Advanced Search
Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents

LIU ShiQi, WANG He, WANG Ran, GAO DeYi, Ashutosh Tripathy. Research Advances on Characteristics of Pores and Fractures in Coal Seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230. doi: 10.14027/j.issn.1000-0550.2020.064
Citation: LIU ShiQi, WANG He, WANG Ran, GAO DeYi, Ashutosh Tripathy. Research Advances on Characteristics of Pores and Fractures in Coal Seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230. doi: 10.14027/j.issn.1000-0550.2020.064

Research Advances on Characteristics of Pores and Fractures in Coal Seams

doi: 10.14027/j.issn.1000-0550.2020.064
Funds:

National Natural Science Foundation of China 41972168

Foundation of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization 2019A001

  • Received Date: 2020-05-31
  • Publish Date: 2021-02-06
  • The study of the characteristics and relationships of pores and fractures in coal seams is an important research in unconventional petroleum sedimentology, and is of great significance for understanding the micromechanisms of the existence, state, and mass transfer process of coal seam fluid, and for optimizing the exploitation of coalbed methane (CBM) where geologically appropriate. The pores and fractures in coal seams have complex genesis, with wide-ranging scale and strong heterogeneity. Their characteristics are the result of the combined actions of coalification, metamorphism types, tectonic evolution, coal components, and underground fluids. Coalification is the internal cause of pore and fracture characteristics, while tectonic stress is the major external cause. The combined actions of internal and external causes have formed the presently observed characteristics of pores and fractures in coal of different rank, in different coal-bearing basins, and in different tectonic locations. Moreover, the coal-forming materials, sedimentary environment, burial history and thermal history of coal-bearing basins each play important roles in determining the present pore and fracture characteristics. The study of pore and fracture characteristics is closely related to the efficient exploitation of CBM, which implies that considering pores and fractures in coal as an entire desorption–diffusion–seepage network in further research will be a sensible approach. The source and effectiveness of coal permeability is controlled by pore/fracture connected networks, nanoscale pore/fracture characteristics and their syntagmatic relations: interfacial properties of pores, fractures and coal seam fluids, together with multiscale pore/fracture characterization, all need to be further researched. The development and application of digital petrophysical characterization technology provides new methods and ideas for research into pore and fracture characteristics.
  • [1] 国家统计局. 国家数据—煤层气产量[DB/OL]. 2020. http://data.stats.gov.cn/easyquery.htm

    http://data.stats.gov.cn/easyquery.htm?cn=A01. [National Bureau of Statistics of China. National data-Output of coalbed gas[DB/OL]. 2020. http://data.stats.gov.cn/easyquery.htm?cn=A01. http://data.stats.gov.cn/easyquery.htm
    [2] Liu S Q, Sang S X, Wang G, et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017, 148: 21-31.
    [3] Li S, Tang D Z, Pan Z J, et al. Geological conditions of deep coalbed methane in the eastern margin of the Ordos Basin, China: Implications for coalbed methane development[J]. Journal of Natural Gas Science and Engineering, 2018, 53: 394-402.
    [4] 钟建华,刘闯,吴建光,等. 鄂尔多斯盆地东缘临兴地区煤系气共生成藏特征[J]. 煤炭学报,2018,43(6):1517-1525.

    Zhong Jianhua, Liu Chuang, Wu Jianguang, et al. Symbiotic accumulation characteristics of coal measure gas in Linxing Block, eastern Ordos Basin[J]. Journal of China Coal Society, 2018, 43(6): 1517-1525.
    [5] 王博洋,秦勇,申建,等. 我国低煤阶煤煤层气地质研究综述[J]. 煤炭科学技术,2017,45(1):170-179.

    Wang Boyang, Qin Yong, Shen Jian, et al. Summarization of geological study on low rank coalbed methane in China[J]. Coal Science and Technology, 2017, 45(1): 170-179.
    [6] 余坤,屈争辉,琚宜文,等. 二连盆地胜利煤田含煤地层埋藏史及热史分析[J]. 沉积学报,2018,36(5):903-913.

    Yu Kun, Qu Zhenghui, Ju Yiwen, et al. Burial and thermal history of coal-bearing strata in Shengli coalfield, Erlian Basin[J]. Acta Sedimentologica Sinica, 2018, 36(5): 903-913.
    [7] 刘贻军,娄建青. 中国煤层气储层特征及开发技术探讨[J]. 天然气工业,2004,24(1):68-71.

    Liu Yijun, Lou Jianqing. Study on reservoir characteristics and development technology of coal-bed gas in China[J]. Natural Gas Industry, 2004, 24(1): 68-71.
    [8] 桑树勋,刘世奇,王文峰,等.深部煤层CO2地质存储与煤层气强化开发有效性理论及评价[M]. 北京:科学出版社,2020.

    Sang Shuxun, Liu Shiqi, Wang Wenfeng, et al. Validation theory and evaluation of CO2 geological storage and CH4 enhanced recovery with deep coal seam[M]. Beijing: Science Press, 2020.
    [9] Zhang S H, Tang S H, Tang D Z, et al. The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China[J]. International Journal of Coal Geology, 2010, 81(2): 117-127.
    [10] Liu S Q, Sang S X, Liu H H, et al. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui Basin[J]. Ore Geology Reviews, 2015, 64: 140-151.
    [11] Moore T A. Coalbed methane: A review[J]. International Journal of Coal Geology, 2012, 101: 36-81.
    [12] Liu S Q, Sang S X, Pan Z J, et al. Study of characteristics and formation stages of macroscopic natural fractures in coal seam #3 for CBM development in the east Qinnan block, southern Quishui Basin, China[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1321-1332.
    [13] Liu S Q, Ma J S, Sang S X, et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal[J]. Fuel, 2018, 223: 32-43.
    [14] Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242: 96-108.
    [15] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions[J]. Fuel, 1999, 11(78): 1333-1344.
    [16] Alexeev A D, Feldman E P, Vasilenko T A. Methane desorption from a coal-bed[J]. Fuel, 2007, 86(16): 2574-2580.
    [17] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentolgica Sinica, 2020, 38(1): 1-29.
    [18] 孙家广,赵贤正,桑树勋,等. 基于光学显微观测的煤层裂隙发育特征、成因及其意义:以沁水盆地南部3#煤层为例[J]. 断块油气田,2016,23(6):738-744.

    Sun Jiaguang, Zhao Xianzheng, Sang Shuxun, et al. Development characteristics, origins and significance of coal seam fractures under optical microscope: Taking coal seam 3# in southern Qinshui Basin as an example[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 738-744.
    [19] Wang A M, Wei Y C, Yuan Y, et al. Coalbed methane reservoirs’ pore-structure characterization of different macrolithotypes in the southern Junggar Basin of Northwest China[J]. Marine and Petroleum Geology, 2017, 86: 675-688.
    [20] Giffin S, Littke R, Klaver J, et al. Application of BIB–SEM technology to characterize macropore morphology in coal[J]. International Journal of Coal Geology, 2013, 114: 85-95.
    [21] 赵迪斐,郭英海,毛潇潇,等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517-1526.

    Zhao Difei, Guo Yinghai, Mao Xiaoxiao, et al. Characteristics of macro-nanopores in anthracite coal based on mercury injection, nitrogen adsorption and FE-SEM[J]. Journal of China Coal Society, 2017, 42(6): 1517-1526.
    [22] Pan J N, Wang K, Hou Q L, et al. Micro-pores and fractures of coals analysed by field emission scanning electron microscopy and fractal theory[J]. Fuel, 2016, 164: 277-285.
    [23] 赵峰华,任德贻. 应用高分辨率透射电镜研究煤显微组分的结构[J]. 地质论评,1995,41(6):564-570.

    Zhao Fenghua, Ren Deyi. The application of high-resolution transmission electron microscopy to study the structures of coal macerals[J]. Geological Review, 1995, 41(6): 564-570.
    [24] 李霞,曾凡桂,司加康,等. 不同变质程度煤的高分辨率透射电镜分析[J]. 燃料化学学报,2016,44(3):279-285.

    Li Xia, Zeng Fangui, Si Jiakang, et al. High resolution TEM image analysis of coals with different metamorphic degrees[J]. Journal of Fuel Chemistry and Technology, 2016, 44(3): 279-285.
    [25] 郭亚楠,唐跃刚,王绍清,等. 树皮残植煤显微组分分离及高分辨透射电镜图像分子结构[J]. 煤炭学报,2013,38(6):1019-1024.

    Guo Yanan, Tang Yuegang, Wang Shaoqing, et al. Maceral separation of bark liptobiolite and molecular structure study through high resolution TEM images[J]. Journal of China Coal Society, 2013, 38(6): 1019-1024.
    [26] Pan J N, Zhu H T, Hou Q L, et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel, 2015, 139: 94-101.
    [27] Liu J X, Jiang X M, Huang X Y, et al. Morphological characterization of super fine pulverized coal particle. Part 2. AFM investigation of single coal particle[J]. Fuel, 2010, 89(12): 3884-3891.
    [28] 姚素平,焦堃,张科,等. 煤纳米孔隙结构的原子力显微镜研究[J]. 科学通报,2011,56(22):1820-1827.

    Yao Suping, Jiao Kun, Zhang Ke, et al. An atomic force microscopy study of coal nanopore structure[J]. Chinese Science Bulletin, 2011, 56(22): 1820-1827.
    [29] 杨起,潘治贵,汤达祯,等. 煤结构的STM和AFM研究[J]. 科学通报,1994,39(7):633-635.

    Yang Qi, Pan Zhigui, Tang Dazhen, et al. Study of coal structure using STM and AFM[J]. Chinese Science Bulletin, 1994, 39(7): 633-635.
    [30] Fang H H, Sang S X, Liu S Q, et al. Methodology of three-dimensional visualization and quantitative characterization of nanopores in coal by using FIB-SEM and its application with anthracite in Qinshui Basin[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106285.
    [31] Fang H H, Sang S X, Liu S Q. A methodology for characterizing the multiscale pores and fractures in anthracite and semi-anthracite coals and its application in analysis of the storage and permeable capacity of coalbed methane[J]. SPE Reservoir Evaluation & Engineering, 2020, 23(1): 177-186.
    [32] 马勇,钟宁宁,程礼军,等. 渝东南两套富有机质页岩的孔隙结构特征:来自FIB-SEM的新启示[J]. 石油实验地质,2015,37(1):109-116.

    Ma Yong, Zhong Ningning, Cheng Lijun, et al. Pore structure of two organic-rich shales in southeastern Chongqing area: Insight from Focused Ion Beam Scanning Electron Microscope (FIB-SEM)[J]. Petroleum Geology & Experiment, 2015, 37(1): 109-116.
    [33] 马勇,钟宁宁,黄小艳,等. 聚集离子束扫描电镜(FIB-SEM)在页岩纳米级孔隙结构研究中的应用[J]. 电子显微学报,2014,33(3):251-256.

    Ma Yong, Zhong Ningning, Huang Xiaoyan, et al. The application of Focused Ion Beam Scanning Electron Microscope (FIB-SEM) to the nanometer-sized pores in shales[J]. Journal of Chinese Electron Microscopy Society, 2014, 33(3): 251-256.
    [34] 王朋飞,吕鹏,姜振学,等. 中国海陆相页岩有机质孔隙发育特征对比:基于聚焦离子束氦离子显微镜(FIB-HIM)技术[J]. 石油实验地质,2018,40(5):739-748.

    Wang Pengfei, Lü Peng, Jiang Zhenxue, et al. Comparison of organic matter pores of marine and continental facies shale in China: Based on Focused Ion Beam Helium Ion Microscopy (FIB-HIM)[J]. Petroleum Geology & Experiment, 2018, 40(5): 739-748.
    [35] 王朋飞,姜振学,吕鹏,等. 重庆周缘下志留统龙马溪组和下寒武统牛蹄塘组页岩有机质孔隙发育及演化特征[J]. 天然气地球科学,2018,29(7):997-1008.

    Wang Pengfei, Jiang Zhenxue, Lü Peng, et al. Organic matter pores and evolution characteristics of shales in the Lower Silurian Longmaxi Formation and the Lower Cambrian Niutitang Formation in periphery of Chongqing[J]. Natural Gas Geoscience, 2018, 29(7): 997-1008.
    [36] 宋董军,妥进才,王晔桐,等. 富有机质泥页岩纳米级孔隙结构特征研究进展[J]. 沉积学报,2019,37(6):1309-1324.

    Song Dongjun, Jincai Tuo, Wang Yetong, et al. Research advances on characteristics of nanopore structure of organic-rich shales[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1309-1324.
    [37] Bustin R M, Bustin A M M, Cui X, et al. Impact of shale properties on pore structure and storage characteristics[C]//The society of petroleum engineers shale gas production conference. Fort Worth: SPE, 2008.
    [38] Mares T E, Radliński A P, Moore T A, et al. Assessing the potential for CO2 adsorption in a subbituminous coal, Huntly Coalfield, New Zealand, using small angle scattering techniques[J]. International Journal of Coal Geology, 2009, 77(1/2): 54-68.
    [39] Yao Y B, Liu D M, Xie S B. Quantitative characterization of methane adsorption on coal using a low-field NMR relaxation method[J]. International Journal of Coal Geology, 2014, 131: 32-40.
    [40] 宋晓夏,唐跃刚,李伟,等. 基于小角X射线散射构造煤孔隙结构的研究[J]. 煤炭学报,2014,39(4):719-724.

    Song Xiaoxia, Tang Yuegang, Li Wei, et al. Pore structure in tectonically deformed coals by small angle X-ray scattering[J]. Journal of China Coal Society, 2014, 39(4): 719-724.
    [41] Okolo G N, Everson R C, Neomagus H W J P, et al. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015, 141: 293-304.
    [42] Zhao Y X, Sun Y F, Liu S M, et al. Pore structure characterization of coal by NMR cryoporometry[J]. Fuel, 2017, 190: 359-369.
    [43] Yao Y B, Liu D M. Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals[J]. Fuel, 2012, 95: 152-158.
    [44] 姚艳斌,刘大锰,蔡益栋,等. 基于NMR和X-CT的煤的孔裂隙精细定量表征[J]. 中国科学(D辑):地球科学,2010,40(11):1598-1607.

    Yao Yanbin, Liu Dameng, Cai Yidong, et al. Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography[J]. Science China (Seri. D): Earth Sciences, 2010, 40(11): 1598-1607.
    [45] Liu S Q, Sang S X, Hu Q J, et al. Characteristics of high rank coal structure parallel and perpendicular to the bedding plane via NMR and X‑ray CT[J]. Petroleum Science, 2020, 17(4): 925-938, doi: 10.1007/s12182-020-00462-w.
    [46] Liu S Q, Sang S X, Ma J S, et al. Three-dimensional digitalization modeling characterization of pores in high-rank coal in the southern Qinshui basin[J]. Geosciences Journal, 2019, 23(1): 175-188.
    [47] 王登科,魏强,魏建平,等. 煤的裂隙结构分形特征与分形渗流模型研究[J]. 中国矿业大学学报,2020,49(1):103-109,122.

    Wang Dengke, Wei Qiang, Wei Jianping, et al. Fractal characteristics of fracture structure and fractal seepage model of coal[J]. Journal of China University of Mining & Technology, 2020, 49(1): 103-109, 122.
    [48] Radlinski A P, Mastalerz M, Hinde A L, et al. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal[J]. International Journal of Coal Geology, 2004, 59(3/4): 245-271.
    [49] Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel, 2013, 103: 606-616.
    [50] Zhao Y X, Liu S M, Elsworth D, et al. Pore structure characterization of coal by Synchrotron Small-Angle X‑ray Scattering and Transmission Electron Microscopy[J]. Energy & Fuels, 2014, 28(6): 3704-3711.
    [51] 徐祖新,郭少斌. 基于氩离子抛光-SEM和ImageJ软件的页岩储层孔隙结构分析:以中扬子地区陡山沱组为例[J]. 东北石油大学学报,2014,38(4):45-51.

    Xu Zuxin, Guo Shaobin. Analysis of the pore structure of shale gas reservoirs based on argon-ion milling SEM and ImageJ[J]. Journal of Northeast Petroleum University, 2014, 38(4): 45-51.
    [52] 陆小霞,黄文辉,陈燕萍,等. 沁水盆地南部深煤层孔隙结构特征[J]. 东北石油大学学报,2015,39(3):41-49.

    Lu Xiaoxia, Huang Wenhui, Chen Yanping, et al. Pore structure of deep coal seam in southern Qinshui Basin[J]. Journal of Northeast Petroleum University, 2015, 39(3): 41-49.
    [53] 杨峰,宁正福,胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报,2013,34(2):301-311.

    Yang Feng, Ning Zhengfu, Hu Changpeng, et al. Characterization of microscopic pore structures in shale reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2): 301-311.
    [54] 降文萍,宋孝忠,钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报,2011,36(4):609-614.

    Jiang Wenping, Song Xiaozhong, Zhong Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Journal of China Coal Society, 2011, 36(4): 609-614.
    [55] Radliński A P, Busbridge T L, Gray E M A, et al. Small angle X-ray scattering mapping and kinetics study of sub-critical CO2 sorption by two Australian coals[J]. International Journal of Coal Geology, 2009, 77(1/2): 80-89.
    [56] 杨延辉,刘世奇,桑树勋,等. 基于三维空间表征的高阶煤连通孔隙发育特征[J]. 煤炭科学技术,2016,44(10):70-76.

    Yang Yanhui, Liu Shiqi, Sang Shuxun, et al. Interconnected pore development features of high rank coal based on 3D space characteristics[J]. Coal Science and Technology, 2016, 44(10): 70-76.
    [57] Heriawan M N, Koike K. Coal quality related to microfractures identified by CT image analysis[J]. International Journal of Coal Geology, 2015, 140: 97-110.
    [58] 唐巨鹏,潘一山,张佐刚. 煤层气赋存和运移规律的NMRI研究[J]. 辽宁工程技术大学学报,2005,24(5):674-676.

    Tang Jupeng, Pan Yishan, Zhang Zuogang. NMRI research on storage and transport of coalbed methane[J]. Journal of Liaoning Technical University, 2005, 24(5): 674-676.
    [59] 唐巨鹏,潘一山,郭和坤,等. 利用NMRI技术测定煤储层渗透率[J]. 煤炭学报,2004,29(增刊):61-65.

    Tang Jupeng, Pan Yishan, Guo Hekun, et al. Using NMRI technique to measure coal seam permeability[J]. Journal of China Coal Society, 2004, 29(Suppl.): 61-65.
    [60] 潘一山,唐巨鹏,李成全. 煤层中气水两相运移的NMRI试验研究[J]. 地球物理学报,2008,51(5):1620-1626.

    Pan Yishan, Tang Jupeng, Li Chengquan. NMRI test on two-phase transport of gas-water in coal seam[J]. Chinese Journal of Geophysics, 2008, 51(5): 1620-1626.
    [61] 刘世奇,桑树勋,Ma Jingsheng,等. 基于非理想气体流动模拟的无烟煤纳米孔隙中CH4流动规律[J]. 中国矿业大学学报,2020,49(1):36-43.

    Liu Shiqi, Sang Shuxun, Ma Jingsheng, et al. The flow behavior of CH4 in nanopores of anthracite coal based on a non-ideal gas-flow simulation[J]. Journal of China University of Mining & Technology, 2020, 49(1): 36-43.
    [62] 傅雪海,秦勇,韦重韬. 煤层气地质学[M]. 徐州:中国矿业大学出版社,2007.

    Fu Xuehai, Qin Yong, Wei Chongtao. Coalbed methane geology[M]. Xuzhou: China University of Mining and Technology Press, 2007.
    [63] 霍多特 B B. 煤与瓦斯突出[M]. 宋世钊,王佑安,译. 北京:中国工业出版社,1966:27-30.

    Ходот B B. Coal and gas outburst[M]. Song Shizhao, Wang Youan, trans. Beijing: China Industry Press, 1996: 27-30.
    [64] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [65] Close J C. Natural fractures in coal[M]//Law B E, Rice D D. Hydrocarbons from coal. Tulsa: AAPG, 1993: 119-132.
    [66] 桑树勋,朱炎铭,张时音,等. 煤吸附气体的固气作用机理(Ⅰ):煤孔隙结构与固气作用[J]. 天然气工业,2005,25(1):13-15.

    Sang Shuxun, Zhu Yanming, Zhang Shiyin, et al. Solid-gas interaction mechanism of coal-adsorbed gas (Ⅰ): Coal pore structure and solid-gas interaction[J]. Natural Gas Industry, 2005, 25(1): 13-15.
    [67] 杨思敬,杨福蓉,高照祥. 煤的孔隙系统和突出煤的孔隙特征[C]//第二届国际采矿科学技术讨论会论文集. 徐州:中国矿业大学出版社,1991:770-777. [

    Yang Sijing, Yang Furong, Gao Zhaoxiang. Coal pore system and pore characteristics in outburst coal[C]//The memoir of the 2th international symposium on mining science and technology. Xuzhou: China University of Mining and Technology Press, 1991: 770-777.]
    [68] 秦勇,徐志伟,张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报,1995,20(3):266-271.

    Qin Yong, Xu Zhiwei, Zhang Jing. Natural classification of the high-rank coal pore structure and its application[J]. Journal of China Coal Society, 1995, 20(3): 266-271.
    [69] 傅雪海,秦勇,张万红,等. 基于煤层气运移的煤孔隙分形分类及自然分类研究[J]. 科学通报,2005,50(增刊):51-55.

    Fu Xuehai, Qin Yong, Zhang Wanhong, et al. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane[J]. Chinese Science Bulletin, 2005, 50(Suppl.): 51-55.
    [70] Gan H, Nandi S P, Walker Jr P L. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4): 272-277.
    [71] 煤炭科学院抚顺研究所,淮南矿业学院. 煤层烃类气体组分与煤岩煤化关系的研究[R]. 抚顺:抚顺煤炭科学研究所,1985.

    Fushun Coal Science Research Institute, Huainan Mining Institute. Study on the relationship between hydrocarbon gas components and coal coalification in coal seam[R]. Fushun: Fushun Coal Science Research Institute, 1985.
    [72] 吴俊,金奎励,童有德,等. 煤孔隙理论及在瓦斯突出和抽放评价中的应用[J]. 煤炭学报,1991,16(3):86-95.

    Wu Jun, Jin Kuili, Tong Youde, et al. Theory of coal pores and its application in evaluation of gas outburst proneness and gas drainage[J]. Journal of China Coal Society, 1991, 16(3): 86-95.
    [73] Sang S X, Liu H H, Li Y M, et al. Geological controls over coal-bed methane well production in southern Qinshui basin[J]. Procedia Earth and Planetary Science, 2009, 1(1): 917-922.
    [74] 钟玲文,张群,解光新,等. MT/T 968—2005煤裂隙描述方法[S]. 北京:中国煤炭工业出版社,2006.

    Zhong Lingwen, Zhang Qun, Xie Guangxin,et al. MT/T 968-2005Description methodology of fracture in coal[S]. Beijing: China Coal Industry Publishing House, 2006.
    [75] 张慧,王晓刚,员争荣,等. 煤中显微裂隙的成因类型及其研究意义[J]. 岩石矿物学杂志,2002,21(3):278-284.

    Zhang Hui, Wang Xiaogang, Yuan Zhengrong, et al. Genetic types of microfractures in coal and their significance[J]. Acta Petrologica et Mineralogica, 2002, 21(3): 278-284.
    [76] 张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报,2001,26(1):40-44.

    Zhang Hui. Genetical type of proes in coal reservoir and its research significance[J]. Journal of China Coal Society, 2001, 26(1): 40-44.
    [77] 杨昊睿. 韩城地区构造煤孔隙结构和吸附特征分析[D]. 太原:太原理工大学,2017.

    Yang Haorui. The analysis of tectonically deformed coal pore structure and adsorption in Hancheng area[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [78] 陈振宏. 高、低煤阶煤层气藏主控因素差异性对比研究[D]. 广州:中国科学院研究生院(广州地球化学研究所),2007.

    Chen Zhenhong. Key controlling factors comparison between high and low rank CBM reservoir formation[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2007.
    [79] 罗磊. 准东地区低阶煤储层物性研究[D]. 北京:中国地质大学(北京),2016.

    Luo Lei. Fine description and physical properties of coal reservoir in eastern Junggar Basin[D]. Beijing: China University of Geosciences (Beijing), 2016.
    [80] 李玲,姚海鹏,李正,等. 二连盆地低阶煤储层物性特征及评价体系研究[J]. 中国煤炭,2019,45(4):43-51.

    Li Ling, Yao Haipeng, Li Zheng, et al. Study on coal reservoir physical characteristics and evaluation system of low-rank coal in Erlian Basin[J]. China Coal, 2019, 45(4): 43-51.
    [81] 郝琦. 煤的显微孔隙形态特征及其成因探讨[J]. 煤炭学报,1987(4):51-56.

    Hao Qi. On morphological character and origin of micropores in coal[J]. Journal of China Coal Society, 1987(4): 51-56.
    [82] 吴双,汤达祯,许浩,等. 中-高煤级煤岩孔隙发育特征[J]. 煤田地质与勘探,2016,44(6):69-74.

    Wu Shuang, Tang Dazhen, Xu Hao, et al. Characteristics of pore development in medium-high rank coal[J]. Coal Geology & Exploration, 2016, 44(6): 69-74.
    [83] 李旭. 不同变质程度煤比表面积与吸附特征关系的研究[D]. 沈阳:煤炭科学研究总院沈阳研究院,2007.

    Li Xu. Research on relationship specific surface area to adsorption feature of different rank coals[D]. Shenyang: Shenyang Branch of China Coal Research Institute, 2007.
    [84] 赵兴龙,汤达祯,许浩,等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学报,2010,35(9):1506-1511.

    Zhao Xinglong, Tang Dazhen, Xu Hao, et al. Effect of coal metamorphic process on pore system of coal reservoirs[J]. Journal of China Coal Society, 2010, 35(9): 1506-1511.
    [85] 王生维,陈钟惠. 煤储层孔隙、裂隙系统研究进展[J]. 地质科技情报,1995,14(1):53-59.

    Wang Shengwei, Chen Zhonghui. Advances in the research of pore-fracture system in coal reservoir[J]. Geological Science and Technology Information, 1995, 14(1): 53-59.
    [86] 程庆迎,黄炳香,李增华. 煤的孔隙和裂隙研究现状[J]. 煤炭工程,2011(12):91-93.

    Cheng Qingying, Huang Bingxiang, Li Zenghua. Research status of pore and crack in coal[J]. Coal Engineering, 2011(12): 91-93.
    [87] 朱兴珊. 煤层孔隙特征对抽放煤层气影响[J]. 中国煤层气,1996(1):37-39.

    Zhu Xingshan. The influence of pore characteristics on the extraction of CBM[J]. China Coalbed Methane, 1996(1): 37-39.
    [88] 李小彦,解光新. 孔隙结构在煤层气运移过程中的作用:以沁水盆地为例[J]. 天然气地球科学,2004,15(4):341-344.

    Li Xiaoyan, Xie Guangxin. Effect of pore structure on CBM transport-Taking Qinshui Basin as the example[J]. Natural Gas Geoscience, 2004, 15(4): 341-344.
    [89] 张胜利. 煤层割理及其在煤层气勘探开发中的意义[J]. 煤田地质与勘探,1995,23(4):27-30.

    Zhang Shengli. Coal seam cleats and their significance in coalbed methane exploration and exploitation[J]. Coal Geology & Exploration, 1995, 23(4): 27-30.
    [90] 苏现波,冯艳丽,陈江峰. 煤中裂隙的分类[J]. 煤田地质与勘探,2002,30(4):21-24.

    Su Xianbo, Feng Yanli, Chen Jiangfeng. The classification of fractures in coal[J]. Coal Geology & Exploration, 2002, 30(4): 21-24.
    [91] 霍永忠,张爱云. 煤层气储层的显微孔裂隙成因分类及其应用[J]. 煤田地质与勘探,1998,26(6):28-32.

    Huo Yongzhong, Zhang Aiyun. The genetic classification and its application of microfracture in coal reservoir[J]. Coal Geology & Exploration, 1998, 26(6): 28-32.
    [92] 王生维,侯光久,张明,等. 晋城成庄矿煤层大裂隙系统研究[J]. 科学通报,2005,50(增刊):38-44.

    Wang Shengwei, Hou Guangjiu, Zhang Ming, et al. Analysis of the visible fracture system of coalseam in Chengzhuang Coalmine of Jincheng city, Shanxi province[J]. Chinese Science Bulletin, 2005, 50(Suppl.): 38-44.
    [93] 苏现波,吴贤涛. 煤的裂隙与煤层气储层评价[J]. 中国煤层气,1996(2):88-90.

    Su Xianbo, Wu Xiantao. The relationship between coal fracture and evaluation of coalbed methane reservoirs[J]. China Coalbed Methane, 1996(2): 88-90.
    [94] Groshong Jr R H, Pashin J C, McIntyre M R. Structural controls on fractured coal reservoirs in the southern Appalachian Black Warrior foreland basin[J]. Journal of Structural Geology, 2009, 31(9): 874-886.
    [95] Kumar H, Lester E, Kingman S, et al. Inducing fractures and increasing cleat apertures in a bituminous coal under isotropic stress via application of microwave energy[J]. International Journal of Coal Geology, 2011, 88(1): 75-82.
    [96] Laubach S E, Schultz-Ela D D, Tyler R. Analysis of compaction effects on coal fracture patterns, Upper Cretaceous rock springs formation, southwestern Wyoming[J]. The Mountain Geologut, 1993, 30(3): 95-110.
    [97] 胡咤咤,黄文辉,刘素平,等. 沁水盆地南部煤储层显微裂隙发育的影响因素[J]. 煤田地质与勘探,2016,44(5):63-70.

    Hu Zhazha, Huang Wenhui, Liu Suping, et al. Study on the influencing factors of the microfracture development in coal reservoir in southern Qinshui Basin[J]. Coal Geology & Exploration, 2016, 44(5): 63-70.
    [98] 李勇,汤达祯,许浩,等. 鄂尔多斯盆地柳林地区煤储层地应力场特征及其对裂隙的控制作用[J]. 煤炭学报,2014,39(增刊):164-168.

    Li Yong, Tang Dazhen, Xu Hao, et al. Characteristic of in-situ stress field in Liulin area, Ordos Basin and its control on coal fractures[J]. Journal of China Coal Society, 2014, 39(Suppl.): 164-168.
    [99] Laubach S E, Marrett R A, Olson J E, et al. Characteristics and origins of coal cleat: A review[J]. International Journal of Coal Geology, 1998, 35(1/2/3/4): 175-207.
    [100] Su X B, Feng Y L, Chen J F, et al. The characteristics and origins of cleat in coal from western North China[J]. International Journal of Coal Geology, 2001, 47(1): 51-62.
    [101] 王生维,张明,庄小丽. 煤储层裂隙形成机理及其研究意义[J]. 地球科学:中国地质大学学报,1996,21(6):637-640.

    Wang Shengwei, Zhang Ming, Zhuang Xiaoli. The mechanism of microfractures and cleats of coal reservoirs and their implication for methane recovery[J]. Earth Science:Journal of China University of Geosciences, 1996, 21(6): 637-640.
    [102] 王生维,陈钟惠,张明. 煤基岩块孔裂隙特征及其在煤层气产出中的意义[J]. 地球科学:中国地质大学学报,1995,20(5):557-561.

    Wang Shengwei, Chen Zhonghui, Zhang Ming. Pore and microfracture of coal matrix block and their effects on the recovery of methane from coal[J]. Earth Science:Journal of China University of Geosciences, 1995, 20(5): 557-561.
    [103] 钟玲文. 煤内生裂隙的成因[J]. 中国煤田地质,2004,16(3):6-9.

    Zhong Lingwen. The genesis of endogenic fracture in coal[J]. Coal Geology of China, 2004, 16(3): 6-9.
    [104] 贾建称,张泓,贾茜,等. 煤储层割理系统研究:现状与展望[J]. 天然气地球科学,2015,26(9):1621-1628.

    Jia Jiancheng, Zhang Hong, Jia Qian, et al. Status and prospect: Study on the cleat system in coal reservoir[J]. Natural Gas Geoscience, 2015, 26(9): 1621-1628.
    [105] 张慧,王晓刚. 煤的显微构造及其储集性能[J]. 煤田地质与勘探,1998,26(6):33-36.

    Zhang Hui, Wang Xiaogang. Microstructures of coal and their reservoir property[J]. Coal Geology & Exploration, 1998, 26(6): 33-36.
    [106] Zhou F B, Liu S Q, Pang Y Q, et al. Effects of coal functional groups on adsorption microheat of coal bed methane[J]. Energy & Fuels, 2015, 29(3): 1550-1557.
    [107] Liu S Q, Fang H H, Sang S X, et al. CO2 injectability and CH4 recovery of the engineering test in Qinshui Basin, China based on numerical simulation[J]. International Journal of Greenhouse Gas Control, 2020, 95: 102980.
    [108] Fang H H, Sang S X, Liu S Q. Establishment of dynamic permeability model of coal reservoir and its numerical simulation during the CO2-ECBM process[J]. Journal of Petroleum Science and Engineering, 2019, 179: 885-898.
    [109] Meng M, Baldino S, Miska S Z, et al. Wellbore stability in naturally fractured formations featuring dual-porosity/single-permeability and finite radial fluid discharge[J]. Journal of Petroleum Science and Engineering, 2019, 174: 790-803.
    [110] Gamson P, Beamish B, Johnson D. Coal microstructure and secondary mineralization: Their effect on methane recovery[J]. Geological Society, London, Special Publications, 1996, 109(1): 165-179.
    [111] 傅雪海,秦勇,李贵中. 储层渗透率研究的新进展[J]. 辽宁工程技术大学学报(自然科学版),2001,20(6):739-743.

    Fu Xuehai, Qin Yong, Li Guizhong. Advance in study of coal reservoir Perme AtingAbility[J]. Journal of Liaoning Technical University (Natural Science), 2001, 20(6): 739-743.
    [112] Zhou H W, Zhong J C, Ren W G, et al. Characterization of pore-fracture networks and their evolution at various measurement scales in coal samples using X-ray μCT and a fractal method[J]. International Journal of Coal Geology, 2018, 189: 35-49.
    [113] 刘世奇,桑树勋,杨延辉,等. 基于低场核磁共振的高阶煤平行与垂直层理结构特征[J]. 煤炭科学技术,2018,46(10):110-116.

    Liu Shiqi, Sang Shuxun, Yang Yanhui, et al. Structure features of high rank coal in parallel bedding and vertical bedding based on low field nuclear magnetic resonance[J]. Coal Science and Technology, 2018, 46(10): 110-116.
    [114] Sampath K H S M, Perera M S A, Ranjith P G, et al. Qualitative and quantitative evaluation of the alteration of micro-fracture characteristics of supercritical CO2-interacted coal[J]. The Journal of Supercritical Fluids, 2019, 147: 90-101.
    [115] Mazumder S, Wolf K H A A, Elewaut K, et al. Application of X-ray computed tomography for analyzing cleat spacing and cleat aperture in coal samples[J]. International Journal of Coal Geology, 2006, 68(3/4): 205-222.
    [116] Lu X, Armstrong R T, Mostaghimi P. High-pressure X-ray imaging to interpret coal permeability[J]. Fuel, 2018, 226: 573-582.
    [117] Wu H, Zhou Y F, Yao Y B, et al. Imaged based fractal characterization of micro-fracture structure in coal[J]. Fuel, 2019, 239: 53-62.
    [118] Zhang Y H, Lebedev M, Jing Y, et al. In-situ X-ray micro-computed tomography imaging of the microstructural changes in water-bearing medium rank coal by supercritical CO2 flooding[J]. International Journal of Coal Geology, 2019, 203: 28-35.
    [119] Silin D, Patzek T. Pore space morphology analysis using maximal inscribed spheres[J]. Physica A: Statistical Mechanics and its Applications, 2006, 371(2): 336-360.
    [120] Knackstedt M A, Arns C H, Saadatfar M, et al. Virtual materials design: Properties of cellular solids derived from 3D tomographic images[J]. Advanced Engineering Materials, 2005, 7(4): 238-243.
    [121] Yao J, Wang C C, Yang, Y F, et al. The construction of carbonate digital rock with hybrid superposition method[J]. Journal of Petroleum Science and Engineering, 2013, 110: 263-267.
    [122] Lindquist W B, Venkatarangan A, Dunsmuir J, et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B9): 21509-21527.
    [123] Øren P E, Bakke S. Reconstruction of Berea sandstone and pore-scale modelling of wettability effects[J]. Journal of Petroleum Science and Engineering, 2003, 39(3/4): 177-199.
    [124] Prodanović M, Lindquist W B, Seright R S. 3D image-based characterization of fluid displacement in a Berea core[J]. Advances in Water Resources, 2007, 30(2): 214-226.
    [125] Sok R M, Knackstedt M A, Sheppard A P, et al. Direct and stochastic generation of network models from tomographic images; effect of topology on residual saturations[J]. Transport in Porous Media, 2002, 46(2/3): 345-371.
    [126] Okabe H, Blunt M J. Pore space reconstruction using multiple-point statistics[J]. Journal of Petroleum Science and Engineering, 2005, 46(1/2): 121-137.
    [127] Arns C H, Bauget F, Limaye A, et al. Pore scale characterization of carbonates using X-ray microtomography[J]. SPE Journal, 2005, 10(4): 475-484.
    [128] Lee G C, Baek W P, Chang S H. Improved methodology for generation of axial flux shapes in digital core protection systems[J]. Annals of Nuclear Energy, 2002, 29(7): 805-819.
    [129] Lee G C, Chang S H. Radial basis function networks applied to DNBR calculation in digital core protection systems[J]. Annals of Nuclear Energy, 2003, 30(15): 1561-1572.
    [130] 毕建军,苏现波,韩德馨,等. 煤层割理与煤级的关系[J]. 煤炭学报,2001,26(4):346-349.

    Bi Jianjun, Su Xianbo, Han Dexin, et al. The relation between cleat frequency and coal rank[J]. Journal of China Coal Society, 2001, 26(4): 346-349.
    [131] Hakimi M H, Abdullah W H, Alias F L, et al. Organic petrographic characteristics of Tertiary (Oligocene–Miocene) coals from eastern Malaysia: Rank and evidence for petroleum generation[J]. International Journal of Coal Geology, 2013, 120: 71-81.
    [132] Mathews J P, Chaffee A L. The molecular representations of coal-A review[J]. Fuel, 2012, 96: 1-14.
    [133] Mathews J P, van Duin A C T, Chaffee A L. The utility of coal molecular models[J]. Fuel Processing Technology, 2011, 92(4): 718-728.
    [134] 杨忠亮. 低煤阶煤煤层气地质研究综述[J]. 河南科技,2019(20):81-83.

    Yang Zhongliang. Summary of geological study on low coal rank coal seam gas[J]. Henan Science and Technology, 2019(20): 81-83.
    [135] 陈振宏,贾承造,宋岩,等. 高煤阶与低煤阶煤层气藏物性差异及其成因[J]. 石油学报,2008,29(2):179-184.

    Chen Zhenhong, Jia Chengzao, Song Yan, et al. Differences and origin of physical properties of low-rank and high-rank coal-bed methanes[J]. Acta Petrolei Sinica, 2008, 29(2): 179-184.
    [136] 邹艳荣,杨起. 煤中的孔隙与裂隙[J]. 中国煤田地质,1998,10(4):39-40.

    Zou Yanrong, Yang Qi. Pore and fracture in coal[J]. Coal Geology of China, 1998, 10(4): 39-40.
    [137] 刘大锰,李振涛,蔡益栋. 煤储层孔-裂隙非均质性及其地质影响因素研究进展[J]. 煤炭科学技术,2015,43(2):10-15.

    Liu Dameng, Li Zhentao, Cai Yidong. Study progress on pore-crack heterogeneity and geological influence factors of coal reservoir[J]. Coal Science and Technology, 2015, 43(2): 10-15.
    [138] Karacan C Ö, Okandan E. Fracture/cleat analysis of coals from Zonguldak Basin (northwestern Turkey) relative to the potential of coalbed methane production[J]. International Journal of Coal Geology, 2000, 44(2): 109-125.
    [139] 张泓,王绳祖,郑玉柱,等. 古构造应力场与低渗煤储层的相对高渗区预测[J]. 煤炭学报,2004,29(6):708-711.

    Zhang Hong, Wang Shengzu, Zheng Yuzhu, et al. Palaeotectonic stress-fields and prediction of higher-permeability region for coalbed methane exploration in low-permeability coal reservoirs[J]. Journal of China Coal Society, 2004, 29(6): 708-711.
    [140] 姜波,琚宜文. 构造煤结构及其储层物性特征[J]. 天然气工业,2004,24(5):27-29.

    Jiang Bo, Ju Yiwen. Tectonic coal structure and its petrophysical features[J]. Natural Gas Industry, 2004, 24(5): 27-29.
    [141] Zeng L B, Qi J F, Li Y G. The relationship between fractures and tectonic stress field in the extra low-permeability sandstone reservoir at the south of western Sichuan Depression[J]. Journal of China University of Geosciences, 2007, 18(3): 223-231.
    [142] Wang S G, Elsworth D, Liu J S. Permeability evolution in fractured coal: The roles of fracture geometry and water-content[J]. International Journal of Coal Geology, 2011, 87(1): 13-25.
    [143] Su X B, Lin X Y, Liu S B, et al. Geology of coalbed methane reservoirs in the southeast Qinshui Basin of China[J]. International Journal of Coal Geology, 2005, 62(4): 197-210.
    [144] 苏现波,宁超,华四良. 煤层气储层中的流体压裂裂隙[J]. 天然气工业,2005,25(1):127-129.

    Su Xianbo, Ning Chao, Hua Siliang. Fluid pressure-dependent fractures in coal-bed gas reservoirs[J]. Natural Gas Industry, 2005, 25(1): 127-129.
    [145] 琚宜文,姜波,侯泉林,等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报,2005,79(2):269-285.

    Ju Yiwen, Jiang Bo, Hou Quanlin. Structural evolution of nano-scale pores of tectonic coals in southern North China and its mechanism[J]. Acta Geologica Sinica, 2005, 79(2): 269-285.
    [146] 李明. 构造煤结构演化及成因机制[D]. 徐州:中国矿业大学,2013.

    Li Ming. Structure evolution and deformation mechanism of tectonically deformed coal[D]. Xuzhou: China University of Mining and Technology, 2013.
    [147] 么玉鹏. 脆性变形系列构造煤物性特征及其结构定量表征[D]. 徐州:中国矿业大学,2017.

    Yao Yupeng. Physical properties of brittle deformation series tectonically deformed coal and quantitative characterization of its structure[D]. Xuzhou: China University of Mining and Technology, 2017.
    [148] 黄华州. 远距离被保护层卸压煤层气地面井开发地质理论及其应用研究:以淮南矿区为例[D]. 徐州:中国矿业大学,2010.

    Huang Huazhou. Study on geological theories of stress relief coalbed methane drainage from the distant protected seam by vertical surface wells and their application in Huainan coal mine area[D]. Xuzhou: China University of Mining and Technology, 2010.
    [149] 要惠芳,康志勤,李伟. 典型构造煤变形特征及储集层物性[J]. 石油勘探与开发,2014,41(4):414-420.

    Yao Huifang, Kang Zhiqin, Li Wei. Deformation and reservoir properties of tectonically deformed coals[J]. Petroleum Exploration and Development, 2014, 41(4): 414-420.
    [150] 侯锦秀,张玉贵,张进春. 构造煤原生结构煤微孔特征的多重统计对比及其差异成因机制[J]. 安全与环境学报,2018,18(1):139-146.

    Hou Jinxiu, Zhang Yugui, Zhang Jinchun. Multiple statistical comparison of the micropore structures between the tectonically deformed and undeformed coal particles and cause analysis of the difference[J]. Journal of Safety and Environment, 2018, 18(1): 139-146.
    [151] 侯锦秀,王宝俊,张玉贵,等. 不同煤级煤的微孔介孔演化特征及其成因[J]. 煤田地质与勘探,2017,45(5):75-81.

    Hou Jinxiu, Wang Baojun, Zhang Yugui, et al. Evolution characteristics of micropore and mesopore of different rank coal and cause of their formation[J]. Coal Geology & Exploration, 2017, 45(5): 75-81.
    [152] Li M, Jiang B, Lin S F, et al. Tectonically deformed coal types and pore structures in Puhe and Shanchahe coal mines in western Guizhou[J]. Mining Science and Technology, 2011, 21(3): 353-357.
    [153] Song Y, Jiang B, Mathews J P, et al. Structural transformations and hydrocarbon generation of low-rank coal (vitrinite) during slow heating pyrolysis[J]. Fuel Processing Technology, 2017, 167: 535-544.
    [154] 郭德勇,郭晓洁,李德全. 构造变形对烟煤级构造煤微孔—中孔的作用[J]. 煤炭学报,2019,44(10):3135-3144.

    Guo Deyong, Guo Xiaojie, Li Dequan. Effects of tectonic deformation on micropore mesopore of bituminous deformed coal[J]. Journal of China Coal Society, 2019, 44(10): 3135-3144.
    [155] 琚宜文,李小诗. 构造煤超微结构研究新进展[J]. 自然科学进展,2009,19(2):131-140.

    Ju Yiwen, Li Xiaoshi. New progress in the study on the microstructure of deformed coal[J]. Progress in Natural Science, 2009, 19(2): 131-140.
    [156] 屈争辉,姜波,汪吉林,等. 构造煤结构演化及其应力—应变环境[J]. 高校地质学报,2012,18(3):453-459.

    Qu Zhenghui, Jiang Bo, Wang Jilin, et al. Evolution of textures and stress-strain environments of tectonically-deformed coals[J]. Geological Journal of China Universities, 2012, 18(3): 453-459.
    [157] 陈玮胤,姜波,屈争辉,等. 碎裂煤显微裂隙分形结构及其孔渗特征[J]. 煤田地质与勘探,2012,40(2):31-34.

    Chen Weiyin, Jiang Bo, Qu Zhenghui, et al. Fractal structure of microfractures and characteristics of porosity and permeability in cataclastic coals[J]. Coal Geology & Exploration, 2012, 40(2): 31-34.
    [158] 华四良,苏现波. 煤中裂隙脉的形成机理[J]. 煤田地质与勘探,2004,32(3):9-11.

    Hua Siliang, Su Xianbo. The formation regimes of veins in fractures of coal[J]. Coal Geology & Exploration, 2004, 32(3): 9-11.
    [159] 段连秀,王生维,张明. 煤储层中裂隙充填物的特征及其研究意义[J]. 煤田地质与勘探,1999,27(3):33-35.

    Duan Lianxiu, Wang Shengwei, Zhang Ming. The characteristics of the fracture fillings in coal reservoirs and its study significance[J]. Coal Geology & Exploration, 1999, 27(3): 33-35.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)  / Tables(3)

Article Metrics

Article views(3091) PDF downloads(862) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-05-31
  • Published:  2021-02-06

Research Advances on Characteristics of Pores and Fractures in Coal Seams

doi: 10.14027/j.issn.1000-0550.2020.064
Funds:

National Natural Science Foundation of China 41972168

Foundation of Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization 2019A001

Abstract: The study of the characteristics and relationships of pores and fractures in coal seams is an important research in unconventional petroleum sedimentology, and is of great significance for understanding the micromechanisms of the existence, state, and mass transfer process of coal seam fluid, and for optimizing the exploitation of coalbed methane (CBM) where geologically appropriate. The pores and fractures in coal seams have complex genesis, with wide-ranging scale and strong heterogeneity. Their characteristics are the result of the combined actions of coalification, metamorphism types, tectonic evolution, coal components, and underground fluids. Coalification is the internal cause of pore and fracture characteristics, while tectonic stress is the major external cause. The combined actions of internal and external causes have formed the presently observed characteristics of pores and fractures in coal of different rank, in different coal-bearing basins, and in different tectonic locations. Moreover, the coal-forming materials, sedimentary environment, burial history and thermal history of coal-bearing basins each play important roles in determining the present pore and fracture characteristics. The study of pore and fracture characteristics is closely related to the efficient exploitation of CBM, which implies that considering pores and fractures in coal as an entire desorption–diffusion–seepage network in further research will be a sensible approach. The source and effectiveness of coal permeability is controlled by pore/fracture connected networks, nanoscale pore/fracture characteristics and their syntagmatic relations: interfacial properties of pores, fractures and coal seam fluids, together with multiscale pore/fracture characterization, all need to be further researched. The development and application of digital petrophysical characterization technology provides new methods and ideas for research into pore and fracture characteristics.

LIU ShiQi, WANG He, WANG Ran, GAO DeYi, Ashutosh Tripathy. Research Advances on Characteristics of Pores and Fractures in Coal Seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230. doi: 10.14027/j.issn.1000-0550.2020.064
Citation: LIU ShiQi, WANG He, WANG Ran, GAO DeYi, Ashutosh Tripathy. Research Advances on Characteristics of Pores and Fractures in Coal Seams[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230. doi: 10.14027/j.issn.1000-0550.2020.064
  • 2019年我国煤层气产量达88.8×108 m3[1],已建成沁水盆地南部、鄂尔多斯盆地东缘两个煤层气商业性开发基地。我国煤层气勘探开发首先在以沁水盆地为代表的高煤阶含煤盆地(R o, max≥2.0%,半无烟煤和无烟煤)实现突破[2],随后以鄂尔多斯盆地东缘为代表的中煤级煤层气(0.65%≤R o, max<2.0%,烟煤)勘探开发取得成效[3-4],近年,二连盆地、准噶尔盆地南缘等低阶煤(0.20%≤R o, max<0.65%,褐煤和亚烟煤)煤层气成为我国煤层气勘探开发新的增长点[5-6]。随着我国煤层气规模性资源化开发的深入,勘探开发实践与地质研究的结合将更为紧密。我国煤层构造条件复杂,渗透率总体偏低,普遍具有“低压”、“欠饱和”的特点[7],煤层气资源条件的特殊性导致开发机理等基础认识不足,高效开发技术尚未突破。

    煤层孔隙作为煤层气的主要储集场所和运移通道,裂隙作为煤层气产出的主要介质,二者的发育特征及连通性,直接关系到煤层气的吸附/解吸、扩散、渗流和产出[8-9]。深刻认识和理解煤层孔隙、裂隙发育特征及其连通关系,对深入认识煤层气储层、探究煤层流体流动机理和渗流规律、指导煤层气井增产措施实施和排采制度优化具有关键意义[10-12]。煤层孔隙、裂隙成因类型复杂、孔径分布范围广、非均质性强,难以直观、有效地获取其连通特征[13-15]。煤层纳米尺度(0.1~100 nm)孔隙、裂隙发育[13-16],更增加了研究难度。如何直观、有效的表征煤层多尺度孔隙、裂隙发育特征和连通关系,如何认识和理解煤层孔隙—裂隙网络结构,是目前煤层气地质学和煤层气开发工程亟待解决的科学问题。同时,煤层气是典型的非常规油气资源,煤层孔隙—裂隙空间表征、孔隙与裂隙发育特征及其影响因素是非常规油气沉积学的研究内容,而煤层沉积特征、沉积环境、成岩作用及其对孔隙—裂隙发育特征的控制作用,是非常规油气沉积学的重要组成部分,其研究可丰富和完善非常规油气地质学理论内涵,并为煤层气富集高渗区发育机制研究和煤层气开发甜点区与资源分布预测提供理论指导[17]。本文系统总结、梳理了前人对煤层孔隙、裂隙发育特征的研究成果,探讨了煤层孔隙、裂隙发育特征的影响因素,并分析了其研究趋势。

  • 煤层孔隙、裂隙表征方法可归为三类:1)(显微)观察法,包括肉眼观测法(井下煤壁观察、室内岩芯描述)[10,12]和以光学显微镜(Optical Microscope,OM)[18]、环境扫描电子显微镜(Environment Scanning Electron Microscope,ESEM)[19-20]、场发射电子显微镜(Field Emission Scanning Electron Microscope,FESEM)[21-22]、透射电子显微镜(Transmission Electron Microscope,TEM)[23-25]、原力显微镜(Atomic Force Microscope,AFM)[26-29]、聚焦离子束扫描电子显微镜(Focused Ion Beam-Scanning Electron Microscopy,FIB-SEM)[2, 30-33]、氦离子显微镜(HIM,即Helium Ion Microscope)[34-35]等为代表的显微观察法(图1)。2)射线探测法,即利用射线散射、波传播、正电子寿命谱等非破坏性方法探测煤孔径分布、孔隙度、渗透率等物性参数[38-41],包括核磁共振(Nuclear Magnetic Resonance,NMR)[42-44]、X射线计算机断层扫描(X-ray Computed Tomography,X-ray CT)[44-47]、小角度X射线散射(Small Angle X-ray Scattering,SAXS)与中子小角散射(Small Angle Neutron Scattering,SANS)[15,40,41,48-50],以及微电阻率扫描成像测井(Micro-resistivity Imaging Logging,MIL)[12]等(图1)。3)气体吸附、流体贯入法主要包括压汞法(Mercury Intrusion Porosimetry,MIP)和N2/CO2吸附实验[13-14]图1)。

    Figure 1.  Methods used to estimate pores and fractures in coal (modified from references [36⁃37])

    目前,煤中孔隙、裂隙的研究主要采用OM和SEM、MIP、N2/CO2吸附实验等传统方法。SEM是最常用的孔隙、裂隙和矿物表面形貌观测方法,一般观测尺度大于10 nm[29,51];MIP、N2/CO2吸附实验常用于煤孔隙结构的半定量表征[52-53],如孔径分布、比表面积、孔容、孔隙度等物性参数[41,54]。传统方法以定性和半定量表征、空间二维观测为主,难以有效解决纳米尺度孔隙与裂隙发育特征、孔隙—裂隙连通关系等问题,且制样和实验中往往破坏样品,无法重复实验。近年,NMR、X-ray CT、FIB-SEM和HIM等新技术和新方法被应用到煤的孔隙与裂隙研究中,使得煤中孔(或介孔,2~50 nm)和微孔(<2 nm)尺度孔隙与裂隙定量描述和孔隙—裂隙结构三维数字岩石物理表征成为可能[44-45,55-56]。FIB-SEM和HIM在孔径或裂口宽度<10 nm的孔隙、裂隙观测方面具有优势,最高分辨率可达0.5 nm,基于3D(Three Dimensions)自动切片—成像技术可实现三维超高分辨率成像,在纳米尺度孔隙和裂隙表征方面具有较高的应用潜力[30-31,57]。目前,FIB-SEM和HIM在煤孔隙、裂隙观测方面的应用少见报道,马勇、王朋飞等学者[32-35]应用FIB-SEM和HIM研究了页岩的纳米孔隙发育特征,初步建立了页岩的纳米级孔隙结构。NMR和X-ray CT扫描技术不仅可开展无损扫描成像,还可用于煤层气赋存和运移规律研究[58-61]。其中,X-ray CT扫描可分为微米焦点X-ray CT扫描(Micro-CT)和纳米焦点X-ray CT扫描(Nano-CT)。Micro-CT空间分辨率可达500 nm,在微米—毫米尺度孔隙和裂隙无损扫描成像方面已被广泛应用;而Nano-CT空间分辨率可达20 nm,在纳米—微米尺度孔隙和裂隙无损扫描成像方面具有一定潜力,但目前应用相对较少。部分学者探索性地利用TEM和AFM研究煤的纳米尺度结构,并尝试对纳米孔隙结构参数进行三维定量测量[23-29]。但是TEM侧重于煤大分子结构观测,难以直接观测孔隙结构;而AFM更侧重于表面形貌测量,对内部三维结构鞭长莫及。

  • 煤层孔隙尺度分布广,孔径从埃米级(10-10 m)至毫米级(10-3 m)皆有分布[62],为方便孔隙表征和描述,学者提出了诸多煤的孔径结构划分方案(表1)。国内较常用的划分方案是B.B.Ходот[63]和国际纯粹与应用化学联合会(International Union of Pure and Applied Chemistry, IUPAC)[64]提出的孔径分类系统。B.B. Ходот提出的十进制孔径分类系统分类简单、易于使用,被广泛应用于国内煤炭工业界;IUPAC的划分方案主要应用于理论研究。学者对孔径结构的划分主要依据孔隙对煤层气的固气、吸附作用[64-66],孔径对气体分子的作用[63],孔隙形态与孔径结构特征[67-69],以及测试范围[70-71]表1)。

    学者(年份) 孔隙分类 孔径/nm 孔隙特征 划分依据
    B.B. Ходот(1961)[63] 微孔 <10 吸附 孔径与气体分子的作用
    过渡孔 10~100 毛细管凝结、物理吸附及扩散
    中孔 100~1 000 层流和紊流
    大孔 >1 000
    Dubinin(1966)[65] 微孔 <2 气体赋存状态
    过渡孔 2~20
    大孔 >20
    IUPAC(1966)[64] 微孔 <2 气体赋存状态
    中孔(介孔) 2~50
    大孔 >50
    H. Gan et al.(1972)[70] 微孔 0.4~1.2 孔容和测试方法
    过渡孔 1.2~30
    粗孔 30~2 960
    抚顺煤研所(1985)[71] 微孔 <8 测试范围
    过渡孔 8~100
    大孔 >100
    吴俊等(1991)[72] 微孔 <5 气体容积型扩散孔隙 孔径与气体分子的作用
    过渡孔 5~50
    中孔 50~500 气体分子型扩散孔隙
    大孔 500~7 500
    杨思敬等(1991)[67] 微孔 <10 煤分子结构单元构成的孔 孔隙赋存特征
    过渡孔 10~50 中孔向微孔的过渡
    中孔 50~750 煤岩显微组分构成的内孔及外孔
    大孔 >750 样品残留的微裂隙、微节理等外孔
    秦勇等(1995)[68] 微孔 <15 孔径结构自然分布特征
    过渡孔 15~50
    中孔 50~400
    大孔 >400
    傅雪海等(2005)[69] 扩散孔 微孔 <8 表面扩散 分形特征
    过渡孔 8~20 混合扩散
    小孔 20~65 Kundsen扩散
    渗流孔 中孔 65~325 稳定层流
    过渡孔 325~1 000 剧烈层流
    大孔 >1 000 紊流
    桑树勋等(2005)[66] 微孔 <2 nm 以墨水瓶状为主:气体吸收 固气作用机理
    小孔 2~10 nm 以墨水瓶状为主:气体吸附
    中孔 10~100 nm 以平板状为主:凝聚吸附
    大孔 100~1 000 nm 以板状为主:气体渗流
    超大孔 1 000~10 000 nm 以管状和板状为主:非稳定

    Table 1.  Pore structure classification systems of coal

    裂隙的规模类型划分相对简单。煤中裂隙被划分为直接利用肉眼或普通放大镜可观察到的宏观裂隙,和肉眼难以辨认、必须借助光学显微镜或扫描电镜才能观察的微观裂隙[73]。根据发育尺度的不同,宏观裂隙可进一步划分为大型裂隙、中型裂隙和小型裂隙(表2)。学者对宏观裂隙的划分方案略有差异,傅雪海等[62]划分为大型裂隙、中型裂隙、小型裂隙和微裂隙,钟玲文等[74]划分为巨型裂隙、大型裂隙、中型裂隙、小型裂隙和微裂隙。微观裂隙可进一步划分为显微裂隙和超显微裂隙[10,12,75]表2)。显微裂隙可以在光学显微镜下观测,高度大于10 μm,裂口宽度大于0.1 μm;超显微裂隙是仅能在扫描电子显微镜下观察,高度小于10 μm,裂口宽度小于0.1 μm[10, 12]

    规模类型 长度 高度 裂口宽度 特征
    宏观裂隙 大型 几十厘米至数米 >10 cm 微米—毫米级 可切穿一个以上煤岩类型分层或切穿整个煤层
    中型 几厘米至1 m 1~10 cm 微米级 限于一个煤岩类型分层内
    小型 几毫米至1 m <1 cm 微米级 仅发育在单一煤岩分层条带中
    微观裂隙 显微裂隙 >10 μm >0.1 μm 可以在光学显微镜下观测
    超显微裂隙 <10 μm <0.1 μm 仅能在扫描电子显微镜下观察

    Table 2.  Fracture size classification systems of coal (modified from references [73⁃75])

  • 现有研究认为,煤中主要发育4种类型的孔隙:原生孔,主要包括植物组织孔、粒间孔;外生孔,包括角砾孔、碎粒孔和摩擦孔;变质孔,常见气孔、差异收缩孔和大分子结构孔;还有矿物质孔,主要指溶蚀孔、晶间孔和铸模孔[2,10,76]表3)。

    成因类型 成因简述
    原生孔 植物组织孔 成煤植物本身所具有的细胞结构孔
    粒间孔 镜屑体、惰屑体和壳屑体等碎屑状显微体之间的孔
    外生孔 角砾孔 煤受构造应力破坏而形成的角砾之间的孔
    碎粒孔 煤受构造应力破坏而形成的碎粒之间的孔
    摩擦孔 压应力作用下面与面之间摩擦而形成的孔
    变质孔 气孔 煤变质过程中由生气和聚气作用而形成的孔
    差异收缩孔 煤变质过程中有机质收缩并与原生矿物分离所形成的孔
    大分子结构孔 凝胶化物质在变质作用下缩聚而形成的链之间的孔
    矿物质孔 溶蚀孔 可溶性矿物质在长期气、水作用下受溶蚀而形成的孔
    晶间孔 矿物晶粒之间的孔
    铸模孔 煤中矿物质在有机质中因硬度差异而铸成的印坑

    Table 3.  Genetic types of pores and their characteristics (modified from references [76])

  • OM和SEM下,原生孔以植物组织孔(胞腔孔)和粒间孔为主。植物组织孔是成煤植物本身所具有的细胞结构孔[2,10,76],均为大孔,孔径一般大于10 μm。中、低阶煤中植物组织孔较发育[77-79],其发育的载体以结构镜质体为主,丝质体、菌类体次之,以圆形、椭圆形为主,排列规则(图2a);高阶煤中发育不均匀[2, 10],可见于结构镜质体和丝质体,偶见于菌类体,呈现不规则形态。粒间孔是煤中镜屑体、惰屑体、壳屑体等各种碎屑状显微体的碎屑颗粒之间的孔隙[2,10,76],主要发育于团块镜质体间(图2b)以及基质镜质体,孔径一般大于1 μm,形态不规则。与高阶煤相比,中、低阶煤粒间孔整体孔径较大,数量较多[81-82]

    Figure 2.  Typical pores in coal

  • “外生孔”被认为是煤固结成岩后受各种外界因素(构造破坏、摩擦和滑动)作用而形成的孔隙[2,10,76]。“外生孔”与煤体结构破坏密切相关,以大孔为主,形状不规则[76]。OM下,可看到煤表面存在大量与擦痕伴生的摩擦孔(图2c)或遭受较严重构造破坏而形成的疑似角砾孔和碎粒孔。笔者认为,OM观察到的“外生孔”不排除是制样过程中观测面上受机械破坏所形成的“坑洼”。

  • 变质孔是煤在变质过程中发生各种物理化学反应而形成的孔隙[76,81]。煤中主要含三种变质孔:气孔、差异收缩孔隙和大分子结构孔。气孔又称热成因孔[2,10,76],是煤化作用过程中生气和聚气作用而形成的孔隙[76,81],主要发育于煤有机质中,孔径大致分布在0.1 μm以上,属大孔。中、低阶煤中以同期生成的气孔为主[76,81],形状规则,低阶煤中含量相对较少,中阶煤含量达到最大,但孔径变小[82-84]。高阶煤中常见两类气孔,一类是残余气孔,是先期形成的气孔受后期高静岩压力作用而变形[10,76],常呈短线状;另一类是后期形成的气孔,即次生气孔[2],这类气孔大多以群聚的形式出现,形态以圆形、椭圆形为主,部分受上覆静岩压力的作用变形甚至闭合[2]图2d)。差异收缩孔是煤化作用过程中有机质收缩从而与原生矿物分离所形成的孔隙[2],是新发现的煤中孔隙类型,笔者称之为差异收缩孔或差异变形孔。差异收缩孔多发育于高阶煤原生矿物边缘与有机质交接处[2],不具有固定的形态,属于中孔和大孔(图2e)。差异收缩孔以群聚的形式出现,多相互贯通,是高阶煤中重要的纳米连通性孔隙[2]。大分子结构孔又称为大分子定向晶间孔或链间孔,是凝胶化物质在变质作用下缩聚而形成的链与链之间的孔隙[2,10,76]。大分子结构孔发育于煤有机质中,孔径以小于10 nm为主,属于中孔和微孔,无固定形态(图2f)。随煤阶的升高,煤中大分子结构孔孔径整体减小,含量先降低,至高阶煤又进一步升高。

  • 矿物质孔以大孔为主,孔径0.05~10 μm均有分布[2, 10],主要发育有溶蚀孔、晶间孔和铸模孔[76]。溶蚀孔是煤中可溶性矿物质在长期气、水作用下受溶蚀而形成的孔隙[2,10,76],孔径较小,形态不规则,多以孔群的形式出现,主要发育于方解石等碳酸盐矿物(图2g),部分黏土矿物、黄铁矿中也有发育[85-87]。晶间孔为矿物晶粒之间的孔隙[2,10,76],孔径多在1 μm左右甚至更大,相互之间有较强的连通性,主要发育于高岭石(图2h)、伊利石、绿泥石、白云石和方解石中[85-87]。铸模孔是煤中原生矿物在有机质中因硬度差异而铸成的“印坑”[85-87]

  • 裂隙的研究始于宏观尺度,学者因观察尺度和研究目的不同,提出多种宏观裂隙分类方案。例如,基于发育规模将宏观裂隙按等级划分为一级、二级、三级,或划分为主裂隙和次裂隙[88];利用“割理”描述煤中裂隙,划分为巨割理、大割理、中割理、小割理、微割理等[89];按成因类型划分为割理(内生)、外生裂隙和继承性裂隙[90],或者划分为内生裂隙、层面裂隙、继承性裂隙和构造裂隙等[91]。本文根据成因类型不同,将宏观裂隙划分为外生和内生(割理)两大类。

    外生宏观裂隙是煤层形成后受构造运动影响而形成的裂隙[10, 12],一般属于构造裂隙[91],其形态表现出剪切或拉张应力作用的结果[12]。外生宏观裂隙以中型和大型裂隙为主,与煤层层理呈一定倾角,不受限于宏观煤岩类型,沿层理面的延伸长度变化较大,介于几十厘米至数百米,裂口宽度介于几百微米至几毫米之间,发育密度相对较小[10, 12, 90, 92-93]图3a)。受多期构造演化的影响,往往发育多组外生宏观裂隙[12, 94-96],现今地应力一定程度上控制了外生宏观裂隙的开启程度,最大主应力作用方向开启程度一般低于最小主应力作用方向[97-98]。内生宏观裂隙(割理)指煤化作用过程中,煤中凝胶化组分由于多种压实作用、脱水、脱挥发分的收缩作用(不排除古构造应力场的影响)等综合因素作用下形成的裂隙[12, 99]。割理多与煤层层理垂直或近于垂直,埋深较浅的煤层可能发育顺层裂隙[100-102]。割理一般成组出现,连续分布的割理为面割理,中断于面割理或与面割理穿插的不持续割理称为端割理,端割理发育长度受控于面割理,面割理与端割理常近于直角相交[103-104]图3b)。受多期构造演化的影响,可发育多组面割理和端割理[12]

    Figure 3.  Typical fractures in coal

  • 在借鉴和参考宏观裂隙分类的基础上,结合显微裂隙的发育特点和成因类型,可将显微裂隙分为内生显微裂隙和外生显微裂隙[75,86,91]。内生显微裂隙包括失水裂隙和静压裂隙,外生显微裂隙包括张性裂隙、压性裂隙、剪性裂隙、松弛裂隙等[75]。煤层显微裂隙广泛发育,一定程度上改善了煤层渗透性和连通性[102]。内生显微裂隙主要是由收缩应力和上覆岩层静压力作用形成[10, 75],一般较发育,并与割理局部连通,增加了煤层连通性[102]。失水裂隙又称为收缩裂隙,是煤化作用过程中因脱水、脱挥发分收缩形成的裂隙[10, 75],主要发育于镜质组,受显微组分的制约。失水裂隙主要呈S状或月牙状,长度介于几十微米至几毫米,裂口宽度以小于100 μm为主,属于大孔[8, 18]图3c)。静压裂隙主要发育于均质镜质体和半丝质体,受上覆岩层静压作用表现出短小、弯曲、密集、无定向性或近平行状排列等特点,发育受组分制约[8, 10, 75]图3d)。静压裂隙长度一般介于几百微米至几毫米,裂口宽度介于几微米至几十微米,属于大孔[8, 75]。一般认为中、高阶煤静压裂隙的发育密度高于低阶煤[73]。外生显微裂隙又称构造显微裂隙,是后期定向构造应力作用于相对致密组分(均质镜质体和半丝质体)而形成的[10, 75]。张性裂隙、剪性裂隙是较常见的外生显微裂隙,均主要发育于镜质组,不受显微组分的制约,长度介于几百微米至1~2 cm,裂口宽度介于几微米至几十微米,属于大孔[8, 10, 75]。张性裂隙是受拉张作用所形成的裂隙,单一组分中一般平直发育,穿越组分时易转向、错位、弯折[8,10,75]图3e)。剪性裂隙是受剪切作用所形成的裂隙,主要呈阶梯状(锯齿状),且相互共轭,共轭裂隙在交叉处有明显剪切破裂面[8, 10]图3f)。压性裂隙通常较长和直,裂隙两侧位移量大,成组排列[75]图3g);松弛裂隙是煤中构造面上应力释放而产生的裂隙,裂面不平,呈锯齿状,磨擦面上常见,与擦痕伴生[105]

    超显微裂隙是一种缩聚裂隙,是在一定静岩压力下随煤演化程度提高,缩合环显著增大,侧链和官能团减少,煤分子发生拼叠作用并产生定向排列而形成的[8, 10, 75]图3h)。中、低阶煤结构单元的芳构化程度较低,大分子堆积较疏松[106],超显微裂隙不发育,主要见于塑流性强的组分[75];随煤阶的升高,超显微裂隙发育程度提高[8, 75]

  • 孔隙之间、裂隙之间、孔隙与裂隙之间,均有一定的连通性,它们之间的连通性为煤层流体流动提供了连续性通道,是CH4产出的保证。因此,对于煤层气开发,更具意义的是孔隙与裂隙之间的组合关系,以及建立在组合关系上的连通性。研究普遍认为,煤层可抽象为由基质孔隙和裂隙组成的双孔介质[65, 107-108],“双孔”指基质孔隙系统和由网状微裂缝、割理和断层组成的裂隙系统,二者相互连通,组成了煤层连通孔隙—裂隙系统[109]图4a)。之后,学者对双孔介质理论进行了发展和补充,认为孔隙、裂隙之间存在一种过渡类型的孔隙或裂隙[110-111],并提出“三元”孔隙—裂隙介质系统(图4b),即煤层是由宏观裂隙、显微裂隙和孔隙组成的三元孔隙—裂隙介质,孔隙是煤层气的主要储集场所,宏观裂隙是煤层气运移的通道,而显微裂隙则是沟通孔隙与裂隙的桥梁[62, 111]。双孔介质系统和三元孔隙—裂隙介质系统是表征煤层结构最具代表性的抽象模型,对认识煤层孔隙—裂隙连通性具有重要意义,其他学者提出的孔隙—裂隙连通关系模式基本属于二者的延伸,例如Sang et al.[73]基于三元孔隙—裂隙介质系统对不同煤阶煤层孔隙—裂隙连通性进行了探讨(图5),认为低阶煤以大孔和外生宏观裂隙连通为主,以连通孔隙对渗透率的贡献率相对较高为特点;中阶煤各孔径段孔隙配比较好,孔隙与裂隙连通性好,并以内生裂隙对渗透率的贡献率相对较高为特点;高阶煤割理和连通孔隙不发育,外生裂隙对渗透率的贡献率较高,显微和超显微裂隙对连通性的作用显著。

    Figure 4.  Schematic diagram of abstract model of coal (modified from references [62,107,109])

    Figure 5.  Schematic diagram of the contribution of pores and fractures to coal seam permeability (modified from reference [73])

    随着研究的深入,越来越多的学者[2, 46, 112]将煤层孔隙—裂隙作为具有整体性的解吸—扩散—渗流网络加以认识,数字岩石物理表征技术的发展和应用也为孔隙—裂隙连通关系的研究提供了新方法和新思路。一些学者[42-44,113]基于核磁共振技术对煤中孔隙、裂隙发育特征开展了研究,基于饱和水T 2谱和残余水T 2的差异探讨了孔隙—裂隙连通性,但尚未充分挖掘核磁共振技术的优势,核磁共振成像技术的应用相对较少;更多学者[55,114-118]基于X-ray CT扫描成像技术探讨了煤中孔隙、裂隙发育程度、空间分布特征以及超临界CO2对煤层的增透效果等,初步确立了煤的数字岩心构建方法,并实现了构造煤、煤岩细损伤的三维数字化描述,结果显示裂隙发育程度和连通性是煤层渗透率的决定性因素。姚艳斌等[44]将NMR和X-ray CT扫描结合,对煤层孔隙、裂隙进行了定量表征,获得了孔隙、裂隙的空间分布特征和空间配置,但未对孔隙—裂隙连通关系进行进一步探讨;Liu et al.[45]等分析了高阶煤连通方式和连通性差异,认为高阶煤连通性主要归结于吼道发育程度和孔隙、裂隙方向性,并提出孔隙连通和微裂隙连通两种连通方式。上述煤孔隙—裂隙连通性的研究主要集中在微米尺度孔隙、显微裂隙和宏观裂隙,对纳米尺度的孔隙、裂隙较少涉及。Liu et al.[2, 46]采用FIB-SEM三维切割扫描成像初步构建了高阶煤的纳米尺度孔隙—裂隙结构(图6),并论证了方法的可行性,通过对比考虑裂隙和不考虑裂隙的高阶煤孔隙—裂隙网络模型,认为线状差异收缩孔和超显微裂隙是主要的纳米连通孔裂隙。总体而言,数字岩石物理表征技术在煤孔隙—裂隙结构和连通性方面的应用尚处于起步阶段[3031],数字岩心物理表征方法尚未形成。目前,学者多采用Avizo、PerGeos、Amira等商业软件实现煤、页岩等的数字岩石物理表征和孔隙—裂隙网络模型构建,所使用的数字岩心数值重构方法包括球充填法[119]、高斯模拟法[120-121]、模拟退火法[122]、过程模拟法[123-125]、多点统计法[126]和马尔可夫随机重建法[127]等。上述方法能够很好地表征孔隙形态与三维空间连通关系,但裂隙面状信息的表征失真较严重。因此,上述方法不适用于具有“三元孔隙—裂隙”结构的煤层。为解决裂隙空间表征的难题,Lee et al.[128-129]提出了基于空间骨架提取方法的LKC(Lee-Kashyap-Chu)算法,Liu et al.[46]通过该算法提取了孔隙与裂隙的空间居中轴线,实现了裂隙空间表征,成功建立了高阶煤孔隙—裂隙网络模型。

    Figure 6.  Three⁃dimensional digital model of a core of high⁃rank coal collected from Bofang mine, Qinshui Basin (modified from reference[46])

  • 研究认为,随煤化程度的增加,煤层孔隙与裂隙发育特征呈现规律性变化,总体表现为微孔含量增大,中孔含量变化较小,大孔含量减少[106,130-131]。煤化作用早期阶段(R o, max<0.65%),煤分子排列不规则,结构松散,低阶煤以大孔和中孔为主,孔径较大,孔隙发育程度较高,孔隙度一般高于10%[62,106,132-134]。由于煤化程度较低,孔隙以原生孔隙和同期生成的气孔为主[76,81]。随R o, max增加,低阶煤孔隙度呈先降低后增高的趋势,并当R o, max在0.5%左右时孔隙度最低[134]。烟煤阶段(R o, max=0.65~2.0%),随煤化程度的提高,在机械压实和脱水作用下,孔隙体积迅速减少,尤其是大孔明显减小[73,82]。至低挥发分烟煤阶段(R o, max=1.3~1.7%),腐植凝胶基本完成了脱水作用,孔隙体积降至最低点[62,106]。受凝胶化作用影响,中阶煤原生孔隙含量大幅降低;随煤化作用的加深,气孔含量达到最大、微孔含量上升;受机械压实作用影响,气孔孔径变小[73,76,81]。高阶煤阶段(R o, max>2.0%),煤化程度进一步提高,煤分子的化学结构在以温度为主的因素控制下芳香化程度显著增高,且出现定向排列,形成了一系列微孔和中孔,同时压实和机械破坏导致大孔持续减少[10,106],造成高阶煤以微孔为主,大孔含量极低,孔隙类型以次生气孔和大分子结构孔为主,原生孔不发育[14,76,78,81-84]

    煤化作用对裂隙的影响主要体现在内生裂隙(割理和显微内生裂隙),这与内生裂隙的成因有关。学者提出了割理的内生成因假说、外生成因假说,以及二者组合成的双重成因假说[101]。目前普遍认可的是双重成因假说,即割理是成岩作用、侧向古构造应力、干缩作用和煤化作用等综合作用的结果,煤化作用是其形成的内因,凝胶性质转变导致割理发育具有阶段性特点[104]。显微内生裂隙与割理成因相似,其发育具有相似的阶段性特点。总体而言,内生裂隙密度在中阶煤中最大,向低阶煤或高阶煤均减小[8]。煤化作用早期阶段难以形成内生裂隙,因此,低阶煤内生裂隙基本不发育,内生显微裂隙以失水裂隙为主[73,75,91,103-104]。从褐煤到低挥发分烟煤,内生裂隙密度不断增加,R o, max在1.5~1.58%左右时,随脱水、脱挥发分基本完成,内生裂隙密度达到最大值,并出现内生裂隙密度降低的拐点[73,75,91]。该阶段机械压实作用、脱水作用和变质作用共同影响,造成中阶煤失水裂隙、静压裂隙和缩聚裂隙均发育[73,75,91]。之后,机械压实作用显著,内生裂隙密度随煤阶的增加而下降,但高阶煤内生裂隙密度明显高于低阶煤,内生显微裂隙则多见缩聚裂隙,静压裂隙密度大、规模小[73,75,91,135]。至R o, max>2.5%时,凝胶化作用基本完成,压实作用对煤中裂隙的影响微弱,构造作用成为裂隙密度变化的主要因素[73,75,91]

  • 煤的变质作用主要有深成变质作用、区域变质作用(岩浆热变质作用)和侵入接触变质作用[85]。深成变质作用和区域变质作用对孔隙、裂隙发育特征的影响在高阶煤中体现的更充分。深成变质作用下,煤的变质程度随埋深的增加而增加,并伴有上覆静岩压力的增大,故形成的高阶煤微孔、中孔发育,大孔不发育,先期形成的气孔、裂隙大量闭合[73,85]。与深成变质作用相比,区域变质作用形成同等变质程度的煤所需要的埋深相对较浅,故形成的高阶煤大孔有一定程度发育[73,85]。邹艳荣等[136]的研究结果表明叠加岩浆热变质有利于内生裂隙进一步发展,故区域变质作用形成的高阶煤较深成变质作用形成的同煤级煤的内生裂隙发育;Liu et al.[2]则认为,差异收缩孔即为沁水盆地南部深成变质作用背景之上的燕山期区域热变质作用形成的。总之,形成于区域变质作用下的高阶煤孔隙—裂隙发育特征优于深成变质作用下的同等变质程度的煤[73]。侵入接触变质影响范围相对较小,但浆岩侵入地段次生气孔发育,受岩浆侵入动力作用影响,气孔可被裂隙连通,提高了煤层渗透性[137]

  • 研究普遍认为裂隙是内力、外力共同作用的结果,构造演化和构造应力对其发育起关键作用[99,119,138-141],表现为构造演化强烈的地区,如张性小断层附近,外生裂隙一般发育程度较高;古构造应力控制了成煤演化过程割理、裂隙的产状与组合关系等发育样式;早期构造作用形成的裂隙,在后期构造作用下可进一步发展(即继承性裂隙)、改造甚至破坏等[84-86,90,93,104,142-144]。内生裂隙形成同样受古构造应力的影响,应力较小的方向更有利于煤体开启,故煤化作用过程中,内生裂隙一般沿古构造应力的最小主应力方向开启[99,103]。总之,外生裂隙与内生裂隙产状均是古构造应力场的反映,表现出极为一致的发育期次与紧密相关的产状特征,而成因的不同和古构造应力场的变化使二者具有独特的组合关系。即不同时期的古构造应力场主应力方向相近时,外生裂隙与内生裂隙表现为一定的继承关系,造成不同期次形成的裂隙具有一致的产状特征;而不同时期的古构造应力场主应力方向发生明显转变时,后期形成的裂隙与前期形成的裂隙相互斜交或近于正交[8,12]

    构造演化和构造应力作用往往伴随煤体结构的变化,孔隙孔容、比表面积、孔径结构也随之发生变化[137,145-147]。原生结构煤具有完整的煤岩结构,构造应力主要使原生结构煤孔隙变形、闭合或局部破坏[148]。相对于原生结构煤,学者普遍认为,构造煤孔隙孔容呈增加的趋势,且糜棱煤>碎粒煤>碎裂煤,同时大孔对构造应力作用更敏感,造成大孔含量减小[77,149]。而构造煤微孔、中孔的发育特征,学者则具有不同意见。杨昊睿[77]、要惠芳等[149]认为相对于原生结构煤,构造煤微孔、中孔含量增加;侯锦秀等[150-151]则认为微孔主要受控于煤大分子结构演变,构造煤与原生结构煤没有显著差异;Li et al.[152]基于多重分形理论得出构造变形导致煤中孔径分布变窄。这一分歧与学者研究的构造煤应力变形阶段不同有关。构造煤孔隙结构的变化与应力变形阶段密切相关,特别是微孔和中孔的变化具有显著的应力变形特征[153]。Song et al.[153]发现剪切和韧性变形阶段,构造煤的孔容分布较脆性变形更为聚集;要惠芳等[149]认为构造煤脆性变形时主要形成角砾孔等,韧性变形时煤发生强烈的构造变形,使大孔受挤压破坏;郭德勇等[154]则认为,弱变形阶段(碎裂煤、碎粒煤),构造变形导致烷基侧链和官能团降解、脱落,并以吸附态存在于中孔或与中孔孔壁的碳原子骨架复合,造成中孔被分割转化为微孔,而强变形会在局部造成煤体破碎、粉化和揉流,使大孔受挤压破坏形成中孔,以微孔为主的次生结构缺陷在应力作用下相互连通也会形成中孔[154-155];屈争辉等[156]认为强变形阶段(糜棱煤),强烈的构造应力促使煤大分子结构发生缩聚作用,形成大量微孔;李明[146]认为构造挤压、剪切应力导致煤芳核位错及芳香层滑移,产生大量次生结构缺陷,如角砾孔等,同时在应力作用下还可产生大量以微孔为主的气孔。总之,构造应力不仅通过机械破坏造成大孔含量减小,也可通过改变煤大分子结构,造成构造煤微孔、中孔含量的变化。与孔隙类似,原生结构煤裂隙保存较好;碎裂煤受弱变形作用影响,显微张裂隙稀疏发育,宏观裂隙周围伴生数量不等的微小裂隙;碎粒煤中显微变形明显增强,显微裂隙密集发育且杂乱粗短、延伸不稳定;糜棱煤大量剪切裂隙杂乱弥散,表现出强烈的韧性流变特性,相互交错闭合[157]

  • 受成煤物质和古构造环境的影响,煤岩组成存在差异,对孔隙、裂隙发育也具有显著影响[85]。不同煤层或者同一煤层的不同分层裂隙密度相差较大,内生裂隙尤为显著,内生裂隙密度镜煤>亮煤>暗煤,这是中阶煤和高阶煤内生裂隙发育程度高于低阶煤的重要原因[103]。外生裂隙受煤岩组分的影响相对较小,但不同煤岩组分力学性质的差异会改变外生裂隙形态和延伸方向[75]。煤岩组分对孔隙、裂隙发育的影响可归结于煤岩显微组分含量,而煤中显微煤岩组分含量受成煤物质和沉积背景的影响较大,泥炭快速埋藏的,煤中镜质组占优势,而沉降缓慢的,煤中丝质组含量较高[85]。研究认为显微煤岩组分决定了煤的孔径分布特征和孔隙发育类型[85-86,91,103,135]。镜质组是原生孔、变质孔和显微内生裂隙的主要载体,其次是丝质体,主要发育植物组织孔,而壳质组中孔隙不发育[2,10,76],造成孔容通常随结构镜质体含量的增高而增大,随惰质组和矿物质含量的增高而减小[86,91]。显微煤岩组分之间孔隙、裂隙差异与煤化作用过程中的排水和排烃有关。煤化作用过程中,镜质组排水较多,其发育的孔隙中流体压力较高,易产生裂隙,而惰质组和壳质组排水较少,不易产生裂隙,因此镜煤条带中裂隙发育密集,而暗煤中裂隙较少[85,91,103,144];一般认为生烃能力越强越有利于变质孔的发育,煤中镜质组含量最高,加之其热塑性较强、脆性较大,生气量较多,造成镜质组中变质孔发育[19,85,135]。煤中矿物对孔隙、裂隙发育的影响表现为矿物质孔的发育和次生矿物对孔隙和裂隙的充填作用[137,158-159]。矿物中发育大量矿物质孔,主要是碳酸盐矿物中发育的溶蚀孔、黏土矿物和碳酸盐矿物中发育的晶间孔[2,10,76];差异收缩孔的发育也与矿物密切相关,体现了矿物与有机质之间的热塑性和力学性质差异,并决定了差异收缩孔的形态[2]。而大量矿物充填于孔隙或裂隙,甚至形成裂隙脉,影响孔隙和裂隙渗透性。孔隙、裂隙中所充填的矿物以方解石等碳酸盐矿物为主,另外还包括黄铁矿、黏土矿物等[97,158-159]

  • 对煤层孔隙、裂隙发育具有影响的流体主要包括煤化作用过程中产生的有机流体、岩浆热液、以及携带无机沉积物的地下水[85,144]。煤化作用过程中,生排烃、脱水现象产生的有机流体可改变煤层内流体压力,当流体压力上升并克服最小主应力和煤体抗张强度时,导致孔隙、裂隙的扩展,甚至派生出次级裂隙[85,91,144]。霍永忠等[91]认为,煤化作用过程中,生排烃、脱水所引起的煤层内流体压力变化促进了继承性裂隙的产生,是影响煤中裂隙密度的重要因素,继承性裂隙面密度的高峰,均伴随煤化作用的生成高峰。例如,R o,max从0.5%上升至2.0%~2.3%,继承性裂隙的面密度降低,R o, max>2.0%后,随煤阶的增高继承性裂隙的面密度增加。岩浆热液通过岩浆侵入热变质作用促进岩浆侵入煤层中产生大量次生气孔以及内生裂隙[103,106,137],而地下水除通过改变流体压力导致孔隙、裂隙扩展外,对煤中矿物的溶蚀、冲刷作用可形成溶蚀孔[85,144]。地下流体对煤中孔隙、裂隙同样具有负面影响。煤化作用过程中可产生少量的渗出沥青体、凝胶化组分,充填于植物组织孔或内生裂隙,降低其连通性[85,91,144],对于无烟煤,凝胶化组分的充填和胶合作用往往造成大量内生裂隙闭合[12,91]。岩浆侵入热变质作用形成的次生沥青质体,充填于内生裂隙缝中,且伴随岩浆挥发物和次生挥发物的侵入,常在接近岩体的煤层底板或煤层裂隙中形成热液方解石脉[158-159]。而含有机、无机组分的地下水对煤中孔隙、裂隙的影响最为严重和广泛,有机、无机组分亦可充填于孔隙、裂隙,降低其连通性,特别是大量矿物质在裂隙内沉淀,形成充填,甚至裂隙脉[85,104]

  • 随着我国煤层气勘探开发的不断深入,煤层孔隙、裂隙发育特征的研究与煤层气开发紧密关联,其目的是指导煤层气高效开发,形成针对性的煤层气地质适配性工艺技术。结合煤层气高效开发的理论需求,笔者认为煤层孔隙与裂隙发育特征的研究仍有以下问题需要进一步探索。

    (1) 不同变质程度的煤,孔径分布特征以及对渗透率起决定作用的孔隙、裂隙类型存在差异,孔隙—裂隙的连通关系也大不相同;同一变质程度的煤,有机质热演化条件和变质类型对煤层孔隙、裂隙发育特征的显著影响已被证实,并被认为是煤层气开发有利区形成的重要原因。例如,沁水盆地南部高阶煤高渗区即形成于高异常地热场条件下的区域热变质地质背景。煤化作用阶段、变质作用类型、成煤物质、沉积环境等造成的孔隙、裂隙发育特征的差异决定了工程背景下煤层气具有不同的解吸、运移和产出规律,是开展地质适配性开发工艺的前提。然而,煤层孔隙—裂隙连通网络控制的渗透率来源和有效性尚不清楚;煤化作用阶段、变质作用类型和沉积环境对孔隙—裂隙连通网络和渗透率有效性的影响机制是否具有一般规律,如何用于指导煤层气开发富集高渗区的选择,仍需进一步研究和证实,这对我国煤层气高效开发理论和地质适配性开发工艺的形成具有重要意义。

    (2) 孔径<10 nm的孔隙的定量表征和观测是煤层孔隙研究的难点,N2/CO2吸附试验、SAXS、SANS等实验方法可实现这部分孔隙孔径结构的半定量表征,并提出了D-A(Dubinin-Astakhov)模型、D-R(Dubinin-Radushkevich)模型、DFT(Density functional theory)模型等用于测试结果分析。目前尚无有效手段实现这部分孔隙的直接观测。FESEM对10 nm以下的孔隙、裂隙观测效果差,图像模糊;TEM是煤大分子结构研究的有效手段,但无法直接观测煤中孔隙,需进行图像分析,且观测效果受煤中矿物影响严重;AFM侧重于表面形貌观测,对三维结构鞭长莫及,高分辨率下观测视域小。近年,HIM、FIB-SEM等新型扫描电子显微镜技术发展迅速,应用HIM、FIB-SEM等先进测试手段实现孔径<10 nm的孔隙的有效观测,以至构建三维孔隙结构模型,被提上日程。

    (3) 煤层孔隙、裂隙的表征参数仍以孔径分布特征、孔容、比表面积、分形维数、二维形貌等为主,这些参数很好地表征了孔隙、裂隙基本特征,但是难以描述孔隙、裂隙内部真实三维空间结构,无法刻画孔隙、裂隙内表面与煤层流体之间的界面性质,以及孔隙—裂隙中气—水传质机制,限制了对煤层中流体渗流机理的认识。更进一步地,不同煤岩显微组分中孔隙、裂隙内表面与气—水的界面性质存在显著差异,产生微观尺度的“非均质性”,即不同煤岩显微组分中流体的毛管力、摩擦阻力不同,气、水运移规律亦不同。因此,需要对孔隙、裂隙开展更精细的描述,并与气—水传质过程密切结合,定量表征孔喉截面形状、迂曲度、表面粗糙度、表面张力、润湿性等关键参数。

    (4) 不同的研究手段只能开展特定尺度下的孔隙、裂隙发育特征和连通关系的研究,煤层整体连通性和煤层流体运移产出规律的认识受到限制。数字岩石物理表征技术为此打开了新的视野和思路,目前已实现特定尺度范围的孔隙—裂隙三维结构的真实刻画,但不同表征技术、不同尺度表征结果的融合仍未突破。实现不同尺度孔隙、裂隙表征实验结果的有机结合,甚至工程尺度地震、成像测井解析结果与表征实验结果的科学融合,成为新的研究方向,其中非均质性表征、尺度升级、多尺度融合等科学问题成为关键,而创建我国主要含煤盆地数字岩石物理库,建立“Googol Map”模式的“多尺度”孔隙—裂隙结构表征模型是其目标。

  • 我国煤层气资源丰富,是目前最现实、可靠的非常规油气资源之一。煤层气规模化高效开发是我国资源型经济转型、能源产业优化升级、煤炭清洁高效开发利用、生态环境质量改善的国家重大需求。以煤层孔隙、裂隙精细表征为基础,查明煤层气富集高渗区发育机制,探究煤层气高效开发的微观机理,实现煤层气开发甜点区预测方法与勘探开发工艺技术的突破,是我国煤层气产业发展的要求,也是非常规油气沉积学的重要研究内容,对丰富和完善非常规油气地质学理论内涵具有积极作用。本文总结了煤层孔隙、裂隙研究方法,梳理了前人对煤层孔隙、裂隙发育特征、连通关系,及其影响因素的研究成果。基于笔者的认识,分析了煤层孔隙、裂隙研究的趋势。限于笔者的研究工作和能力,文中不足之处,望请指正。

Reference (159)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return