al. Sedimentary characteristics and hydrocarbon accumulation regularity of the Lower Cretaceous marine delta of Indus River Basin[J]. Geological Science and Technology Information, 2017, 36(5): 69-75.
    [32] Nazir A, Fazeelat T. Petroleum geochemistry of lower Indus basin, Pakistan: I. Geochemical interpretation and origin of crude oils[J]. Journal of Petroleum Science and Engineering, 2014, 122: 173-179.
    [33] Alizai A, Clift P D, Still J. Indus basin sediment provenance constrained using garnet geochemistry[J]. Journal of Asian Earth Sciences, 2016, 126: 29-57.
    [34] Nazeer A, Abbasi S A, Solangi S H. Sedimentary facies interpretation of Gamma Ray (GR) log as basic well logs in central and lower Indus Basin of Pakistan[J]. Geodesy and Geodynamics, 2016, 7(6): 432-443.
    [35] Ahmed S, Solangi S H, Jadoon M S K, et al. Tectonic evolution of structures in southern Sindh monocline, Indus basin, Pakistan formed in multi-extensional tectonic episodes of Indian plate[J]. Geodesy and Geodynamics, 2018, 9(5): 358-366.
    [36] Ferrier K L, Mitrovica J X, Giosan L, et al. Sea-level responses to erosion and deposition of sediment in the Indus River basin and the Arabian Sea[J]. Earth and Planetary Science Letters, 2015, 416: 12-20.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)  / Tables(1)

Article Metrics

Article views(680) PDF downloads(108) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-05-17
  • Revised:  2020-07-31
  • Published:  2022-01-10

Sedimentary Facies Division and Model of Wave-Controlled Delta of N Block, Pakistan

doi: 10.14027/j.issn.1000-0550.2020.069
Funds:

Open Foundation of Key Laboratory of Tectonics and Petroleum Resources TPR-2021-05

Natural Science Foundation of Hubei Province 2020CFB372

Abstract: Wave-controlled deltas are important reservoir types and are potential exploration targets in marine and land interaction deposition. At present, few studies have been reported in the industry regarding microfacies division, sedimentary mechanisms or modeling. Taking N Block in Pakistan as an example, sedimentary facies division and models of marine delta affected by wave flow were studied based on core logging, seismic and test data. In the Cretaceous, N Block had a high-energy coastal zone in which the delta estuary was damaged, transformed and redistributed by strong wave action, coastal currents and storm waves, forming the sedimentary wave-controlled delta. It is represented by a circum-shoreline bar extending from the delta plain to the ocean. Its framework is clearly different from usual delta facies. Underwater distributary channels and mouth bar microfacies have not been developed in the proximal delta front, and a composite sandy beach was formed on both sides of the estuary, with thick layers of pure sandstone parallel to the coastline distributed contiguously over large areas and with wide-extension scale sedimentary characteristics, which is the skeletal sandbody. The distal delta front is always washed and disturbed by waves, forming flat interbedded sheets of sand and mud. In plan, it presents a large area with a lobe shape towards the sea. Vertically, a reverse cycle of upward coarsening was formed. The sedimentary sequence is incomplete, and shows destructive characteristics. Finally, the sedimentary model of a wave-controlled delta in an sample area is summarized, providing a basis for detailed evaluation of sedimentary delta reservoirs.

CHEN Xu, OU RongSheng, SI ShangHua, DONG YuWen, KE Qin. Sedimentary Facies Division and Model of Wave-Controlled Delta of N Block, Pakistan[J]. Acta Sedimentologica Sinica, 2022, 40(1): 255-266. doi: 10.14027/j.issn.1000-0550.2020.069
Citation: CHEN Xu, OU RongSheng, SI ShangHua, DONG YuWen, KE Qin. Sedimentary Facies Division and Model of Wave-Controlled Delta of N Block, Pakistan[J]. Acta Sedimentologica Sinica, 2022, 40(1): 255-266. doi: 10.14027/j.issn.1000-0550.2020.069
  • 在海陆过渡带沉积环境中,海、陆交互作用对海岸带沉积的改造、再分布作用明显。Galloway et al.[1]根据陆地和海洋的相互作用关系,总结三角洲“三端元”划分认识。Orton[2]根据三角洲沉积物粒度变化,提出“结构—成因”的划分依据。Gong et al.[3]指出三角洲沉积可容纳空间、气候和物源的“三因素”划分方案。朱筱敏等[4]结合实例区,探讨了过渡带三角洲类型划分及进展。Dalrymple et al.[5] 基于不同水动力条件,建立了河流—海洋过渡的形态和沉积相序模式。随着人们对国内外沉积盆地及不用类型三角洲研究的深入,人们发现不同控制因素的三角洲沉积特征差异性较大[6-12],而这些因素与沉积储层、油气富集规律密切关联[13-23]

    研究区位于印度河盆地塔尔斜坡的N区块,是巴基斯坦重要的产油气区[24-26]。自上世纪80年代以来,国内外学者对该区下白垩统海相沉积体系进行不同程度的研究,然而对沉积相标志、微相划分、储层展布及油气成藏的认识相差悬殊[27-32],达不到油气精细评价的现实需求。而近年来中国石油“一带一路”战略的深入实施,尤其是N区块近年来实现全区三维地震资料观测覆盖,同时大批钻井上钻,亟需人们从整体上对其沉积储层及油气潜力有更深入了解。因此,笔者跟进最新的勘探进展,综合利用20多口井取心资料以及大量的钻井、测井和地震数据,在大量的沉积相标志分析基础上,提出研究区发育浪控三角洲沉积相类型,并开展微相划分、储集砂体展布和沉积模式研究,为油气储层描述提供科学依据。

  • 印度河盆地是巴基斯坦国内最大的沉积盆地,地处于喜马拉雅山南部,大地构造位置处印度板块西北部地区[26-27]。盆地总面积达3.8×105 km2,其中90%以上的面积处于巴基斯坦境内。盆地形态由向西北倾斜的大陆架组成,构造单元划自西到东依次为:西部褶皱造山带(苏来曼和萨哈尔褶皱带)、中部前渊带(苏来曼前渊和萨哈尔前渊带)和东部隆后带(北部的盼遮普台地、中部玛里—坎科塔高地的和南部的德信台地、塔尔斜坡)。盆地构造演化主要经历了侏罗纪裂谷作用、早白垩世被动大陆边缘沉降作用、晚白垩世斜向拉张断陷作用,以及新近纪前陆碰撞造山作用。自下至上发育了侏罗系至第四系多套沉积地层,岩性由碎屑岩和碳酸盐组成,含少量火山岩,地层沉积厚度在3~6 km [28-29]图1)。

    Figure 1.  (a) Tectonic element division of Indus Basin, showing location of section L1; (b) generalized stratigraphic column; and (c) L1 geological structural section in southern part

    N区块构造位置处于印度河盆地塔尔斜坡东南端,西北部临近萨哈尔生烃凹陷,构造形态为一个长期继承性发育、向东南倾的单斜构造,主要目标层系为下白垩统砂岩储层,三维地震勘探面积近2 500 km2,相对于其他勘探区块,该地区基础资料丰富、油气探明程度高、钻井数量多(近200口钻井),为一个相对成熟的勘探区块。

  • 下早白垩世被动大陆边缘沉降阶段,盆地构造活动较弱,地层稳定沉降。N区块处于塔尔斜坡构造带,坡度宽缓,海岸线宽广,形成了大面积的浅水区,为广泛发育三角洲沉积体系提供稳定的构造基础[32-33]。钻井揭示白垩统为大范围、厚层碎屑岩沉积,岩性由(浅)褐色、灰色或灰绿色砂岩夹深灰色、暗色泥岩组成。

    通过大量的沉积相标志分析,认为研究区发育向海洋推进的沉积层序,即在滨浅海背景下发育浪控三角洲沉积,细分为平原亚相、前缘亚相及前三角洲亚相。三角洲前缘相带宽广,沉积水动力作用活跃,为N区块特色岩性相带。根据水动力条件和砂体组合特征,细分为内、外两个前缘亚相。特别的,内前缘的滩砂和外前缘的临滨砂为研究区主要的储层发育区(表1)。

    沉积相 沉积亚相 沉积微相
    波浪 改造 三角 洲相 三角洲平原 分流河道,洪泛平原或沼泽(工区局部发育)
    三角洲内前缘 滩砂,海湾
    三角洲外前缘 上临滨,下临滨,海湾
    前三角洲 前三角洲泥

    Table 1.  Wave⁃controlled delta facies divisions of Lower Cretaceous in N Block

  • 少量钻井揭示平原亚相分布在N区块东南部地带,沉积微相由分流河道砂岩和洪泛平原泥岩构成。分流河道岩性普遍粗,分选差—中等,磨圆度为次凌状—次圆状,岩性成分混杂,由杂色砂砾岩、粗—中砂岩组成,含薄层泥质粉砂岩或泥岩夹层,具间断的正旋回特征。河道砂岩中发育板状交错层理和平行层理。河道底部存在冲刷面或突变接触面,常见泥砾、泥屑和砂屑,代表了强的水动力条件和河道冲刷作用。测井相为中高幅、(微)齿化箱型和钟型。地震相为中等振幅、中等连续、亚平行的特征(图2)。

    Figure 2.  Wave⁃controlled delta plain subfacies markers in Lower Cretaceous in N Block (well and section location is shown in Fig.6a)

    河道间的低洼处为洪泛平原或沼泽泥岩沉积,岩性为杂色泥岩夹粉砂质泥岩,往与分流河道沉积伴生,处于氧化—弱还原的沉积环境。取心发现沼泽中残存有植物碎屑、根系化石和木质煤层,具有明显的指相意义(图2)。

  • 内前缘相带基本上处于平均高潮线和低潮线之间。在海水循环较好的开阔海岸地带,碎屑物沉积特点发生了显著的变化:首先,该时期海平面持续上升,海侵作用强烈[29-30]。陆源碎屑物供给规模小,东南部仅有若干条、小规模河流入海,相应河流输入泥沙体量偏少。其次,在高能波浪和向陆方向沿岸流的强烈作用下,陆源碎屑沉积被改造,原有的水下分流河道和河口坝微相基本上不发育。取而代之的是,在河口两侧形成平行于海岸线、连片、厚层、岩性纯、延伸规模大的滩砂沉积发育区。而在海岸带滩砂之间的相对低洼处,形成了局限海湾泥质沉积。

  • 滩砂微相为浪控三角洲内前缘骨干砂体类型,构成了N区块最富特色的沉积相带。滩砂微相取心相标志主要有:1)单砂层普遍大于4 m,最厚达20 m;2)岩心观察发现,岩性以灰色中—细砂岩为主,偶见粗砂,在厚层砂岩段内部常见薄层深灰色(粉砂质)泥质条带,厚度普遍小于1 m;3)垂向以叠加渐变的正韵律为主;4)镜下薄片发现,砂岩质纯,石英等稳定组分含量高,含量在95%以上,岩屑及长石含量极低或不含。颗粒分布均匀,点、线接触,分选磨圆中等—好,孔隙结构好,表明碎屑沉积物经历了长期的搬运、淘洗和改造作用,具有高的成分和结构成熟度;5)粒度曲线为“两段式”,跳跃组分大于70%,中等悬浮总体小于15%,滚动组分极少。跳跃组分见2个斜率不等的次组分,这反映了海岸地带波浪作用强烈,对河流携带碎屑物的改造作用明显,具有多次往返搬运、簸选的沉积特点;6)层理构造广泛发育。块状层理形成于相对稳定的水体环境,砂岩颗粒均匀,肉眼难以发现层理,反映砂质快速堆积过程。平行层理纹层较薄,部分与生物介壳(厚度可达5 cm)互层,反映了海陆过渡带浅水区高流态、水动力强的特征。冲洗交错层理和波状交错层理是波浪传播过程中往返的冲洗作用标志,反映了海岸带波浪改造作用;7)取心常见垂向潜穴、不规则的钙质团块、钙质(泥质)条带等,含少量贝壳碎片、植物茎化石和云母等,指示水体处在动荡的滨海环境(图3)。

    Figure 3.  Wave⁃controlled proximal delta front subfacies markers in Lower Cretaceous in N Block (well and section location is shown in Fig.6a)

    此外,测井相为高幅块状、箱型或钟型,曲线为微齿状或光滑形态,反映滩砂岩性单一、砂质均匀。特别的,由于N区块三角洲内前缘滩砂十分发育,厚层砂体直接覆盖在海湾或者浅海泥岩中,单层砂体厚度大,例如部分钻井揭示滩砂累计厚度达到100 m,类似这样的厚层砂岩,在N区块中部地区普遍发育,前人将该类型的砂岩笼统划分为水下分流河道[34-36],显然不合适。取心相和测井相标志分析认为,这正是高能海岸带的、具有海洋波浪改造背景下三角洲内前缘滩砂的重要特色。

    地震相组合规律性明显。地震同相轴外形呈席状,中高频、连续性好、振幅强,平行—亚平行反射,分布范围广,表明海岸带浅水区水动力作用较强,砂岩十分发育,具有垂向加积和侧向迁移的特征(图3)。

  • 海湾微相位于滩砂之间低洼处,处于弱还原环境。岩性为深灰色细粒或粉砂质泥岩,含生物介壳和植物碎片,发育透镜状层理、水平层理或块状层理(图3)。测井相为平直型或指状。特别的,经钻井资料证实,由于波浪改造作用明显,海湾泥质沉积往往容易被侵蚀掉,最终形成零星存在、斑点状分布的泥质沉积。因此,海湾泥质零星发育,在中部地区形成了以滩砂为骨干砂体的特征。

  • 外前缘相带介于平均低潮线和浪基面之间,波浪冲洗和扰动作用仍然比较明显,形成频繁的砂泥互层。薄层砂岩往、返穿插于泥岩之间,以席状、条带状或不规则状分布在三角洲前缘末端,构成了特色的岩性相带。根据N区块水体动力变化和岩相组合分为上临滨、下临滨两个有利的微相类型。

  • 上临滨微相位于海洋平均低潮线之下的较高能带。单砂厚度在2~4.5 m,砂岩纯净,由灰色细砂、少量粉砂和泥质粉砂组成。显微照片发现颗粒分选中等—好,磨圆为次凌状—次圆状,砂岩成熟度较高。波状层理、浪成波纹交错层理发育,见生物扰动现象。碎屑颗粒向上变粗,具有向广海方向推进特征。测井相呈中—高幅、(微)齿化漏斗型,少量钟型。地震相为中低振幅、断续分布和亚平行反射(图4)。

    Figure 4.  Wave⁃controlled distal delta front subfacies markers of Lower Cretaceous in N Block (well and section location is shown in Fig.6a)

  • 下临滨微相位于浪基面附近的较低能带,波浪作用微弱,偶尔有浅海风暴浪(流)作用。单砂体普遍小于2 m,由灰色细、粉砂岩夹暗色(砂质)泥岩组成。丘状(风暴)、波状和透镜状层理十分发育。泥岩段质纯,发育水平层理,见少量虫孔和生物扰动现象,含介壳化石和透镜状黄铁矿结核(风化后呈灰黄色),反映水下还原环境。测井相为中低幅、弱齿化漏斗型或指状。地震相与上临滨的特征类似(图4)。

  • 前三角洲泥沉积分布工区西北部广大地区。位于浪基面之下的滨外地带,以低能沉积作用为主。岩性由厚层块状泥岩夹少量泥质粉砂岩组成,泥岩质纯,颜色深,原生层理构造难以识别,见少量海相生物遗迹相组合,测井相为平直形或线形(图4)。

  • N区块下白垩统A砂组发育向海洋推进的沉积层序。在顺物源方向的连井地震剖面上,在A砂层顶、底面限定的波阻反射单元内,呈现为斜交前积反射结构。地震波组为一系列前积层,较低角度倾斜,不同的前积层大致平行,部分重复叠置,反映水体较浅、坡度平缓的沉积环境,沉积砂体表现为垂向加积或向海进积的特点(图5a)。

    Figure 5.  (a) Seismic facies of oblique foreproduct in L5 section; and (b) well sedimentary profile (section location is shown in Fig.6a)

    通过钻井、地震标定认为,宏观上发育3组地震前积反射单元(S1~S3),对应为3期三角洲沉积体。对应的连井沉积相对比可见,内前缘滩砂十分发育,由厚层砂岩夹薄层泥岩组成,构成了研究区骨干砂体。垂向上,W3和W4井的S1~S2段为向上变粗的反旋回沉积,之后经过短暂的海侵,S3砂岩段在工区形成广泛发育的面貌,揭示不断向广海方向推积的过程(图5b)。

  • 研究区面积较大、钻井分布不均匀,依靠钻井资料难以精确刻画平面相展布。因此需要以覆盖全区高精度三维地震资料为有效补充,特别是依据地震相、地震属性为辅助手段,将沉积相研究从有井区推广到无井区,从而宏观上、定性的预测海陆过渡带沉积相平面展布。

    A砂层S2砂岩段的RMS属性与三角洲沉积相分布有较好的吻合关系。从图6a可以看出,以黑色虚线为界,分为3个显著的异常区带:1)东南地区为暖色调、高振幅区。在平面上为平坦席状,与海岸线方向大致平行,钻井揭示为大面积连片、厚层、富砂质沉积,解释为内前缘滩砂发育带,局部存在低振幅异常,对应为海湾泥质沉积;2)中部地区以中、低振幅为主,钻井揭示为砂泥薄互层,为外前缘临滨相带,根据振幅值的变化又可以细分为上临滨、下临滨;3)西北部低值区,少量钻井揭示大套厚层泥岩。区域上,西北部地区水体快速加深,沉积能量变弱,为前三角洲泥质沉积。

    Figure 6.  S2 sand group: (a) RMS attributes, and (b) sedimentary facies map

    在相标志、微相识别、剖面相和地震属性分析基础上,认为N区块处于海陆交互带沉积环境,发育浪控三角洲沉积体系(图6b)。该时期,海洋作用强烈,为主要的地质营力。平面上,浪控三角洲内前缘主体呈现向海洋方向凸出的、朵叶状轮廓特征。通过钻井和属性的对比分析,工区的中北部地区明显的表现为向海方向凸出,凸出处为入海口附近被改造的主河道发育区,在主河口两侧广泛发育波浪改造的滩砂沉积区,大面积分布在三角洲内前缘相带前端,具横向叠置连片、延伸规模远的特征。在三角洲外前缘相带,仍然受到波浪冲洗和扰动作用,形成独具特色的上临滨和下临滨砂体,为有利的岩性区带。前三角洲亚相分布在工区西北部广大地区。

    特别的,研究区为国外勘探开发区块,目前尚未在盆地周缘搜集到与之可对比的露头资料[33-34]。采用“将今论古”的方法,基于Google Earth软件平台,对全球的海岸过渡带的现今沉积对比分析,认为北非的尼罗河三角洲和巴西的圣弗兰西斯科河三角洲与研究区沉积特征类似。海洋作用强烈,形成破坏性三角洲,三角洲前缘的水下分流河道和河口坝不发育,而在主河口两侧形成了特色的滩砂发育区,反映了波浪的强烈改造是海相三角洲发育的主控因素(图7)。

    Figure 7.  Current satellite image of wave⁃controlled deltas

  • 目前,国内外学者对现代密西西比河三角洲(高建设性)地质研究成熟,学术成果丰富,在沉积机理、充填演化和沉积模式方面得到业界普遍认可[6-15]。然而对其他类型三角洲,例如浪控的三角洲的亚相、微相沉积特征还缺乏统一的、深入的研究[6]。以巴基斯坦N区块海陆过渡带为例,提出了A砂岩组发育波浪改造背景下的三角洲相沉积模式,为浪控三角洲沉积基础研究提供鲜活实例。

    在亚相划分和微相构成方面,仍按照三角洲的划分方案进行划分,其格架相以内前缘波浪改造的滩砂和外前缘临滨砂沉积序列为特征,以此来区分建设性三角洲和滨岸相沉积。

    平面上,浪控三角洲表现为沿平原亚相向广海方向延伸的环岸砂坝发育带。前缘相带处于浅水高能区,沉积作用活跃,构成浪控三角洲的特色相带。由于海洋作用大于河流作用,其沉积规律、砂体分布及排列方向发生了极大的变化。河流携带碎屑物很快被强劲的波浪和沿岸流改造和再分配,在主河道入海口附近沿着海岸带快速散开,这就阻止了(水下)天然堤的生长建造和分流河道的分叉延伸,往往导致水下分流河道和河口砂坝微相不发育,取而代之的是,在河口两侧形成滩砂沉积发育区,具有平行于海岸线、横向叠置连片、厚层、岩性纯、延伸规模远的特征。在三角洲前缘末端形成的砂泥互层,始终受波浪冲洗、扰动作用,最终将不同支流的前缘末端砂体连接起来,形成了独具特色的临滨砂体(图8a)。

    Figure 8.  Wave⁃controlled delta deposition model of the study area

    垂向上,A砂岩组发育向上变粗的反旋回,沉积微相类型保存不完整,为破坏性三角洲。平原相带只发育少量分流河道,且常被海岸砂沉积覆盖,河道间洼地为泛滥平原或沼泽。三前缘相带处于砂质高能海岸带,河道特征不再明显,为前滨滩砂、障壁砂坝和临滨环境,反映了波浪和风暴流的改造、破坏作用。前三角洲对应为滨外泥沉积(图8b)。

  • (1) 通过取心相、测井相、地震相和现代沉积调研分析,巴基斯坦N区块A砂岩组处于高能海岸带,海洋作用大于河流作用,发育波浪改造背景下的三角洲相沉积。沉积相细分为平原、内前缘、外前缘及前三角洲四种亚相类型。其格架相以内前缘波浪改造的滩砂和外前缘临滨砂坝沉积为特征。

    (2) 沉积机理上,由于河流携带碎屑物在入海口被强劲的波浪和沿岸流改造和再分配,在主河道入海口附近沿着海岸带快速分散,这就阻止了(水下)天然堤的生长建造和分流河道的分叉延伸,导致前缘水下分流河道和河口砂坝微相不发育。因此,浪控三角洲相为沿平原亚相向广海方向延伸的朵叶状轮廓,发育平行海岸线方向的环岸砂坝。沉积序列为向上变粗的反旋回,微相保存不完整,为破坏性三角洲。

Reference (36)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return