Advanced Search
Volume 40 Issue 1
Jan.  2022
Turn off MathJax
Article Contents

GUO HengWei, FU MeiYan, SONG RongCai, LIU Wen, ZHAO Liang, SHEN QiuYuan. Algal Type and Sedimentary Model of the 4th Member, Dengying Formation in the Gaoshiti Area of Chuanzhong[J]. Acta Sedimentologica Sinica, 2022, 40(1): 217-228. doi: 10.14027/j.issn.1000-0550.2020.065
Citation: GUO HengWei, FU MeiYan, SONG RongCai, LIU Wen, ZHAO Liang, SHEN QiuYuan. Algal Type and Sedimentary Model of the 4th Member, Dengying Formation in the Gaoshiti Area of Chuanzhong[J]. Acta Sedimentologica Sinica, 2022, 40(1): 217-228. doi: 10.14027/j.issn.1000-0550.2020.065

Algal Type and Sedimentary Model of the 4th Member, Dengying Formation in the Gaoshiti Area of Chuanzhong

doi: 10.14027/j.issn.1000-0550.2020.065
Funds:

National Science and Technology Major Project 2016ZX05036-003-007

National Natural Science Foundation of China 41402096

  • Received Date: 2020-06-02
  • Rev Recd Date: 2020-07-21
  • Publish Date: 2022-01-10
  • Considerable hydrocarbon resources are present in the 4th member of the Sinian Dengying Formation, at the platform margin in the Gaoshiti area of the Sichuan Basin. Therefore, it is particularly important to discuss the algal mound developments in that area, since they are the basis of the formation of high-quality hydrocarbon reservoirs. Analysis of cores, thin-section identification and logging data have elaborated the algal mound types and sedimentary models of the Deng 4 member in detail. The results show: (1) Algae-rich dolomite is the main type of algal mound foundation and nucleus, having algal frame, stromatolitic structures, algal laminated structures and algal sponge layer structures. Algae-poor dolomite was developed in shallow open marine zones, tidal flats and lagoons, and is predominantly crystalline dolomite containing some gypsum. (2) The lithological combination, sedimentary structure and geochemical parameters indicate that algal mounds may be categorized as large algae mounds, medium-sized stable algae mounds, and small algae mounds which occur in low-energy environments. The large algae mounds were developed in the high-energy band lying outside the platform margin of a low-salinity water body, and have a Rb/K ratio of approximately 1.3⁃2.0. The medium-sized stable mounds are located from the medial margin of the platform to the interior of the platform, formed in higher-salinity and shallower water; their Rb/K ratio is > 2.0. (3) A sedimentary model of algal mounds and their periphery was established; the study also clarified the types and lateral extents of the mounds. These findings may guide exploration for favorable areas in the inner platform.
  • [1] 杜金虎,张宝民,汪泽成,等. 四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因[J]. 天然气工业,2016,36(6):1-10.

    Du Jinhu, Zhang Baomin, Wang Zecheng, et al. Sedimentary model and reservoir genesis of dual grain banks at the Lower Cambrian Longwangmiao Fm carbonate ramp in the Sichuan Basin[J]. Natural Gas Industry, 2016, 36(6): 1-10.
    [2] 黄擎宇,胡素云,潘文庆,等. 台内微生物丘沉积特征及其对储层发育的控制:以塔里木盆地柯坪—巴楚地区下寒武统肖尔布拉克组为例[J]. 天然气工业,2016,36(6):21-29.

    Huang Qingyu, Hu Suyun, Pan Wenqing, et al. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs: A case study of the Lower Cambrian Xiaoerbulake Fm in the Keping-Bachu area, Tarim Basin[J]. Natural Gas Industry, 2016, 36(6): 21-29.
    [3] Burne R V, Moore L S. Microbialites: Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241-254.
    [4] Wilson J L. Carbonate facies in geologic history[M]. New York: Spinger Verlag, 1975: 1-471.
    [5] Negra M H,Purser B H, M’Rabet A. Sedimentation, diagenesis and syntectonic erosion of Upper Cretaceous rudist mounds in Central Tunisia[M]//Monty C L V, Bosence D W J, Bridges P H, et al. Carbonate mud-mounds: Their origin and evolution. Oxford: Blackwell, 1995: 11-48.
    [6] 李凌,谭秀成,曾伟,等. 四川盆地震旦系灯影组灰泥丘发育特征及储集意义[J]. 石油勘探与开发,2013,40(6):666-673.

    Li Ling, Tan Xiucheng, Zeng Wei, et al. Development and reservoir significance of mud mounds in Sinian Dengying Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2013, 40(6): 666-673.
    [7] 单秀琴,张静,张宝民,等. 四川盆地震旦系灯影组白云岩岩溶储层特征及溶蚀作用证据[J]. 石油学报,2016,37(1):17-29.

    Shan Xiuqin, Zhang Jing, Zhang Baomin, et al. Dolomite karst reservoir characteristics and dissolution evidences of Sinian Dengying Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 17-29.
    [8] 周进高,张建勇,邓红婴,等. 四川盆地震旦系灯影组岩相古地理与沉积模式[J]. 天然气工业,2017,37(1):24-31.

    Zhou Jingao, Zhang Jianyong, Deng Hongying, et al. Lithofacies paleogeography and sedimentary model of Sinian Dengying Fm in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(1): 24-31.
    [9] 陈娅娜,沈安江,潘立银,等. 微生物白云岩储集层特征、成因和分布:以四川盆地震旦系灯影组四段为例[J]. 石油勘探与开发,2017,44(5):704-715.

    Chen Ya’na, Shen Anjiang, Pan Liyin, et al. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th member of Sinian Dengying Formation in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(5): 704-715.
    [10] 徐欣,胡明毅,高达. 磨溪—高石梯地区灯影组四段微生物岩沉积特征及主控因素[J]. 中国海上油气,2018,30(2):25-34.

    Xu Xin, Hu Mingyi, Gao Da. Sedimentary characteristics and main control factors for microbialite of the fourth member of Dengying Formation in Moxi-Gaoshiti area, central Sichuan Basin[J]. China Offshore Oil and Gas, 2008, 30(2): 25-34.
    [11] 金民东. 高磨地区震旦系灯四段岩溶型储层发育规律及预测[D]. 成都:西南石油大学,2017.

    Jin Mindong. Karst reservoir of the Fourth member of Dengying Formation Inmoxi-Gaoshiti area: Development regularity and forecasting[D]. Chengdu: Southwest Petroleum University, 2017.
    [12] 王文之,杨跃明,文龙,等. 微生物碳酸盐岩沉积特征研究:以四川盆地高磨地区灯影组为例[J]. 中国地质,2016,43(1):306-318.

    Wang Wenzhi, Yang Yueming, Wen Long, et al. A study of sedimentary characteristics of microbial carbonate: A case study of the Sinian Dengying Formation in Gaomo area, Sichuan Basin[J]. Geology in China, 2016, 43(1): 306-318.
    [13] 周正. 川中地区震旦系灯影组储层研究[D]. 成都:西南石油大学,2016.

    Zhou Zheng. Study on reservoir of the Sinian Dengying Formation in central Sichuan, China[D]. Chengdu: Southwest Petroleum University, 2016.
    [14] 梅庆华. 四川盆地乐山—龙女寺古隆起构造演化及其成因机制[D]. 北京:中国地质大学(北京),2015.

    Mei Qinghua. Tectonic evolution and formation mechanism of Leshan-Longnüsi paleo-uplift, Sichuan Basin[D]. Beijing: China University of Geosciences (Beijing), 2015.
    [15] 李英强,何登发,文竹. 四川盆地及邻区晚震旦世古地理与构造—沉积环境演化[J]. 古地理学报,2013,15(2):231-245.

    Li Yingqiang, He Dengfa, Wen Zhu. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas[J]. Journal of Palaeogeography, 2013, 15(2): 231-245.
    [16] 朱东亚,金之钧,张荣强,等. 震旦系灯影组白云岩多级次岩溶储层叠合发育特征及机制[J]. 地学前缘,2014,21(6):335-345.

    Zhu Dongya, Jin Zhijun, Zhang Rongqiang, et al. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multi-stage karst[J]. Earth Science Frontiers, 2014, 21(6): 335-345.
    [17] 周慧,李伟,张宝民,等. 四川盆地震旦纪末期—寒武纪早期台盆的形成与演化[J]. 石油学报,2015,36(3):310-323.

    Zhou Hui, Li Wei, Zhang Baomin, et al. Formation and evolution of Upper Sinian to Lower Cambrian intraplatformal basin in Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(3): 310-323.
    [18] 段金宝,代林呈,李毕松,等. 四川盆地北部上震旦统灯影组四段储层特征及其控制因素[J]. 天然气工业,2019,39(7):9-20.

    Duan Jinbao, Dai Lincheng, Li Bisong, et al. Reservoir characteristics and their controlling factors of the fourth member of Upper Sinian Dengying Fm in the northern Sichuan Basin[J]. Natural Gas Industry, 2019, 39(7): 9-20.
    [19] 李启桂,李克胜,周卓铸,等. 四川盆地桐湾不整合面古地貌特征与岩溶分布预测[J]. 石油与天然气地质,2013,34(4):516-521.

    Li Qigui, Li Kesheng, Zhou Zhuozhu, et al. Palaeogeomorphology and karst distribution of Tongwan unconformity in Sichuan Basin[J]. Oil & Gas Geology, 2013, 34(4): 516-521.
    [20] 曹瑞骥,袁训来. 中国叠层石研究进展[J]. 古生物学报,2009,48(3):314-321.

    Cao Ruiji, Yuan Xunlai. Advances of stromatolite study in China[J]. Acta Palaeontologica Sinica, 2009, 48(3): 314-321.
    [21] 徐哲航,兰才俊,杨伟强,等. 四川盆地震旦系灯影组微生物丘沉积演化特征[J]. 大庆石油地质与开发,2018,37(2):15-25.

    Xu Zhehang, Lan Caijun, Yang Weiqiang, et al. Sedimentary and evolutionary characteristics of Sinian Dengying-Formation microbial mound in Sichuan Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(2): 15-25.
    [22] 陈尘,曾伟,金民东,等. 川北地区灯影组灰泥丘沉积特征及储集性[J]. 天然气技术与经济,2014,8(3):23-28.

    Chen Chen, Zeng Wei, Jin Mindong, et al. Sedimentary features and reservoir property of mud mound in Dengying Formation, northern Sichuan Basin[J]. Natural Gas Technology and Economy, 2014, 8(3): 23-28.
    [23] 金民东,谭秀成,李凌,等. 四川盆地磨溪—高石梯地区下寒武统龙王庙组颗粒滩特征及分布规律[J]. 古地理学报,2015,17(3):347-357.

    Jin Mindong, Tan Xiucheng, Li Ling, et al. Characteristics and distribution of grain bank of the Lower Cambrian Longwangmiao Formation in Moxi-Gaoshiti area, Sichuan Basin[J]. Journal of Palaeogeography, 2015, 17(3): 347-357.
    [24] 荣辉,焦养泉,吴立群,等. 川东北开县满月甘泉剖面长兴组生物丘构成及成丘模式[J]. 沉积学报,2009,27(1):9-17.

    Rong Hui, Jiao Yangquan, Wu Liqun, et al. Organic bioherms and their forming models of Changxing Formation in Manyue-Ganquan Section of Kaixian, northeast Sichuan[J]. Acta Sedimentologica Sinica, 2009, 27(1): 9-17.
    [25] 赫云兰,付孝悦,刘波,等. 川东北飞仙关组鲕滩沉积与成岩对储集层的控制[J]. 石油勘探与开发,2012,39(4):434-443.

    He Yunlan, Fu Xiaoyue, Liu Bo, et al. Control of oolitic beaches sedimentation and diagenesis on reservoirs in Feixianguan Formation, northeastern Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(4): 434-443.
    [26] 胡明毅,胡忠贵,魏国齐,等. 四川盆地茅口组层序岩相古地理特征及储集层预测[J]. 石油勘探与开发,2012,39(1):45-55.

    Hu Mingyi, Hu Zhonggui, Wei Guoqi, et al. Sequence lithofacies paleogeography and reservoir prediction of the Maokou Formation in Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(1): 45-55.
    [27] 钱迈平. 苏、皖北部震旦纪叠层石及其沉积环境学意义[J]. 古生物学报,1991,30(5):616-629.

    Qian Maiping. Environmental significance of Sinian algal Stroma-Tolites in northern Jiangsu and Anhui, China[J]. Acta Palaeontologica Sinica, 1991, 30(5): 616-629.
    [28] 刘明军,陈开研,甯濛. 控制叠层石宏观形态特征的沉积环境因素分析[J]. 中国石油石化,2017(10):28-29.

    Liu Mingjun, Chen Kaiyan, Ning Meng. Analysis of sedimentary environmental factors controlling macroscopic morphological characteristics of stromatolite[J]. China Petrochem, 2017(10): 28-29.
    [29] 李锦秀,杜斌,孙以三. 水动力条件对富营养化影响规律探讨[J]. 水利水电技术,2005,36(5):15-18.

    Li Jinxiu, Du Bin, Sun Yisan. Effect of hydrodynamics on the eutrophication[J]. Water Resources and Hydropower Engineering, 2005, 36(5): 15-18.
    [30] 施开兰. 高石梯—磨溪地区震旦系灯四段地层及沉积相研究[D]. 成都:西南石油大学,2016.

    Shi Kailan. Study on the formation and sedimentary facies of the fourth Sinian Dengdeng section in Gaoshiti-Moxi area[D]. Chengdu: Southwest Petroleum University, 2016.
    [31] 刘华. 微量元素分析在含煤地层层序划分中的应用[J]. 山东科技大学学报(自然科学版),2004,23(1):12-15.

    Liu Hua. The application of microelement analysis to sequence classification of coal-bearing strata[J]. Journal of Shandong University of Science and Technology (Natural Science), 2004, 23(1): 12-15.
    [32] 王益友,郭文莹,张国栋. 几种地球化学标志在金湖凹陷阜宁群沉积环境中的应用[J]. 同济大学学报,1979(2):51-60.

    Wang Yiyou, Guo Wenying, Zhang Guodong. Application of some geochemical indicators in determining of sedimentary environment of the Funing Group (Paleogene), Jin-Hu Depression, Kiangsu province[J]. Journal of Tongji University, 1979(2): 51-60.
    [33] Campbell J W. Arginine and urea biosynthesis in the land planarian: Its significance in biochemical evolution[J]. Nature, 1965, 208(5017): 1299-1301.
    [34] 刘刚,周东升. 微量元素分析在判别沉积环境中的应用:以江汉盆地潜江组为例[J]. 石油实验地质,2007,29(3):307-310,314.

    Liu Gang, Zhou Dongsheng. Application of microelements analysis in identifying sedimentary environment—Taking Qianjiang Formation in the Jianghan Basin as an example[J]. Petroleum Geology & Experiment, 2007, 29(3): 307-310, 314.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(3)

Article Metrics

Article views(281) PDF downloads(96) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-06-02
  • Revised:  2020-07-21
  • Published:  2022-01-10

Algal Type and Sedimentary Model of the 4th Member, Dengying Formation in the Gaoshiti Area of Chuanzhong

doi: 10.14027/j.issn.1000-0550.2020.065
Funds:

National Science and Technology Major Project 2016ZX05036-003-007

National Natural Science Foundation of China 41402096

Abstract: Considerable hydrocarbon resources are present in the 4th member of the Sinian Dengying Formation, at the platform margin in the Gaoshiti area of the Sichuan Basin. Therefore, it is particularly important to discuss the algal mound developments in that area, since they are the basis of the formation of high-quality hydrocarbon reservoirs. Analysis of cores, thin-section identification and logging data have elaborated the algal mound types and sedimentary models of the Deng 4 member in detail. The results show: (1) Algae-rich dolomite is the main type of algal mound foundation and nucleus, having algal frame, stromatolitic structures, algal laminated structures and algal sponge layer structures. Algae-poor dolomite was developed in shallow open marine zones, tidal flats and lagoons, and is predominantly crystalline dolomite containing some gypsum. (2) The lithological combination, sedimentary structure and geochemical parameters indicate that algal mounds may be categorized as large algae mounds, medium-sized stable algae mounds, and small algae mounds which occur in low-energy environments. The large algae mounds were developed in the high-energy band lying outside the platform margin of a low-salinity water body, and have a Rb/K ratio of approximately 1.3⁃2.0. The medium-sized stable mounds are located from the medial margin of the platform to the interior of the platform, formed in higher-salinity and shallower water; their Rb/K ratio is > 2.0. (3) A sedimentary model of algal mounds and their periphery was established; the study also clarified the types and lateral extents of the mounds. These findings may guide exploration for favorable areas in the inner platform.

GUO HengWei, FU MeiYan, SONG RongCai, LIU Wen, ZHAO Liang, SHEN QiuYuan. Algal Type and Sedimentary Model of the 4th Member, Dengying Formation in the Gaoshiti Area of Chuanzhong[J]. Acta Sedimentologica Sinica, 2022, 40(1): 217-228. doi: 10.14027/j.issn.1000-0550.2020.065
Citation: GUO HengWei, FU MeiYan, SONG RongCai, LIU Wen, ZHAO Liang, SHEN QiuYuan. Algal Type and Sedimentary Model of the 4th Member, Dengying Formation in the Gaoshiti Area of Chuanzhong[J]. Acta Sedimentologica Sinica, 2022, 40(1): 217-228. doi: 10.14027/j.issn.1000-0550.2020.065
  • 自2011年四川盆地灯影组高石1井获得高产工业气流后[1],中国的学者在四川盆地震旦系灯影组陆续开展了大量的油气地质研究工作,并且逐渐认识到藻丘是寻找储层的关键所在。而在2019年台内地区磨溪129H井、磨溪126井区获得高产气流,表明台内地区也是受发育藻丘发育控制的优质储层。这一发现表明无论是台地边缘还是台内地区,藻丘均是储层发育的基础[2],藻丘发育规律的认识也对于灯影组油气勘探开发具有重要指导意义。Folk(1959)首次提出巨厚的隐藻类碳酸盐岩为生物岩这一概念,Burne et al.[3]在前人研究的基础上,首次提出了微生物岩(Microbolite)是由底栖微生物群落(BMC)捕获和黏结碎屑沉积物,并且(或者)形成矿物沉淀位点,通过这种方式加积的生物成因沉积即为微生物沉积岩。这种建造最初被称为灰泥丘(Mud mound),由Wilson[4]在1975年提出。Negra et al.[5]在他们的专著Carbonate mud⁃Mounds中进行了详细的介绍和推广,并将其定义为“一种具有沉积地貌特征,主要由碳酸盐灰泥、球粒泥或微晶灰岩组成的碳酸盐建造”。李凌等[6]首次将灰泥丘系统的微相划分方法用于四川盆地震旦系灯影组的研究。之后,国内学者对四川盆地灯影组的灰泥丘系统从岩石类型、沉积相划分、石油地质特征等方面进行了研究,并称这种沉积建造为藻丘[1,7-9]。前人针对灯影组四段藻丘类型及沉积模式的研究较少且不够深入。因此,本文将通过对川中高石梯地区灯四段岩石学特征、沉积特征和地球化学参数研究,划分藻丘的类型,明确藻丘的发育特征差异及分布规律,进一步拓宽该区的勘探方向。

  • 高石梯地区位于四川盆地川中古隆起平缓构造区威远至龙女寺构造群[10-12]图1)。四川盆地位于扬子准地台西北侧,是扬子准地台次一级构造单元,是北东向及北西向交叉的深断裂活动形成的菱形构造—沉积盆地[6]。川中地区的高石梯—磨溪构造带作为乐山—龙女寺古隆起的一个构造单元,位于该古隆起轴部东翼高点处,其构造背景及其演化受控于乐山—龙女寺古隆起。乐山—龙女寺古隆在形成过程中经历了多期同沉积隆起与剥蚀,是一个继承性古隆起[13]。川中古隆起受到基底隆起的控制,雏形形成于震旦纪末,经历多期构造运动,最终在早二叠纪定型[14]

    Figure 1.  Study area location and stratigraphic comprehensive profile

    晚震旦世川中地区开始接受大规模的碳酸盐岩台地沉积。台地自西向东水体由浅变深,向东相变为斜坡泥质岩,直至深水盆地硅质岩。沉积相带总体呈南西—北东走向[1516]。因桐湾运动I幕的影响,导致四川盆地整体抬升,海平面下降,使得研究区灯影组所处的沉积水体逐渐变浅,导致水体能量逐渐增大[17]。灯四段沉积期,伴随海平面的又一次下降,局限台地西边缘向盆内收缩,东边缘向东迁移[15,18]。灯四段沉积时期末受桐湾运动两幕抬升的影响,盆地西部灯四段遭受强烈剥蚀,川中部分地区遭受表生岩溶作用[15]。在盆地大部分地区灯四段与上覆地层表现为平行不整合接触,在川西地区表现为角度不整合接触[19]图1)。

  • 通过对高石1、高石2、高石6、高石7、高石10和高石18井的岩心观察和薄片分析,灯四段岩性主要为白云岩,局部发育泥云岩。根据岩石结构可将白云岩分为富藻类云岩和贫藻类云岩。

  • 富藻类云岩包括藻叠层石(图2a)、藻纹层云岩(图2b),具有藻黏结结构的藻凝块岩(图2b)、藻绵层云岩(图2c),以及具有颗粒结构的藻砂屑和藻球粒云岩(图2d)。藻叠层石具有明暗相间的富藻层和贫藻层,是藻丘丘核的主体部分。藻凝块云岩的形成是由于藻类在生长过程中具有黏结捕获的能力,可黏结捕获因波浪搅动而形成的碎屑,最终形成藻团块或者藻凝块(类似于颗粒状)[11]。藻凝块云岩外观上呈现不规则形态,不具有其独特的内外形态特征,凝块间或内部或发育原生格架孔、洞。藻凝块云岩是灯四段藻丘最主要的岩石类型,主要储集空间类型为凝块间溶孔(类似于粒间溶孔),或凝块组构选择性孔隙[11]。藻绵层云岩的富藻格架为棉絮状,被蓝菌藻黏结成球、椭球、环泡状、线纹状等不规则形状。当沉积界面处于浪基面之上的高能带时,早期的泥晶云岩类或藻白云岩破碎形成砂屑、砂屑,可在藻类的黏结作用或缠绕作用下沉积,形成藻砂屑云岩。

    Figure 2.  Photographs of algal⁃rich dolomite type

  • 贫藻类云岩包括泥晶云岩(图3a)、粉晶云岩(图3b)、中—粗晶云岩(图3c)、残余颗粒云岩(图3e),以及含膏云岩(图3f)等。泥晶白云岩主要分布在藻黏结凝块石的底部,常可见水平层理。粉晶白云岩和中—粗晶云岩发育大量的晶间孔,可作为优质的储集岩。残余颗粒云岩的砂、砾屑呈圆状、次圆状、椭圆状、长条状及不规则状,为盆内破碎形成(图3d)。在蒸发潮坪环境的膏云岩过渡带,石膏往往呈粒状分布或呈薄层状与泥晶白云岩互层发育。台内斜坡地区的高18井中可见泥晶云岩中发育被白云石交代的石膏(图3f)。

    Figure 3.  Photographs of algal⁃poor dolomite type

    此外,受岩溶改造影响,还发育一类非沉积成因的角砾岩(图3d)。这类岩溶角砾岩的分布并不广泛,沿风化裂缝分布。

  • 随着多个次级海平面的升降变化,发育多期丘基—丘核—丘盖的纵向序列,对应不同的岩性组合特征。根据富藻类云岩和贫藻类云岩的组合方式,可识别出三种组合类型(图4)。A组合为下部发育藻纹层云岩与粉—中晶云岩互层,上部发育藻凝块岩与粉—中晶云岩互层;B组合为下部为藻凝块岩与泥晶云岩互层,上部发育藻叠层云岩与泥晶云岩互层;C组合为厚层泥晶云岩中夹薄层藻纹层云岩。富藻类云岩与贫藻类云岩的叠置互层受藻类生长发育程度影响,也代表了沉积环境的变化。

    Figure 4.  Assemblage of algal⁃rich and algal⁃poor dolomite

  • 按照尺度大小和微生物组构特征,微生物岩发育可分为巨型构造(如生物丘、生物层等)、大型构造(如丘状、穹状、柱状等)、中型构造(如凝块石、纹层石、树枝石等)和微型构造(如钙化微生物、沉积物、胶结物等)[20]。水流和波浪的能量及沉积物的注入强烈影响着叠层石的生长,对叠层石的纹层和微结构具有影响。在岩心尺度上,研究区藻叠层云岩具有三类沉积构造:柱状、波状和层状(图5)。柱状的藻叠层云岩发育在岩石组合B中,以高石17井为代表。波状藻叠层石的藻叠层云岩发育在岩石组合A中,以高石1井和高石10井为代表。层纹状藻叠层石云岩发育在岩石组合C中,高石18井为代表。其中,柱状藻叠层形成的能量强于波状和层状[21]

    Figure 5.  Algal sedimentary structure types of the 4th member, Dengying Formation

  • 藻凝块是在蓝细菌作用下形成的,呈现不规则形态。藻凝块和藻叠层常相邻发育,在藻丘中广泛分布[6]。在外观灯四段发育藻凝块结构的包括豹斑状凝块云岩和散碎状凝块云岩。散碎状凝块云岩在岩心上具有“雪花状”构造(图5),凝块粒径大小在 0.3~10 mm,凝块边缘发育早期胶结的白云石环边,凝块间无泥质充填(图3d)。散碎状凝块云岩在阴极发光下凝块内部发暗红色光,外缘发较亮的红色光[10],表明藻凝块岩在同生期曾遭受大气降水的影响。

  • 灯四段的富藻类云岩含大量隐藻,藻类的生长繁盛主要受到海平面的变化[12,22-26]、水体的深度、盐度、水动力条件以及光照变化影响[10,27]。研究表明富藻云岩的形成也受微生物种属的控制[2829]

    由于藻类的生长环境受沉积环境控制,因此藻叠层石和藻凝块石的形态变化与沉积环境密切相关[30]。通常认为藻叠层石、藻纹层云岩、藻凝块岩和藻绵层云岩依次发育在潮下、潮间、潮间—潮上环境[30]。本研究中,根据盐度、水动力条件和水体深度等条件的变化认为富藻云岩发育在三种不同的环境中(表1)。

    藻丘生长环境 盐度 水动力条件 水体深度 沉积环境
    低盐度、浅水高能环境 元素比值Rb/K为0.13~0.2 水动力较强 元素比值Mn/Fe约1 621~1 848,水体浅 台缘外侧高能带
    较高盐度、浅水、中—高能环境 元素比值Rb/K为0.2左右 水动力中—强 元素比值Mn/Fe约2 213~2 396,水体较浅 台缘内侧—台内潮下中高能带
    高盐度、较深水、局限低能环境 元素比值Rb/K大于0.2,盐度较高 水动力弱 元素比值Mn/Fe约1 048~3 521,水体较深 台内潟湖周缘低能带

    Table 1.  Classification of algal colliculus

    沉积岩的微量元素和稀土元素分布特征在一定程度上可以反映古水质的氧化—还原条件[31-33]。研究区富藻云岩的V/(V+Ni)比值范围为0.29~0.83,平均值为0.62(表2),说明整体处于较浅水的氧化—弱氧化环境;灯四段碳酸盐岩Rb/K的比值在不同富藻云岩中变化较大,说明藻丘发育的盐度环境存在差异。对于海水和淡水环境判断(有的认为主要是咸水和淡水的判断)常用的微量元素为B、Sr、Ga、Rb、K 等[31]。Rb/K比值较大的为藻凝块云岩和藻纹层云岩,表明其沉积在水体盐度较高的相对局限环境; Rb/K比值相对较小为藻叠层云岩,表明沉积在相对开阔且盐度较正常的台缘带附近[32-33]。高石1的藻凝块岩的Rb/K比值普遍高于高石7(图6),表明高石1沉积的位置处于相对高石7较局限的环境中。Mn在湖水中常以Mn2-稳定存在,只有当湖水强烈蒸发而使Mn2-饱和时,它才会大量沉淀,因此Mn/Fe比值的变化可表明水体深度的差异[34]。根据不同井位藻叠层云岩、藻凝块云岩和藻纹层云岩的Mn/Fe比值可区分出台缘高能浅水带,台缘内侧—台内的中—高能较浅水带,以及台内潟湖周缘低能较深水带(表1)。

    井号 深度/m 岩性 V/(V+Ni) Rb/K Sr/Ba Sr/Cu Mn/Fe
    高石1 4 957.00 粉晶云岩 0.66 0.30 0.52 9.57 731.05
    高石1 4 960.00 藻凝块云岩 0.75 0.25 0.13 6.83 2 216.03
    高石1 4 966.89 藻凝块云岩 0.70 0.26 0.22 7.89 1 114.73
    高石1 4 979.00 藻凝块云岩 0.69 0.20 0.14 6.96 2 396.91
    高石1 4 960.00 藻纹层云岩 0.73 0.25 0.80 8.15 2 103.96
    高石1 4 970.28 藻纹层云岩 0.70 0.24 0.44 14.25 3 521.61
    高石1 4 981.00 藻纹层云岩 0.73 0.27 0.30 13.76 1 048.56
    高石1 4 975.00 泥晶云岩 0.83 0.15 0.05 18.03 3 829.41
    高石1 4 978.00 泥晶云岩 0.74 0.20 0.18 28.72 1 329.64
    高石1 4 980.00 泥晶云岩 0.69 0.23 0.21 28.90 1 145.92
    高石1 4 986.00 泥晶云岩 0.29 0.20 0.41 25.60 1 083.94
    高石1 4 977.00 岩溶角砾云岩 0.79 0.20 1.56 27.97 2 201.13
    高石7 5 263.58 粉晶云岩 0.47 0.23 0.54 17.60 768.60
    高石7 5 345.26 粉晶白云岩 0.76 0.15 1.10 30.36 4 989.43
    高石7 5 275.04 泥晶云岩 0.43 0.17 0.45 20.19 1 774.50
    高石7 5 275.49 泥晶云岩 0.47 0.17 0.45 22.98 1 629.00
    高石7 5 289.29 泥晶白云岩 0.52 0.18 0.31 20.05 1 648.10
    高石7 5 294.02 泥晶云岩 0.47 0.20 0.52 24.73 2 281.72
    高石7 5 305.97 泥晶云岩 0.66 0.19 0.90 11.52 2 359.00
    高石7 5 323.01 泥晶白云岩 0.6 0.21 0.13 27.49 1 471.40
    高石7 5 324.80 泥晶白云岩 0.69 0.18 0.50 31.44 1 700.84
    高石7 5 339.53 泥晶白云岩 0.50 0.21 1.03 8.95 145.41
    高石7 5 348.03 泥晶白云岩 0.62 0.22 0.67 18.84 1 999.88
    高石7 5 265.28 泥晶白云岩 0.54 0.22 0.45 16.78 1 479.25
    高石7 5 301.48 藻凝块云岩 0.58 0.13 0.74 37.30 2 213.22
    高石7 5 283.08 粉晶白云岩 0.48 0.26 0.64 0.34 556.46
    高石7 5 292.07 藻叠层白云岩 0.72 0.14 0.09 29.33 1 848.14
    高石7 5 315.52 藻叠层白云岩 0.53 0.16 0.55 36.12 1 621.90
    高石7 5 306.35 藻格架白云岩 0.70 0.16 0.20 32.09 2 927.83

    Table 2.  Trace element geochemical parameters of the 4th member, Dengying Formation

    Figure 6.  Geochemical element ratio diagram for dolostone from the 4th member, Dengying Formation, in wells Gaoshi 1 and Gaoshi 7

  • 灯四段沉积期是台缘和台内丘滩复合体的主要发育期[30]。野外剖面观察中可以发现纵向上丘核的岩石类型和宏观形态存在一定变化(图7),这些变化表明存在着不同类型藻丘。通过对不同元素比值和岩性组合所反映的沉积环境差异,本文将研究区灯四段的藻丘划分为三类。

    Figure 7.  Typical microbial mound cycles in outcrops in the Sichuan Basin[21]

  • 大型藻丘一般生长在低盐度水体较浅的台缘外侧高能带,具有非常稳定的结构。由于沉积在海进阶段,风暴与波浪对这类丘体的破坏小,这类大型藻丘以岩石组合B发育为特征,下部为藻凝块岩与泥晶云岩互层,上部发育藻叠层云岩与泥晶云岩互层,岩性主要为浅灰色波状纹层叠层石微—粉白云岩与灰色柱状叠层石。这类藻丘的丘核为柱状叠层石,沉积厚度大。

  • 中型藻丘生长在拉张槽边缘的海退期,发育在较高盐度和较浅水的台缘内侧至台地内部,具有较稳定的黏结结构,常受风暴浪侵蚀而发生破碎,处于水动力中—强的环境。这类藻丘以岩石组合A发育为特征,下部发育藻纹层云岩与粉—中晶云岩互层,上部发育藻凝块岩与粉—中晶云岩互层。这类藻丘的丘核为藻凝块石,丘核顶部发育颗粒白云岩。

  • 低能小型藻丘规模小,厚度薄,发育层纹状叠层构造,沉积在水动力非常弱的高盐度较深水的台内潟湖环境。这类藻丘以岩石组合C发育为特征,厚层泥晶云岩中夹薄层藻纹层云岩。藻纹层石白云岩的纹层呈近水平状,由于处于潮间—潮上带,周期性出露水面,叠层石处于弱生长阶段,纹层呈现不连续性。同时藻纹层白云岩之间发育含膏的泥晶白云岩。

    不同类型藻丘的物性特征和储层厚度存在差异。受灯四段沉积末期桐湾运动Ⅱ幕的影响,灯四段遭受不同程度的剥蚀和后期充填[9]。因此,同种类型的藻丘物性存在一定的变化。通过对高石梯地区不同藻丘储集物性数据可以看出,大型藻丘的孔隙度、渗透率略高于中型藻丘(表3)。大型藻丘的平均厚度可达51.14 m,而中型藻丘的平均厚度为25.2 m。台缘大型藻丘具有优质的储集条件,但中型藻丘也具有较好的储集性,高石1井中型藻丘中发育的藻凝块云岩渗透率较高,可达14.8×10-3 μm2。并且,中型藻丘分布在台缘内侧—台内的大部分地区。

    井号 深度/m 岩性 藻丘类型 孔隙度/% 渗透率/×10-3 μm2
    高石1井 4 960.81 藻凝块云岩 中型藻丘 3.69 2.11
    高石1井 4 979.55 藻凝块云岩 中型藻丘 4.60 14.80
    高石7井 5 278.62 藻凝块白云岩 大型藻丘 6.39 4.72
    高石7井 5 327.18 藻凝块白云岩 大型藻丘 1.18 3.77
    高石1井 4 965.09 藻叠层云岩 中型藻丘 1.26 0.000 414
    高石1井 4 982.31 藻叠层云岩 中型藻丘 0.68 0.000 707
    高石7井 5 292.74 藻叠层云岩 大型藻丘 5.41 1.16
    高石7井 5 327.55 藻叠层云岩 大型藻丘 0.99 1.46

    Table 3.  Physical properties of dolostones in different algal mounds

  • 通过对高石1、7、18井的单井岩电关系分析(图7),能够通过测井参数GR和DEN区分不同类型的藻丘。大型藻丘GR值在10~30 API,平均为18.1 API,DEN值平均值为2.5 g/cm3左右;而中型藻丘GR值在12~60 API,平均值为31.4 API,DEN在2.6 g/cm3左右;而小型藻丘GR值在30~60 API,平均在48 API,DEN在2.75 g/cm3左右(图8)。

    Figure 8.  Scatterplot of petroelectric analysis of different algal dolomites

    在对藻丘类型划分和岩电分析的基础上,对单井上藻丘类型进行了识别。纵向上发育藻丘、台坪、潟湖相,藻丘可划分为丘核和丘间。通过连井对比分析了藻丘丘核的横向展布(图9),认为大型藻丘的丘核发育在研究区拉张槽的东缘高石7井区,较稳定中型藻丘在拉张槽东缘、台地内部均发育,低能小型藻丘发育在台内的潮坪。

    Figure 9.  Correlation between east and west sedimentary connected wells in the study area

  • 研究区灯影组四段沉积相主要受水体深度、海进和海退、海水循环程度等因素影响,相带的展布受拉张槽控制。贫藻段的岩石主要处于一个完整旋回的早—中期,即海侵体系域,也是台坪较为发育的阶段;富藻段主要发育在一个完整沉积旋回的中—晚期,即高水位体系域,为藻丘和颗粒滩发育阶段。基于本研究,三类藻丘发育的沉积环境有所差异。大型藻丘一般生长在低盐度水体较浅的台缘外侧高能带,具有非常稳定的结构。由于沉积在海进阶段,风暴与波浪对这类丘体的破坏小,岩性主要为浅灰色波状纹层叠层石微—粉白云岩与灰色柱状叠层石。这类藻丘的丘核为柱状叠层石,沉积厚度大;中型藻丘生长在拉张槽边缘的海退期,发育在较高盐度和较浅水的台缘内侧至台地内部,具有较稳定的黏结结构,常受风暴浪侵蚀而发生破碎,处于水动力中—强的环境。这类藻丘的丘核为藻凝块石,丘核顶部发育颗粒白云岩,厚度中等。低能小型藻丘规模小,厚度薄,发育层纹状叠层构造,沉积在水动力非常弱的高盐度较深水的台内潟湖环境。由于处于潮间—潮上带,周期性出露水面,叠层石处于弱生长阶段,纹层呈现不连续性。同时藻纹层白云岩之间发育含膏的泥晶白云岩。从台地边缘向台地内部,藻丘类型逐步由大型藻丘过渡为较稳定中型藻丘,而在潮坪—潟湖环境仅发育低能小型藻丘,由此建立了灯四段藻丘的沉积模式(图10)。

    Figure 10.  Algal mound deposition pattern in the 4th member of the Dengying Formation in the Gaoshiti area

  • (1) 高石梯地区灯影组四段发育与藻丘相关的富藻类和贫藻类云岩。受藻丘发育规模存在三种富藻类云岩和贫藻类云岩的组合方式。

    (2) 藻丘的发育受沉积环境影响。根据岩石组合、沉积构造、成岩特征和Rb/K比值,可将藻丘分为大型藻丘、较稳定中型藻丘和低能小型藻丘。大型藻丘云岩的物性略好于中型藻丘,且厚度更大。

    (3) 大型藻丘发育在拉张槽形成的台缘坡折带,发育柱状叠层石;中型藻丘发育在台缘外侧至台内,发育藻凝块石,顶部发育颗粒白云岩;小型藻丘发育在潮坪环境,环潟湖分布,岩性为藻纹层白云岩,局部含石膏。

Reference (34)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return