Advanced Search
Volume 39 Issue 5
Sep.  2021
Turn off MathJax
Article Contents

XUE HongPan, ZENG FangMing. Geochemical Characteristics of Aeolian Deposits on the Eastern Shore of Qinghai Lake and Their Paleoclimatic Implications since the Holocene[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1198-1207. doi: 10.14027/j.issn.1000-0550.2020.066
Citation: XUE HongPan, ZENG FangMing. Geochemical Characteristics of Aeolian Deposits on the Eastern Shore of Qinghai Lake and Their Paleoclimatic Implications since the Holocene[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1198-1207. doi: 10.14027/j.issn.1000-0550.2020.066

Geochemical Characteristics of Aeolian Deposits on the Eastern Shore of Qinghai Lake and Their Paleoclimatic Implications since the Holocene

doi: 10.14027/j.issn.1000-0550.2020.066
Funds:

National Natural Science Foundation of China U20A2078

Special Project Youth Innovation Promotion Association CAS 2017468

The Second Tibetan Plateau Scientific Expedition and Research Program (STEP) 2019QZKK0805

  • Received Date: 2020-06-04
  • Rev Recd Date: 2020-07-22
  • Publish Date: 2021-10-10
  • The paleoclimatic evolution of the Qinghai Lake area has long been studied due to the uniqueness of its geographical location. However, the nature of the climate in the area since the last deglaciation, especially in the early Holocene, has been controversial due to the large number of various proxies. In this study, aeolian deposits from the Zhongyangchang (ZYC) section on the eastern shore of Qinghai Lake were analyzed to determine their geochemical properties and associated paleoclimatic implications. The elemental characteristics were combined with magnetic susceptibility (MS), median grain size (Md) and color parameters to reconstruct the evolution of the paleoclimate in the Qinghai Lake area over the past 11 000 years. The results indicate that aeolian deposits in the ZYC section experienced weak to moderate chemical weathering, and that they are still at the early stage of plagioclase weathering (mainly the removal of Ca and Na), as indicated by the chemical index of alteration (CIA) and the Al2O3-(CaO*+Na2O)-K2O (A-CN-K) ternary diagram. The climate in the study area has alternated greatly between dry and wet, as reflected by the variation of CIA values since the early Holocene. The lightness (L*) is highly negatively correlated with total organic carbon (TOC) content (R2 = 0.71, P < 0.01), indicating changes of regional vegetation coverage and indirectly revealing the evolution of the paleoclimate in the area. The results of multi-proxies together with the stratigraphic distribution characteristics in the ZYC section indicate weak weathering in the Qinghai Lake area from 11.0 to 6.5 ka B.P., and that the climate may have been relatively warm and dry. The high CIA, MS and Rb/Sr ratio, and low (CaO+Na2O+MgO)/Ti2O ratio, Md and L* indicate a warm, humid climate from 6.5 to 1.1 ka B.P., consistent with the high lake level indicated by shoreline evidence. Since 1.1 ka B.P., the Qinghai Lake area has become dry. Variation of the intensity of the Asian monsoon and solar radiation may cause the effective humidity to vary, resulting in the alternating wet and dry climate in the Qinghai Lake area.
  • [1] Ding Z Y, Lu R J, Lyu Z Q, et al. Geochemical characteristics of Holocene aeolian deposits east of Qinghai Lake, China, and their paleoclimatic implications[J]. Science of the Total Environment, 2019, 692: 917-929.
    [2] An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2(1): 619.
    [3] 张彭熹,张保珍,钱桂敏,等. 青海湖全新世以来古环境参数的研究[J]. 第四纪研究,1994,14(3):225-238.

    Zhang Pengxi, Zhang Baozhen, Qian Guimin, et al. The study of paleoclimatic parameter of Qinghai Lake since Holocene[J]. Quaternary Sciences, 1994, 14(3): 225-238.
    [4] Thomas E K, Huang Y S, Clemens S C, et al. Changes in dominant moisture sources and the consequences for hydroclimate on the northeastern Tibetan Plateau during the past 32 kyr[J]. Quaternary Science Reviews, 2016, 131: 157-167.
    [5] Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129.
    [6] Lu H Y, Zhao C F, Mason J, et al. Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area (northeastern Qinghai-Tibetan Plateau) and possible forcing mechanisms[J]. The Holocene, 2011, 21(2): 297-304.
    [7] Lu R J, Jia F F, Gao S Y, et al. Holocene aeolian activity and climatic change in Qinghai Lake Basin, northeastern Qinghai-Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430: 1-10.
    [8] Colman S M, Yu S Y, An Z S, et al. Late Cenozoic climate changes in China’s western interior: A review of research on Lake Qinghai and comparison with other records[J]. Quaternary Science Reviews, 2007, 26(17/18): 2281-2300.
    [9] Wang H Y, Dong H L, Zhang C L, et al. Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai–Tibetan plateau: Implications for paleo lake levels and paleoclimate[J]. Chemical Geology, 2014, 368: 76-84.
    [10] Lister G S, Kelts K, Chen K Z, et al. Lake Qinghai, China: Closed-basin like levels and the oxygen isotope record for ostracoda since the Latest Pleistocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 84(1/2/3/4): 141-162.
    [11] Liu X J, Lai Z P, Madsen D, et al. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai–Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3): 245-257.
    [12] 曾方明,杨欢,卞昊昆. 青海湖地区全新世风尘堆积的GDGTs化合物及其环境指示意义[J]. 第四纪研究,2018,38(5):1233-1243.

    Zeng Fangming, Yang Huan, Bian Haokun. GDGTs compounds of the Holocene eolian deposits in Qinghai Lake area and their paleoenvironmental implications[J]. Quaternary Sciences, 2018, 38(5): 1233-1243.
    [13] 陈发虎,汪世兰,张维信,等. 青海湖南岸全新世黄土剖面、气候信息及湖面升降探讨[J]. 地理科学,1991,11(1):76-85.

    Chen Fahu, Wang Shilan, Zhang Weixin, et al. The loess profile at south bank, climatic information and lake-level fluctuations of Qinghai Lake during the Holocene[J]. Scientia Geographica Sinica, 1991, 11(1): 76-85.
    [14] 尚媛,鲁瑞洁,贾飞飞,等. 青海湖湖东风成剖面化学元素特征及其环境指示意义[J]. 中国沙漠,2013,33(2):463-469.

    Shang Yuan, Lu Ruijie, Jia Feifei, et al. Geochemical features and palaeoenvironmental indications of aeolian sediments on the east of Qinghai Lake[J]. Journal of Desert Research, 2013, 33(2): 463-469.
    [15] Liu X J, Lai Z P, Yu L P, et al. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Quaternary Geochronology, 2012, 10: 37-43.
    [16] Zeng F M, Liu X J, Li X Z, et al. Aquatic species dominate organic matter in Qinghai Lake during the Holocene: Evidence from eolian deposits around the lake[J]. Journal of Earth Science, 2017, 28(3): 484-491.
    [17] Henderson A C G, Holmes J A, Leng M J. Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: Effective moisture variability and atmospheric circulation changes[J]. Quaternary Science Reviews, 2010, 29(17/18): 2215-2223.
    [18] Li X Z, Liu W G. Lake evolution and hydroclimate variation at Lake Qinghai (China) over the past 32 ka inferred from ostracods and their stable isotope composition[J]. Journal of Paleolimnology, 2017, 58(3): 299-316.
    [19] Li X Z, Liu X J, He Y X, et al. Summer moisture changes in the Lake Qinghai area on the northeastern Tibetan Plateau recorded from a meadow section over the past 8400 yrs[J]. Global and Planetary Change, 2018, 161: 1-9.
    [20] 曾方明,赖忠平,刘向军. 磁化率测量过程中样品重量对磁化率的影响[J]. 盐湖研究,2014,22(3):21-25.

    Zeng Fangming, Lai Zhongping, Liu Xiangjun. The influence of mass on magnetic susceptibility during the measurement[J]. Journal of Salt Lake Research, 2014, 22(3): 21-25.
    [21] Liu X J, Cong L, An F Y, et al. Downwind aeolian sediment accumulations associated with lake-level variations of the Qinghai Lake during the Holocene, northeastern Qinghai–Tibetan Plateau[J]. Environmental Earth Sciences, 2019, 78(1): 19.
    [22] Sun Y B, He L, Liang L J, et al. Changing color of Chinese loess: Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1131-1138.
    [23] Taylor S R, McLennan S M. The continental crust: Its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985.
    [24] Song Y, Hao Q Z, Ge J Y, et al. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau[J]. Quaternary International, 2014, 334-335: 119-131.
    [25] Porter S C, Hallet B, Wu X H, et al. Dependence of near-surface magnetic susceptibility on dust accumulation rate and precipitation on the Chinese Loess Plateau[J]. Quaternary Research, 2001, 55(3): 271-283.
    [26] 丁仲礼,孙继敏,刘东生. 联系沙漠—黄土演变过程中耦合关系的沉积学指标[J]. 中国科学(D辑):地球科学,1999,29(1):82-87.

    Ding Zhongli, Sun Jimin, Liu Tungsheng. A sedimentological proxy indicator linking changes in loess and deserts in the Quaternary[J]. Science China (Seri. D): Earth Sciences, 1999, 29(1): 82-87.
    [27] 何柳,孙有斌,安芷生. 中国黄土颜色变化的控制因素和古气候意义[J]. 地球化学,2010,39(5):447-455.

    He Liu, Sun Youbin, An Zhisheng. Changing color of Chinese loess: Controlling factors and paleocliamtic significances[J]. Geochimica, 2010, 39(5): 447-455.
    [28] 刘荔昀,鲁瑞洁,刘小槺. 风成沉积物色度记录的毛乌素沙漠全新世以来气候变化[J]. 中国沙漠,2019,39(6):83-89.

    Liu Liyun, Lu Ruijie, Liu Xiaokang. Climate change in the Mu Us Desert since Holocene based on soil chromaticity[J]. Journal of Desert Research, 2019, 39(6): 83-89.
    [29] Zhang C J, Mischke S. A Late glacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2009, 28(19/20): 1970-1983.
    [30] Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 299(5885): 715-717.
    [31] Nesbitt H W, Young G M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations[J]. Geochimica et Cosmochimica Acta, 1984, 48(7): 1523-1534.
    [32] 曾方明. 九江下蜀黄土和红土的化学风化特征[J]. 盐湖研究,2018,26(1):32-38.

    Zeng Fangming. Chemical weathering of Xiashu Loess and Red Earth in Jiujiang, Jiangxi province[J]. Journal of Salt Lake Research, 2018, 26(1): 32-38.
    [33] Fedo C M, Nesbitt W H, Young G M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 1995, 23(10): 921-924.
    [34] Hou J Z, Huang Y S, Zhao J T, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1323-1330.
    [35] Li J Y, Dodson J, Yan H, et al. Quantitative precipitation estimates for the northeastern Qinghai-Tibetan Plateau over the last 18,000 years[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(10): 5132-5143.
    [36] E C Y, Zhang J, Chen Z Y, et al. High resolution OSL dating of aeolian activity at Qinghai Lake, Northeast Tibetan Plateau[J]. Catena, 2019, 183: 104180.
    [37] Yang L H, Long H, Cheng H Y, et al. OSL dating of a mega-dune in the eastern Lake Qinghai Basin (northeastern Tibetan Plateau) and its implications for Holocene aeolian activities[J]. Quaternary Geochronology, 2019, 49: 165-171.
    [38] Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
    [39] Gallet S, Jahn B M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133(1/2/3/4): 67-88.
    [40] Yang S L, Ding F, Ding Z L. Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1695-1709.
    [41] Sun J M, Li S H, Han P, et al. Holocene environmental changes in the central Inner Mongolia, based on single-aliquot-quartz optical dating and multi-proxy study of dune sands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 233(1/2): 51-62.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)  / Tables(2)

Article Metrics

Article views(359) PDF downloads(128) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-04
  • Revised:  2020-07-22
  • Published:  2021-10-10

Geochemical Characteristics of Aeolian Deposits on the Eastern Shore of Qinghai Lake and Their Paleoclimatic Implications since the Holocene

doi: 10.14027/j.issn.1000-0550.2020.066
Funds:

National Natural Science Foundation of China U20A2078

Special Project Youth Innovation Promotion Association CAS 2017468

The Second Tibetan Plateau Scientific Expedition and Research Program (STEP) 2019QZKK0805

Abstract: The paleoclimatic evolution of the Qinghai Lake area has long been studied due to the uniqueness of its geographical location. However, the nature of the climate in the area since the last deglaciation, especially in the early Holocene, has been controversial due to the large number of various proxies. In this study, aeolian deposits from the Zhongyangchang (ZYC) section on the eastern shore of Qinghai Lake were analyzed to determine their geochemical properties and associated paleoclimatic implications. The elemental characteristics were combined with magnetic susceptibility (MS), median grain size (Md) and color parameters to reconstruct the evolution of the paleoclimate in the Qinghai Lake area over the past 11 000 years. The results indicate that aeolian deposits in the ZYC section experienced weak to moderate chemical weathering, and that they are still at the early stage of plagioclase weathering (mainly the removal of Ca and Na), as indicated by the chemical index of alteration (CIA) and the Al2O3-(CaO*+Na2O)-K2O (A-CN-K) ternary diagram. The climate in the study area has alternated greatly between dry and wet, as reflected by the variation of CIA values since the early Holocene. The lightness (L*) is highly negatively correlated with total organic carbon (TOC) content (R2 = 0.71, P < 0.01), indicating changes of regional vegetation coverage and indirectly revealing the evolution of the paleoclimate in the area. The results of multi-proxies together with the stratigraphic distribution characteristics in the ZYC section indicate weak weathering in the Qinghai Lake area from 11.0 to 6.5 ka B.P., and that the climate may have been relatively warm and dry. The high CIA, MS and Rb/Sr ratio, and low (CaO+Na2O+MgO)/Ti2O ratio, Md and L* indicate a warm, humid climate from 6.5 to 1.1 ka B.P., consistent with the high lake level indicated by shoreline evidence. Since 1.1 ka B.P., the Qinghai Lake area has become dry. Variation of the intensity of the Asian monsoon and solar radiation may cause the effective humidity to vary, resulting in the alternating wet and dry climate in the Qinghai Lake area.

XUE HongPan, ZENG FangMing. Geochemical Characteristics of Aeolian Deposits on the Eastern Shore of Qinghai Lake and Their Paleoclimatic Implications since the Holocene[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1198-1207. doi: 10.14027/j.issn.1000-0550.2020.066
Citation: XUE HongPan, ZENG FangMing. Geochemical Characteristics of Aeolian Deposits on the Eastern Shore of Qinghai Lake and Their Paleoclimatic Implications since the Holocene[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1198-1207. doi: 10.14027/j.issn.1000-0550.2020.066
  • 青海湖地区位于中国东部季风湿润区、西北干旱区和青藏高原高寒区的过渡带,对气候变化的响应敏感[1]。青海湖地区因其独特的地理位置和气候条件,成为人们了解过去气候和环境演变过程的重要窗口。

    过去关于青海湖地区环境和气候演变的研究主要集中在湖相沉积和风成沉积(黄土、古土壤及风成砂)[2-7]。然而,由于各类环境替代指标的多解性导致重建的末次冰消期以来特别是早全新世的气候特征存在不一致的认识[5,8]。一些研究认为全新世早期气候温干、湖面较低、水体含盐量较高[3,5,9],而另一些研究认为早全新世气候暖润、湖面比现在高、水体含盐量较低[2,4,10]

    青海湖地区的风成沉积研究也存在认识上的差异。基于光释光(Optically Stimulated Luminescence,OSL)定年技术,Liu et al.[11]对青海湖湖面变化过程的研究揭示早全新世湖面相对较低;中全新世湖面逐渐上升,在5 ka B.P.左右出现最高湖面;晚全新世湖面趋于下降。上述湖面变化过程与利用多个湖东风成沉积剖面重建的古气候演变过程可以相互印证[1,7,12],但与南岸哈拉力剖面[13]早全新世期间发育古土壤的温湿气候存在认识上的差异。因此,青海湖地区的古气候演变过程仍值得进一步研究。

    虽然对青海湖地区风成沉积的地球化学特征及利用其重建古气候信息的工作已有报道[1,6-7,14],但是利用这套沉积的地球化学相关指标与磁化率、粒度、色度等指标结合来重建古气候变化的研究仍然较少。在前期OSL定年建立了剖面年代框架的基础上[15-16],本研究对青海湖地区种羊场剖面(简称为ZYC剖面)风成沉积物的元素地球化学特征及其古气候意义进行分析,并结合磁化率、粒度和色度指标,旨在重建青海湖地区全新世期间古气候演变过程,对驱动其气候变化的机制进行初步探讨。

  • 青海湖位于青藏高原东北部,是我国最大的内陆高原咸水湖泊。湖区为大通山、日月山、青海南山、橡皮山等山脉所环绕(图1a)。湖水的补给主要来自北部和西北部的河流,其中布哈河的补给量约占总补给量的50%[17]

    Figure 1.  (a) Location (base map from Google Earth) and (b) photograph of ZYC section

    青海湖地区的气候属半干旱内陆温带大陆性气候,夏季时东亚夏季风可渗入到该地区[2];湖区年平均温度约为1.2 ℃;年均降水量为400 mm,60%的降水集中在6—9月[18]。湖区周边呈环带状广泛分布风成沉积,以黄土和风成砂为主。研究区的主要植被类型为半干旱—干旱和高寒地区所特有的高寒草甸、高寒草原和高寒灌丛等[19]

  • ZYC剖面的经纬度为36.63° N,100.87° E,海拔3 390 m(图1a,b)。该剖面总采样厚度为120 cm,从顶至底依次为:0~30 cm,灰色砂质土壤层,现代植物根系丰富;30~80 cm,灰色粉砂质古土壤层,植物根系较少,结构致密;80~100 cm,灰黄色粉砂质黄土层,较疏松;100~120 cm为浅黄色风成砂,结构疏松,未见底。

    散样样品采样间隔为2 cm,共采集60个。OSL测年样品不定间隔共采集了6个,其年龄分别为0.9±0.1 ka(深20 cm)、1.1±0.1 ka(深30 cm)、4.9±0.4 ka(深49 cm)、6.5±0.6 ka(深68 cm)、8.2±0.7 ka(深80 cm)和10.0±1.0 ka(深107 cm)[15-16]。OSL年龄与地层层序分布一致。假定剖面顶部的年代为0 ka,依据剖面的OSL年龄采用线性内插和外推的方法,计算出剖面各深度的沉积年龄,剖面底部(深120 cm)的年代约为11 ka,黄土层与风成砂层过渡处(深100 cm)年代约为9.54 ka。

  • 样品自然风干之后用于实验分析。主、微量元素含量测试:样品在玛瑙研钵中充分磨细,并使其通过200目不锈钢网筛,采用压片法测定元素的含量,仪器为荷兰帕纳科公司生产的Axios X射线荧光光谱仪,各元素分析误差小于10%。

    磁化率的测试采用英国Bartington MS2型双频率磁化率仪完成,具体测试过程与曾方明等[20]描述一致。粒度样品经过去除有机质和碳酸盐之后采用激光粒度仪Malvern Mastersizer 2000进行颗粒粒径的测试。磁化率和粒度数据见已发表文章[21]

    色度用CIE1976 L*、a*、b*表色系统进行表示,L*代表亮度,变化于黑(0)与白(100)之间,表示土壤的明暗程度;a*代表红度,变化于红绿之间;b*代表黄度,变化于黄蓝之间[22]。色度测试在日本Konica Minolta CM2500-C分光测色仪上进行。

  • 种羊场风成沉积的主、微量元素组成和含量见表1。主量元素以SiO2(平均50.43%)、Al2O3(平均12.03%)、CaO(平均10.21%)、Fe2O3(平均4.20%)、MgO(平均2.35%)、K2O(平均2.34%)和Na2O(平均1.56%)为主。TiO2、P2O5和MnO元素含量均小于1%。种羊场风成沉积物相比于UCC(上地壳)[23]图2a),显著富集CaO,亏损Na2O。Fe2O3、TiO2、P2O5和MnO含量与UCC相近,SiO2、Al2O3、K2O含量较低。微量元素UCC[23]标准化图(图2b)显示,种羊场风成沉积物相比于UCC[23]有显著的Nb亏损,富集V、Cr、Co、Ni、Y、Zr、La,Ba、Nd、Pb的含量接近于UCC。

    层位 砂质土壤 古土壤 黄土 风成砂 UCC[23]
    元素 最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值 最大值 最小值 平均值 平均值
    SiO2/% 59.08 53.34 56.15 55.25 43.66 48.02 47.73 46.31 47.18 53.39 49.15 51.92 66
    Al2O3/% 13.6 10.13 11.93 13.37 12.06 12.68 12.04 11.24 11.74 11.18 10.38 10.77 15.2
    K2O/% 2.75 2.15 2.43 2.72 2.24 2.44 2.26 2.13 2.21 2.11 2 2.05 3.4
    Na2O/% 1.97 1.43 1.59 1.67 1.25 1.4 1.78 1.59 1.65 1.91 1.78 1.83 3.9
    CaO/% 8.87 5.48 7.42 13.81 6.23 10.81 12.33 11.88 12.04 11.57 10.24 10.74 4.2
    MgO/% 2.2 1.2 1.79 2.94 2.1 2.54 2.78 2.64 2.7 2.5 2.07 2.27 2.2
    Fe2O3/% 4.95 2.52 3.87 5.02 4.42 4.73 4.3 3.87 4.14 3.69 3.15 3.36 4.5
    TiO2/% 0.65 0.33 0.52 0.63 0.5 0.56 0.53 0.52 0.53 0.52 0.47 0.5 0.5
    P2O5/% 0.26 0.14 0.2 0.2 0.16 0.18 0.19 0.18 0.18 0.18 0.14 0.15 0.16
    MnO/% 0.1 0.06 0.08 0.1 0.08 0.09 0.08 0.07 0.08 0.07 0.06 0.07 0.08
    V/(μg/g) 86.93 45.07 71.03 85.43 74.45 79.94 76.11 66.63 71.04 71.21 64.15 68.14 60
    Cr/(μg/g) 77.93 43.98 64.9 75.25 54.34 62.09 57.41 53.03 55.06 60.19 50.76 54.95 35
    Co/(μg/g) 13.36 7.95 11.13 15.73 13.85 14.87 16.84 13.67 15.28 12.78 8.61 9.87 10
    Ni/(μg/g) 31.69 14.02 24.16 34.75 31.92 33.3 30.59 26.46 28.26 22.87 17.92 20.25 20
    Cu/(μg/g) 24.28 11.85 19.6 28.21 23.35 25.73 24.73 21.28 23.33 16.73 12 13.81 25
    Zn/(μg/g) 74.06 37.94 59.43 77.61 69.15 73.47 67.97 58.44 64.33 53.87 43.94 48.02 71
    Ga/(μg/g) 17.82 12.44 13.94 17.44 13.94 15.23 14.74 12.62 13.94 13.11 12.34 12.6 17
    Rb/(μg/g) 116.37 84.44 100.12 119.4 98.6 108.43 96.66 91.2 94.59 89.78 82.57 84.83 112
    Sr/(μg/g) 255.19 195.77 225.97 364.08 209.5 293.44 366.75 354.64 361.74 339.73 295.26 309.11 350
    Y/(μg/g) 29.67 22.54 27.7 31.45 28.95 30.17 29.49 28.14 28.85 28.33 26.58 27.2 22
    Zr/(μg/g) 270.48 156.43 234.28 229.24 151.36 183.25 239.52 204.02 216.28 282.44 230.93 263.07 190
    Nb/(μg/g) 15.23 8.74 12.75 15.97 11.83 13.66 13.85 11.92 12.83 12.69 11.9 12.34 25
    Ba/(μg/g) 551.75 479.81 505.08 574.58 487.47 527.96 503.66 467.25 486.97 503.26 481.38 488.58 550
    La/(μg/g) 53.17 26.52 37.5 58.13 24.98 43.74 52.52 36.6 41.54 59.06 13.82 34.59 30
    Ce/(μg/g) 64.12 36.54 49.99 67.73 33.66 47 69.97 35.31 50.82 66.26 29.7 47.88 64
    Nd/(μg/g) 36.54 17.26 25.94 41.54 18.96 27.03 25.28 20.44 22.86 23.94 16.64 20.61 26
    Pb/(μg/g) 24.51 16.67 19.99 23.89 18.74 21.28 20.64 14.4 17.75 17.59 14.34 15.7 20

    Table 1.  Major⁃element and trace⁃element concentrations of aeolian deposit samples from ZYC section

    Figure 2.  UCC[23]⁃normalized abundances of elements for the aeolian deposit samples from the ZYC section(a) major elements; (b) trace elements

  • 风成沉积物的磁化率和粒度分别可以指示研究区降水、温度的变化及区域内风沙活动的强弱,已被用于气候和环境演变过程的重建[24-26]。种羊场风成沉积的磁化率和粒度数据已被Liu et al.[21]报道,故本文仅做简单论述。剖面磁化率值变化范围为(17.02×10-8~70.7×10-8 )m3/kg,中值粒径(Md )变化范围为10.19~140.84 μm,其中古土壤层的中值粒径最小,磁化率值最高。

    ZYC剖面风成砂层的亮度(L*)值较高,古土壤层L*值较低(表2),与黄土高原渭南和西峰黄土剖面[27]及毛乌素沙漠风成沉积剖面类似[28]。ZYC剖面风成砂层的TOC含量较低,而古土壤层的TOC含量较高[16]。ZYC剖面L*和TOC含量[16]呈高度负相关(R 2=0.71,P<0.01,图3a),表明种羊场剖面L*主要受TOC含量变化的控制。在青藏高原东北部,研究表明沉积物中TOC含量与沉积时期的年降水量、植被覆盖程度和温度密切相关[29]。因此,对于种羊场风成沉积物,L*可以指示区域植被覆盖程度的变化,从而间接地反映研究区古气候演变过程。

    深度/cm L* a* b* 深度/cm L* a* b*
    2 51.70 5.41 15.55 62 55.69 4.52 13.58
    4 48.17 5.32 14.50 64 59.19 4.45 13.94
    6 48.55 5.29 14.37 66 58.77 4.62 14.29
    8 48.15 5.22 14.16 68 57.79 4.60 14.17
    10 50.21 5.27 14.42 70 55.69 4.85 13.99
    12 49.97 5.50 14.87 72 57.04 4.63 14.19
    14 49.05 5.55 15.10 74 57.77 4.57 14.08
    16 50.08 5.62 15.47 76 55.17 4.73 14.26
    18 49.66 5.86 15.83 78 55.39 4.82 14.48
    20 49.98 5.82 15.52 80 53.59 4.86 14.05
    22 50.12 5.70 15.24 82 56.25 4.75 14.41
    24 49.27 5.78 15.29 84 56.65 4.67 14.44
    26 48.40 5.85 15.27 86 57.22 4.80 14.85
    28 46.69 5.95 15.19 88 55.94 4.85 14.90
    30 45.77 5.95 14.96 90 56.30 4.96 14.82
    32 46.93 5.93 15.13 92 56.42 4.73 14.64
    34 47.41 5.79 14.87 94 59.08 4.83 15.33
    36 47.82 5.63 14.75 96 56.82 5.04 15.44
    38 47.37 5.44 14.38 98 56.88 4.90 15.17
    40 48.93 5.12 13.91 100 58.88 4.97 15.48
    42 45.11 4.91 12.89 102 63.02 4.46 15.34
    44 48.39 4.95 13.50 104 63.37 4.34 15.04
    46 46.87 4.92 13.38 106 62.62 4.38 15.03
    48 47.70 4.82 13.11 108 63.99 4.37 15.55
    50 51.48 4.78 13.24 110 66.63 4.02 15.43
    52 50.11 4.79 13.55 112 67.46 3.97 15.61
    54 53.90 4.26 12.84 114 65.73 4.19 15.65
    56 53.13 4.38 13.01 116 65.92 4.24 15.61
    58 57.86 4.26 13.21 118 65.66 4.42 16.08
    60 60.50 4.55 14.00 120 65.48 4.71 16.52

    Table 2.  Color parameters of aeolian deposits from ZYC section

    Figure 3.  Correlations between (a) lightness and TOC content[16]; (b) redness and magnetic susceptibility; and (c) variation of redness of aeolian deposit samples from ZYC section

    ZYC剖面总体上在古土壤层与砂质土壤层的过渡处a*值最高,风成砂层的a*值最低,a*值自风成砂层至砂质土壤层有增高的趋势(表2图3c)。黄土高原渭南和西峰黄土剖面(不考虑渭南剖面L2/S1过渡地层)的a*与磁化率之间具有很强的相关性,且a*的变化被认为与风化成壤作用密切相关[27]。但是,ZYC剖面的a*与磁化率之间不相关(R 2=0.01,P=0.42,图3b)。然而,控制种羊场风成沉积a*变化的因素有待进一步探究。因此,在重建青海湖地区古气候和环境演变过程时具有局限性,需谨慎使用。

  • 通常利用CIA(chemical index of alteration,CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100,化学蚀变指数,摩尔数)来评价沉积物的化学风化程度[30],并利用Al2O3-(CaO*+Na2O)-K2O(A-CN-K)三元图(各氧化物为摩尔数)[31]来推断沉积物的风化趋势,其中CaO*指硅酸盐中CaO的含量。本次研究按照文献[32]所描述的方法进行了磷酸盐的校正并估算了硅酸盐中CaO的含量。

    风化程度的强弱与气候和环境的变化密切相关,通常化学风化程度的增强与较高的温度和降水有关,反之亦然[30]。已有研究表明,CIA值从低到高依次代表未风化(<50)、弱风化(50~60)、中等风化(60~80)和强风化(>80)(图4[33]。种羊场风成沉积的CIA值变化范围为53.49~65.60,平均值为61.08(图4),低于西宁全新世黄土(CIA=68.8,YJC剖面,未发表数据)。在不同的地层单元中(图5),古土壤的CIA值最高,表明古土壤在相对湿热的气候条件下经历了较强的化学风化作用,而底部风成砂和黄土的CIA值较低,指示两者可能在相对干燥的气候状态下遭受了较弱的化学风化作用。种羊场风成沉积CIA值显示种羊场风成沉积经历了弱风化、中等程度的化学风化强度,其波动变化反映青海湖地区全新世期间经历了较大的冷暖、干湿交替。

    Figure 4.  Chemical index of alteration (CIA) values and A⁃CN⁃K ternary diagram (base map from reference [31]) for aeolian deposit samples from ZYC section

    Figure 5.  Multi⁃proxy records of aeolian deposit samples from ZYC section and comparison with other records:

    A-CN-K三元图(图4)显示种羊场风成沉积与预测的从UCC到PAAS(Post-Archean Australian Shale)的风化趋势线一致[31],靠近斜长石一侧,与A-CN轴平行,表明种羊场风成沉积仍处于斜长石风化早期Ca和Na的去除阶段。

    在气候变化影响下,根据相对稳定元素和易迁移元素的不同地球化学行为,学者们提出了Rb/Sr比值、(CaO+Na2O+MgO)/Ti2O比值(各氧化物为摩尔数)来重建古气候变化,较高的Rb/Sr比值和较低的(CaO+Na2O+MgO)/Ti2O比值可指示相对湿热的气候条件[39-40]。种羊场风成沉积的Rb/Sr比值变化范围为0.26~0.57,平均值为0.36,古土壤层具有较高的Rb/Sr比值(图5f),对应古土壤层较高的CIA值(图5i)。(CaO+Na2O+MgO)/Ti2O比值(图5g)变化范围为21.80~53.43,平均值为40.06,变化趋势与Rb/Sr比值和CIA值相反。值得注意的是,Rb/Sr比值、(CaO+Na2O+MgO)/Ti2O比值与CIA值峰值位置明显不同,可能与不同指标对气候变化响应的敏感程度不同有关。

  • 综合ZYC剖面地球化学相关指标、粒度、磁化率及色度和剖面地层特征,并与其它古气候替代指标作比较(图5),我们对青海湖地区气候演变过程进行分析,初步认为青海湖地区11.0 ka B.P.以来气候演变经历了11.0~6.5 ka B.P.、6.5~1.1 ka B.P.和1.1~0 ka B.P.三个阶段。

    11.0~6.5 ka B.P.,ZYC剖面CIA值、Rb/Sr比值、磁化率值和TOC含量[16]为低值,有增高的趋势,L*值、中值粒径、(CaO+Na2O+MgO)/Ti2O比值均为高值,剖面发育风成砂、黄土及部分古土壤(图5m),这些记录揭示该时期青海湖地区风化作用较弱,气候可能相对温暖干旱,与基于烯烃重建的青海湖地区夏季温度显示该时期气温较高(图5j)[34]和重建的青藏高原东北缘年均降水量显示这一时期降水量较低(图5k)[35]相印证。在这种气候条件下青海湖湖面较低(图5l)[11],区内风沙活动较强,风成砂沉积发育(图5a)[6-7,15-16,36-37]

    6.5~1.1 ka B.P.,ZYC剖面CIA值、Rb/Sr比值、磁化率值和TOC含量[16]都呈高值,且达到峰值,而L*值、中值粒径、(CaO+Na2O+MgO)/Ti2O比值显著降低,剖面古土壤发育(图5m)。尽管这些指标峰值出现的时间不一致,但是它们均揭示该时期青海湖地区风化作用可能较强,为暖湿期,这与重建的青藏高原东北缘年均降水量显示这一时期降水量较高(图5k)[35]和基于烯烃重建的青海湖地区夏季温度显示该时期温度相对较高(图5j)[34]相吻合。在这种暖湿气候条件下,可能造成青海湖湖面上升,出现高湖面,古湖岸堤地貌证据显示全新世最高湖面出现在约5.0 ka B.P.(图5l)[11]。由于这一暖湿气候持续时间长,冷暖波动少,风沙活动弱,成壤作用较强,区内古土壤发育较厚(图5a)[6-7,15-16,36-37]

    1.1 ka B.P.至今,剖面发育砂质土壤(图5m),CIA值、Rb/Sr比值、TOC含量[16]、磁化率值、(CaO+Na2O+MgO)/Ti2O比值、中值粒径和L*值波动变化,该时期青海湖地区风成砂和古土壤交替出现(图5a)[6-7,15-16,36-37],重建的该地区夏季温度较高(图5j)[34],降水量较低(图5k)[35],表明青海湖地区气候变得干旱。古湖岸堤地貌证据也显示在约1.1 ka B.P.以后青海湖湖面下降(图5l)[11]

    亚洲季风在很大程度上影响了包括青海湖盆地在内的中国北部沙漠或沙地的演化,其强弱变化可导致气候的干湿变化,从而造成风成砂和古土壤在风成沉积剖面中出现[7,41]。本次研究结果揭示青海湖地区全新世早期气候相对温暖干旱,可能由于早期太阳辐射增加(图5h)[38]导致蒸发强度较高,造成青海湖地区有效湿度降低,使得风沙活动加强,风成砂沉积发育(图5a)[6-7,15-16,36-37],青海湖处于低湖面(图5l)[11]。而全新世中期,太阳辐射(图5h)[38]逐渐减弱可能导致蒸发强度逐渐降低,造成青海湖地区有效湿度增加,气候进入湿润期,青海湖地区古土壤沉积大量发育(图5a)[6-7,15-16,36-37],青海湖湖面在约5.0 ka B.P.达到最高(图5l)[11]。全新世晚期,太阳辐射变弱,年降雨量减少(图5k)[35],导致气候变干,发育风成砂沉积(图5a)[6-7,15-16,36-37]

    综上所述,我们初步认为亚洲季风和太阳辐射的强弱变化可能造成有效湿度的高低变化,从而导致青海湖地区气候干湿交替变化。

  • (1) 青海湖种羊场风成沉积的主量元素相比UCC显著富集CaO,亏损Na2O,微量元素相比UCC有显著的Nb亏损,而富集V、Cr、Co、Ni、Y、Zr、La。

    (2) CIA值和A-CN-K三元图表明种羊场风成沉积经历了弱风化、中等程度的化学风化强度,仍处于斜长石风化早期Ca和Na的去除阶段。CIA值的波动变化反映青海湖地区全新世期间经历了较大的干湿变化。

    (3) 种羊场风成沉积物的亮度(L*)与TOC含量呈高度负相关,可以间接地反映研究区古气候演变过程,而红度(a*)与磁化率之间不相关,其控制因素有待进一步探究,在重建青海湖地区古气候和环境演变过程时具有局限性,需谨慎使用。

    (4) ZYC剖面的多指标分析结果和剖面地层特征揭示青海湖地区在11.0~6.5 ka B.P.时期,风化作用较弱,气候可能相对温暖干旱,青海湖可能处于低湖面;6.5~1.1 ka B.P.时期风化作用可能较强,为暖湿期,青海湖为高湖面时期;1.1 ka B.P.至今,气候变得干旱。亚洲季风和太阳辐射的强弱变化可能造成有效湿度的高低变化,从而导致青海湖地区气候干湿交替变化。

Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return