Advanced Search
Volume 39 Issue 5
Sep.  2021
Turn off MathJax
Article Contents

CAI SuYang, XIAO QiLin, ZHUWeiPing, ZHU HanQing, CHEN Ji, CHEN Qi, JIANG XingChao. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1100-1110. doi: 10.14027/j.issn.1000-0550.2020.060
Citation: CAI SuYang, XIAO QiLin, ZHUWeiPing, ZHU HanQing, CHEN Ji, CHEN Qi, JIANG XingChao. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1100-1110. doi: 10.14027/j.issn.1000-0550.2020.060

Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2020.060
Funds:

National Science and Technology Major Project 2017ZX05037-002

National Natural Science Foundation of China 41673041, 41403030

  • Received Date: 2020-05-05
  • Rev Recd Date: 2020-08-21
  • Publish Date: 2021-10-10
  • Comprehensive comparisons of mineral compositions and occurrence and distribution of nanopores were conducted for the productive (L11) and non-productive (L12 and L2) sections of the lower Silurian Longmaxi Formation to clarify their individual geological implications for shale gas exploration and exploitation in southern Sichuan Basin, China. The results show that (1) the L11 section is rich in organic matter, quartz and pyrite. A unimodal pore size distribution was observed in the plots of dV/dlog(D) vs. D, with peaks in the micropore range. The TOC regulates the formation of nanopores, and a significant occurrence of organic matter pores was detected within this section. Organic matter particles fill the interparticle pores of the mineral matrix and are surrounded by brittle minerals (e.g., quartz and carbonates), forming nano-gas-reservoirs. (2) The L12 and L2 section is rich in clays and carbonates. A unimodal distribution with peaks in the macropore range was observed in the plots of dV/dlog(D) vs. D. Clays play a major role in the occurrence of nanopores. Pores within/between clay grains and between clay platelets were detected in this section. The porous clay particles are filled and separated by calcite and dolomite, hence blocking gas migration. Therefore, the upper non-productive section is the effective caprock of the lower productive section. More attention should be paid to the reservoir capacity of the L11 section and sealing ability of L12 and L2 of the Longmaxi Formation in the southern Sichuan Basin.
  • [1] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
    [2] Hao F, Zou H Y, Lu Y C. Mechanisms of shale gas storage: Implications for shale gas exploration in China[J]. AAPG Bulletin, 2013, 97(8): 1325-1346.
    [3] Tian H, Pan L, Xiao X M, et al. A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong thrust fold belt, southwestern China using low pressure N2 adsorption and FE-SEM Methods[J]. Marine and Petroleum Geology, 2013, 48: 8-19.
    [4] 李艳芳,邵德勇,吕海刚,等. 四川盆地五峰组—龙马溪组海相页岩元素地球化学特征与有机质富集的关系[J]. 石油学报,2015,36(12):1470-1483.

    Li Yanfang, Shao Deyong, Haigang Lü, et al. A relationship between elemental geochemical characteristics and organic matter enrichment in marine shale of Wufeng Formation—Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2015, 36(12): 1470-1483.
    [5] 聂海宽,金之钧,边瑞康,等. 四川盆地及其周缘上奥陶统五峰组—下志留统龙马溪组页岩气“源—盖控藏”富集[J]. 石油学报,2016,37(5):557-571.

    Nie Haikuan, Jin Zhijun, Bian Ruikang, et al. The “source-cap hydrocarbon-controlling” enrichment of shale gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2016, 37(5): 557-571.
    [6] 彭女佳,何生,郝芳,等. 川东南彭水地区五峰组—龙马溪组页岩孔隙结构及差异性[J]. 地球科学,2017,42(7):1134-1146.

    Peng Nüjia, He Sheng, Hao Fang, et al. The pore structure and difference between Wufeng and Longmaxi shales in Pengshui area, southeastern Sichuan[J]. Earth Science, 2017, 42(7): 1134-1146.
    [7] Yang R, He S, Yi J Z, et al. Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan basin: Investigations using FE-SEM, gas adsorption and helium pycnometry[J]. Marine and Petroleum Geology, 2016, 70: 27-45.
    [8] 邹才能,赵群,董大忠,等. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学,2017,28(12):1781-1796.

    Zou Caineng, Zhao Qun, Dong Dazhong, et al. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796.
    [9] 张小龙,李艳芳,吕海刚,等. 四川盆地志留系龙马溪组有机质特征与沉积环境的关系[J]. 煤炭学报,2013,38(5):851-856.

    Zhang Xiaolong, Li Yanfang, Haigang Lü, et al. Relationship between organic matter characteristics and depositional environment in the Silurian Longmaxi Formation in Sichuan Basin[J]. Journal of China Coal Society, 2013, 38(5): 851-856.
    [10] 郭旭升,胡东风,文治东,等. 四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组—龙马溪组为例[J]. 中国地质,2014,41(3):893-901.

    Guo Xusheng, Hu Dongfeng, Wen Zhidong, et al. Major factors controlling the accumulation and high productivity in marine shale gas in the Lower Paleozoic of Sichuan Basin and its periphery: A case study of the Wufeng-Longmaxi Formation of Jiaoshiba area[J]. Geology in China, 2014, 41(3): 893-901.
    [11] 王淑芳,邹才能,黄大忠,等. 四川盆地富有机质页岩硅质生物成因及对页岩气开发的意义[J]. 北京大学学报(自然科学版),2014,50(3):476-486.

    Wang Shufang, Zou Caineng, Dong Dazhong, et al. Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 476-486.
    [12] 刘宇. 五峰—龙马溪组页岩的发育环境与页岩气潜力评价研究[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2016.

    Liu Yu. Development environment and shale gas resources assessment of the Wufeng-Longmaxi Formation[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2016.
    [13] 刘江涛,李永杰,张元春,等. 焦石坝五峰组—龙马溪组页岩硅质生物成因的证据及其地质意义[J]. 中国石油大学学报(自然科学版),2017,41(1):34-41.

    Liu Jiangtao, Li Yongjie, Zhang Yuanchun, et al. Evidences of biogenic silica of Wufeng-Longmaxi Formation shale in Jiaoshiba area and its geological significance[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(1): 34-41.
    [14] 王玉满,董大忠,杨桦,等. 川南下志留统龙马溪组页岩储集空间定量表征[J]. 中国科学(D辑):地球科学,2014,44(6):1348-1356.

    Wang Yuman, Dong Dazhong, Yang Hua, et al. Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Formation shale, southern Sichuan Basin[J]. Science China(Seri.D): Earth Sciences,2014, 44(6): 1348-1356.
    [15] 邱嘉文,刘树根,孙玮,等. 四川盆地周缘五峰组—龙马溪组黑色页岩微孔特征[J]. 地质科技情报,2015,34(2):78-86.

    Qiu Jiawen, Liu Shugen, Sun Wei, et al. Microporous characteristics of shale in Lower Paleozoic Wufeng Formation-Longmaxi Formation of Sichuan Basin and surrounding area[J]. Geological Science and Technology Information, 2015, 34(2): 78-86.
    [16] 耿一凯. 川东南地区龙马溪组页岩储层质量控制因素研究[D]. 北京:中国石油大学(北京),2017.

    Geng Yikai. Controlling factors on quality of shale reservoir of Longmaxi Formation in the southeastern Sichuan Basin[D]. Beijing: China University of Petroleum (Beijing), 2017.
    [17] 尉鹏飞,张金川,隆帅,等. 四川盆地及周缘地区龙马溪组页岩微观孔隙结构及其发育主控因素[J]. 中国石油勘探,2016,21(5):42-51.

    Wei Pengfei, Zhang Jinchuan, Long Shuai, et al. Characteristics and controlling factors of microscopic pore structure of Longmaxi Formation in Sichuan Basin and its periphery[J]. China Petroleum Exploration, 2016, 21(5): 42-51.
    [18] 薛华庆. 海相页岩纳米孔演化及含气性影响因素与作用机制研究[D]. 北京:清华大学,2017.

    Xue Huaqing. Investigations of nanopores evaluation, influence factors and impact mechanisms on the gas content in marine shale, China[D]. Beijing: Tsinghua University, 2017.
    [19] 纪文明,宋岩,姜振学,等. 四川盆地东南部龙马溪组页岩微—纳米孔隙结构特征及控制因素[J]. 石油学报,2016,37(2):182-195.

    Ji Wenming, Song Yan, Jiang Zhenxue, et al. Micro-nano pore structure characteristics and its control factors of shale in Longmaxi Formation, southeastern Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(2): 182-195.
    [20] 张瑜,闫建萍,贾祥娟,等. 四川盆地五峰组—龙马溪组富有机质泥岩孔径分布及其与页岩含气性关系[J]. 天然气地球科学,2015,26(9):1755-1762.

    Zhang Yu, Yan Jianping, Jia Xiangjuan, et al. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formation, Sichuan Basin[J]. Natural Gas Geoscience, 2015, 26(9): 1755-1762.
    [21] Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
    [22] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
    [23] Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms[J]. Journal of the American Chemical Society, 1951, 73(1): 373-380.
    [24] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319.
    [25] 胡宗全,杜伟,彭勇民,等. 页岩微观孔隙特征及源—储关系:以川东南地区五峰组—龙马溪组为例[J]. 石油与天然气地质,2015,36(6):1001-1008.

    Hu Zongquan, Du Wei, Peng Yongmin, et al. Microscopic pore characteristics and the source-reservoir relationship of shale: A case study from the Wufeng and Longmaxi Formations in southeast Sichuan Basin[J]. Oil & Gas Geology, 2015, 36(6): 1001-1008.
    [26] 何治亮,胡宗全,聂海宽,等. 四川盆地五峰组—龙马溪组页岩气富集特征与“建造—改造”评价思路[J]. 天然气地球科学,2017,28(5):724-733.

    He Zhiliang, Hu Zongquan, Nie Haikuan, et al. Characterization of shale gas enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J]. Natural Gas Geoscience, 2017, 28(5): 724-733.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(2)

Article Metrics

Article views(540) PDF downloads(171) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-05-05
  • Revised:  2020-08-21
  • Published:  2021-10-10

Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin

doi: 10.14027/j.issn.1000-0550.2020.060
Funds:

National Science and Technology Major Project 2017ZX05037-002

National Natural Science Foundation of China 41673041, 41403030

Abstract: Comprehensive comparisons of mineral compositions and occurrence and distribution of nanopores were conducted for the productive (L11) and non-productive (L12 and L2) sections of the lower Silurian Longmaxi Formation to clarify their individual geological implications for shale gas exploration and exploitation in southern Sichuan Basin, China. The results show that (1) the L11 section is rich in organic matter, quartz and pyrite. A unimodal pore size distribution was observed in the plots of dV/dlog(D) vs. D, with peaks in the micropore range. The TOC regulates the formation of nanopores, and a significant occurrence of organic matter pores was detected within this section. Organic matter particles fill the interparticle pores of the mineral matrix and are surrounded by brittle minerals (e.g., quartz and carbonates), forming nano-gas-reservoirs. (2) The L12 and L2 section is rich in clays and carbonates. A unimodal distribution with peaks in the macropore range was observed in the plots of dV/dlog(D) vs. D. Clays play a major role in the occurrence of nanopores. Pores within/between clay grains and between clay platelets were detected in this section. The porous clay particles are filled and separated by calcite and dolomite, hence blocking gas migration. Therefore, the upper non-productive section is the effective caprock of the lower productive section. More attention should be paid to the reservoir capacity of the L11 section and sealing ability of L12 and L2 of the Longmaxi Formation in the southern Sichuan Basin.

CAI SuYang, XIAO QiLin, ZHUWeiPing, ZHU HanQing, CHEN Ji, CHEN Qi, JIANG XingChao. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1100-1110. doi: 10.14027/j.issn.1000-0550.2020.060
Citation: CAI SuYang, XIAO QiLin, ZHUWeiPing, ZHU HanQing, CHEN Ji, CHEN Qi, JIANG XingChao. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin[J]. Acta Sedimentologica Sinica, 2021, 39(5): 1100-1110. doi: 10.14027/j.issn.1000-0550.2020.060
  • 四川盆地下志留统龙马溪组页岩是我国页岩气勘探开发的主要领域之一[1-2]。诸多学者已对该套页岩形成环境、矿物组成、有机质富集机理以及纳米孔隙发育特征和控制因素等进行了系统研究[3-7]。与川中和川东—南地区不同,川南地区下志留统龙马溪组页岩沉积环境具有自身独特性,主要沉积于低陡褶皱区半深水—深水陆棚环境,目前普遍处于过成熟阶段[8-13]。该套页岩下部龙一1小层是页岩气勘探开发的主要目的层,也是当前研究的主要对象,以往研究证实该小层内有机孔、矿物基质孔和微裂缝均有发育,以有机孔为主,孔隙连通性好[14-16],纳米孔隙发育的首要控制因素是页岩内有机质的含量[3,6-7,17-18],同时受有机质演化程度控制,有机孔隙丰度和孔径随有机质演化程度增加均呈上升趋势[19]。龙一1小层有机碳和脆性矿物含量高,含气性好[20],是页岩气勘探开发的优质目的层段。

    龙一1小层上覆地层龙一2小层和龙二段是川南地区页岩气勘探开发的非优质层段,目前针对这些非优质层段的研究相对薄弱,对于其所扮演的地质角色尚待进一步深入研究。本文以川南中石油长宁页岩气示范区A井龙一1小层页岩气优质产层和龙一2小层及龙二段非优质产层为主要研究对象(图12),从微观层面系统分析对比了下志留统龙马溪组页岩气优质产层与非优质产层矿物组成、纳米孔隙发育特征和赋存载体组合样式及其主控因素的差异性,进而明确了两者的差异性,以期为该区页岩气勘探选区和有利层段遴选提供科学理论依据。

    Figure 1.  Location and sampling distribution of well A in Changning area, southern Sichuan Basin(modified from reference [14])

    Figure 2.  TOC and mineral compositions of Wufeng⁃Longmaxi Formations, well A

  • 本次研究共采集了25个岩心样品,均取自四川盆地南部长宁页岩气示范区的一口探井A井五峰组—龙马溪组,采样深度:2 238.8~2 394.8 m,其中,五峰组样品1个,龙一1小层样品9个,龙一2小层和龙二段样品共计15个(图2)。

  • 页岩样品粉碎经过200目筛子,低温烘干后,用稀盐酸除去其中的碳酸盐岩,总有机碳含量(TOC)按照标准方法GB/T 19145《沉积岩中有机碳的测定》采用LECO CS230碳—硫仪进行分析。

  • 全岩X衍射定量分析按照GB/T 30904—2014《无机化工产品晶型结构分析X射线衍射法》进行测试。将页岩样品粉碎经过200目筛子,烘干后取一定量样品利用Bruker D8X射线衍射仪进行分析,工作电压40 kV,CuKα射线电流30 mA,在3º~85º(2θ)范围内以4º/min进行扫描,利用特定矿物的主峰面积对矿物相对含量进行计算。

  • 低压二氧化碳和氮气吸附实验采用美国康塔(Quantachrome)公司生产的Autosorb-IQ3型全自动比表面及孔径分布分析仪进行测试。CO2吸附是在273.15 K温度条件下,以二氧化碳为吸附质,测定不同相对压力下的气体吸附量。测试完成后,选用密度泛函理论(DFT)处理数据得到微孔的比表面积、孔隙体积、孔径分布等相关信息[21-22]。N2吸附的孔径测定范围为0.9~300 nm,吸附—脱附相对压力(P/P0)范围为0.005~0.995。以纯度为99.999%的高纯氮气为吸附质,在77 K温度下测定不同相对压力下的氮气吸附量,采用BJH[23]和BET[24]法得到了孔径分布、孔隙体积和比表面积。

  • 扫描电镜观测在SU8010型场发射扫描电子显微镜上进行。为了保证图像成像质量以及页岩形态完整性,在进行扫描电镜实验前对样品进行了氩离子抛光处理。先将小块页岩样品切割成规则的长方体,放入抛光仪进样腔室内,在真空状态下用氩离子轰击2 h,再利用SU8010型场发射扫描电镜在检测器SE/BSE模式下进行观测,最后利用能谱仪EDS进行矿物元素分析,加速电压15~30 kV,扫描模式分为点扫描和面扫描2种。

  • A井页岩气优质产层龙一1小层相对富含有机质、石英和黄铁矿(图2)。龙一1小层TOC介于2.3%~4.7%,平均为3.2%,龙一2小层至龙二段TOC值相对偏低,介于0.5%~1.3%,平均为0.8%。石英和黄铁矿分布也呈现类似特征,例如,龙一1小层石英含量为29.6%~58.0%,平均38.4%,龙一2小层至龙二段石英含量较低,介于18.0%~56.0%,平均为29.5%。

    A井非优质产层龙一2小层和龙二段相对富含黏土矿物和碳酸盐岩(图2)。龙一1小层黏土矿物含量为15.0%~49.0%,平均38.0%;方解石含量为3.0~15.2%,平均8.4%;白云石含量为1.0%~14.5%,平均6.3%。龙一2小层和龙二段黏土矿物含量为29.0%~65.0%,平均42.5%,方解石含量为0.2%~32.0%,平均11.6%,白云石含量为1.0%~7.0%,平均5.6%。

    A井页岩气优质产层与非优质产层在TOC和矿物组成上的差异与其各自的沉积环境及相应的生源输入和有机质保存等关系密切。研究证实川南地区龙一1小层沉积于深水陆棚环境,生源输入以各种浮游藻类为主,有机质类型Ⅰ型,古生产力高,水体缺氧且富含硫化氢,利于有机质保存富集[4,8];龙一2小层和龙二段沉积于正常的富氧环境,陆源碎屑物质输入相应增加,有机质含量较低[4,8]。与Barnett等页岩类似,TOC与石英含量正相关指示了生物成因石英的贡献[11],同时与黄铁矿含量也正相关(图3),指示了原始沉积环境的还原程度对有机质富集具有重要影响。

    Figure 3.  Plots of correlations between TOC versus (a) quartz, and (b) pyrite in the Wufeng⁃Longmaxi Formations

  • 在对数微分孔隙体积与孔径分布交汇图中,A井龙马溪组页岩样品孔径分布形式可分为前峰型、双峰型和后峰型三类(图4)。优质产层以前峰型为主,非优质产层以后峰型为主。第一类以龙一1小层页岩样品为代表(图4a)。如前所述,该类样品富含有机质、石英和黄铁矿,从页岩薄片观测结果来看,矿物粒径相对较小,页岩内0.5 nm左右的微孔极其发育,在对数微分孔隙体积与孔径分布交汇图中显示以该类微孔为主峰的前峰型,介孔随孔径增加而减小,不同孔径宏孔均有发育。

    Figure 4.  Pore size distribution of typical shale samples from Longmaxi Formation, well A

    第二类以龙一2小层底部页岩样品为代表(图4b),这类样品有机碳含量、矿物组成和粒径等介于第一类和第三类样品之间,0.5~0.9 nm微孔和200~250 nm宏孔较为发育,在对数微分孔隙体积与孔径分布交汇图中往往呈现出双峰分布特征,两个峰值大体相当。

    第三类以龙二段样品为代表(图4c),该类样品有机碳含量低,富含黏土矿物和碳酸盐岩,页岩薄片观测显示该样品内矿物粒径相对较大,页岩内100~150 nm的宏孔比较发育,在对数微分孔隙体积与孔径分布交汇图中,呈现出以该类宏孔为主峰的后峰型分布特征。

  • A井优质产层页岩样品孔隙体积明显比非优质产层页岩样品孔隙体积大。从图5可以看出,优质段页岩样品孔体积大都在0.02 cm3/g以上,平均为0.059 cm3/g;非优质段页岩样品孔隙体积通常小于0.02 cm3/g,平均为0.018 cm3/g。A井优质产层页岩样品微孔、介孔和宏孔孔体积均值分别为0.005 cm3/g、0.030 cm3/g和0.020 cm3/g;非优质产层不同类型孔隙体积均值分别为0.002 cm3/g、0.015 cm3/g和0.010 cm3/g。优质产层内不同类型孔隙体积分别是非优质产层内相应孔隙体积的近2倍。纳米孔隙中介孔和宏孔体积占比高,是页岩孔隙体积的主要贡献者。与优质产层相比,非优质产层内微孔体积占比相对较高。

    Figure 5.  Plots showing volumes and percentages of nanopores in shale samples from Wufeng⁃Longmaxi Formations, well A

  • 扫描电镜观测显示A井龙一1小层内有机孔异常发育,尤其是有机碳含量高的页岩样品,有机孔呈圆形或椭圆形;同时发育矿物粒间孔、粒内孔和黄铁矿晶间孔等,草莓状黄铁矿晶间孔隙多呈不规则状,被有机质充填,黏土矿物颗粒边缘出现了收缩缝(图6a,f)。

    Figure 6.  FE⁃SEM images of nanopores in shale samples from well A, Longmaxi Formation

    龙一2小层下部有机碳含量相对较高的页岩样品内,有机质颗粒内部发育大量海绵状有机孔,同时还发育矿物粒间孔和黏土矿物粒内/层间孔(图6g,h)。在龙一2小层有机碳含量最低(TOC=0.13%)的页岩样品内,主要发育黏土矿物粒内孔和层间孔(图6i,j)。在龙二段碳酸盐岩含量较高的页岩样品内,黏土矿物粒内孔和层间孔也较发育,有机孔相对不发育(图6k,l)。

    能谱分析结果显示龙一1小层内纳米孔隙发育的大块有机质颗粒多被石英、方解石和白云石等脆性矿物所包围(图7a,b),有机质分布多呈片状、带状,部分石英和碳酸盐岩矿物粒内溶蚀孔发育。龙一2小层下部TOC含量相对较高的页岩内,有机孔也较发育(图7c);龙一2小层中—上部至龙二段有机质零星分布,有机孔相对不发育,纳米孔隙发育的黏土矿物颗粒内部多被方解石和白云石等碳酸盐岩充填,且以龙二段页岩最为明显(图7d,e)。

    Figure 7.  Distribution patterns of nanopore hosts for the productive and non⁃productive sections of Well A

  • A井页岩气优质产层龙一1小层不同类型纳米孔隙体积与TOC和矿物组成相关性分析结果表明(表1),总孔体积主要受介孔和宏孔体积控制。总孔体积与TOC含量显著正相关,揭示了纳米孔隙发育主要受TOC含量控制,有机质颗粒是龙一1小层纳米孔隙发育的主要赋存载体。换言之,有机孔是龙一1小层纳米孔隙的主要类型,是页岩气主要储存空间,构成了研究区页岩气三维连通渗流孔隙网络系统。总孔体积与黄铁矿含量也具有较好的正相关关系,龙一1小层富含黄铁矿(图2),黄铁矿晶间孔内充填有纳米孔隙发育的有机质是该小层纳米孔隙的重要贡献者(图6a,f)。总孔体积与黏土矿物和碳酸盐岩含量弱正相关,这与该小层发育黏土矿物层间孔和碳酸盐岩粒内溶蚀孔密切相关(图6a,f)。总孔体积与石英和长石含量弱负相关,反映了石英和长石颗粒内部纳米孔隙相对不发育,其含量增加不利于纳米孔隙发育。

    相关系数 总孔体积 微孔体积 介孔体积 宏孔体积 TOC/% 黏土矿物 石英 长石 碳酸盐岩 黄铁矿
    总孔体积 1 0.62 0.99 0.94 0.72 0.39 -0.37 -0.28 0.11 0.49
    微孔体积 0.62 1 0.65 0.35 0.66 0.05 0.19 -0.24 0.06 0.60
    介孔体积 0.99 0.65 1 0.90 0.66 0.49 -0.41 -0.21 -0.01 0.54
    宏孔体积 0.94 0.35 0.90 1 0.65 0.32 -0.46 -0.30 0.20 0.32
    TOC 0.72 0.66 0.66 0.65 1 -0.24 0.20 -0.79 0.63 0.65
    黏土矿物 0.39 0.05 0.49 0.32 -0.24 1 -0.71 0.38 -0.71 0.19
    石英 -0.37 0.19 -0.41 -0.46 0.20 -0.71 1 -0.39 0.27 -0.14
    长石 -0.28 -0.24 -0.21 -0.30 -0.79 0.38 -0.39 1 -0.70 -0.55
    碳酸盐岩 0.11 0.06 -0.01 0.20 0.63 -0.71 0.27 -0.70 1 0.28
    黄铁矿 0.49 0.60 0.54 0.32 0.65 0.19 -0.14 -0.55 0.28 1

    Table 1.  Correlations between pore volume, TOC and mineral composition of shale samples from productive section of well A

    微孔和介孔体积均与TOC和黄铁矿含量显著正相关,说明有机质颗粒和黄铁矿内微孔和介孔发育。微孔与黏土矿物、石英和碳酸盐岩含量弱正相关,指示部分黏土矿物层间孔、石英和碳酸盐岩粒内溶蚀孔应属于微孔范畴。介孔体积与黏土矿物含量也存在较好的正相关关系,可能黏土矿物层间孔多为介孔。但与石英、长石和碳酸盐岩含量均存在一定的负相关性,这和矿物颗粒本身介孔不发育有关。宏孔体积与TOC含量显著正相关,说明有机质颗粒内部宏孔发育;与黏土矿物、碳酸盐岩和黄铁矿含量显示弱正相关,可以发现这些矿物颗粒内部也发育一定数量的宏孔(图6a,f)。

    TOC与石英含量弱正相关,这是该小层生物成因石英发育的重要体现(图3a);与黄铁矿含量显著正相关,这与地质历史时期沉积环境关系密切。已有研究证实龙一1小层沉积时水体缺氧且富含硫化氢,这种强还原环境有利于有机质保存和黄铁矿形成[4,8]。同时,黄铁矿晶间孔内充填有一定数量的有机质(图6a~d),这可能也是两者具有显著正相关的原因之一。

  • A井非优质产层龙一2小层和龙二段不同类型孔隙体积与TOC和矿物组成相关性分析结果显示了纳米孔隙总体积主要受介孔体积控制(表2)。总孔体积与黏土矿物含量显著正相关,表明黏土矿物颗粒内部发育有不同类型纳米孔隙,介孔尤其相对发育,是纳米孔隙赋存的主要载体(图6g,l);与碳酸盐岩和黄铁矿含量显著负相关,可以看出碳酸盐岩和黄铁矿内部纳米孔隙不甚发育,其含量增加不利于纳米孔隙发育;与TOC、石英和长石含量呈弱负相关,证实了有机孔隙、石英和长石颗粒内溶蚀孔不是A井非优质产层内纳米孔隙主要类型。

    相关系数 总孔体积 微孔体积 介孔体积 宏孔体积 TOC/% 黏土矿物 石英 长石 碳酸盐岩 黄铁矿
    总孔体积 1 0.62 0.93 0.63 -0.02 0.78 -0.15 -0.29 -0.57 -0.50
    微孔体积 0.62 1 0.60 -0.02 0.50 0.63 -0.54 -0.01 -0.21 -0.14
    介孔体积 0.93 0.60 1 0.35 0.07 0.70 0.03 -0.30 -0.65 -0.45
    宏孔体积 0.63 -0.02 0.35 1 -0.45 0.43 -0.08 -0.25 -0.27 -0.43
    TOC -0.02 0.50 0.07 -0.45 1 -0.07 0.06 0.06 -0.05 0.54
    黏土矿物 0.78 0.63 0.70 0.43 -0.07 1 -0.49 0.07 -0.66 -0.58
    石英 -0.15 -0.54 0.03 -0.08 0.06 -0.49 1 -0.29 -0.23 0.20
    长石 -0.29 -0.01 -0.30 -0.25 0.06 0.07 -0.29 1 -0.24 0.40
    碳酸盐岩 -0.57 -0.21 -0.65 -0.27 -0.05 -0.66 -0.23 -0.24 1 0.24
    黄铁矿 -0.50 -0.14 -0.45 -0.43 0.54 -0.58 0.20 0.40 0.24 1

    Table 2.  Correlations between pore volume, TOC and mineral composition of shale samples from non⁃productive section of well A

    微孔体积与TOC和黏土矿物含量显著正相关,表明有机质颗粒和黏土矿物内部微孔发育,与长石、碳酸盐岩和黄铁矿含量,尤其石英含量,均为负相关关系,这是由于这些矿物尤其是石英颗粒内部微孔不发育。介孔体积与黏土矿物含量显著正相关,可见黏土矿物是介孔的主要赋存载体,黏土矿物粒内孔/层间孔多属于介孔(图6g,l);与TOC和石英含量弱正相关,说明有机质和石英颗粒内部也发育一定数量的介孔;而与碳酸盐岩含量显著负相关,反映了碳酸盐岩含量的增加不利于介孔发育,抑或是碳酸盐岩溶蚀孔隙不发育;与长石和黄铁矿含量弱负相关,可能受长石和黄铁矿内介孔不发育影响。宏孔体积与TOC、石英、长石、碳酸盐岩和黄铁矿含量弱负相关,与黏土矿物含量弱正相关,表明黏土矿物是宏孔发育的主要场所,黏土矿物粒间孔/层间孔大多应是宏孔孔隙(图6j,l)。同时TOC与黄铁矿含量显著正相关,进一步体现了川南地区沉积水体的还原强度是控制龙一2小层和龙二段内有机质富集的主要因素,这与前人认识大体一致[4,8]

  • 上述分析不难看出,川南地区下志留统龙马溪组页岩气优质产层和非优质产层纳米孔隙发育丰度、类型和控制因素不同。优质产层内纳米孔隙发育,孔隙发育主要受TOC含量控制,有机孔是纳米孔隙的主要类型;非优质产层内纳米孔隙相对不发育,孔隙发育主要受黏土矿物含量控制,黏土矿物粒间孔/层间孔是纳米孔隙的主要类型。

    优质产层富含有机质和石英,有机质呈块状或条带状,连续性相对较好,它们往往充填于矿物粒间孔内(图6a,h),被石英和碳酸盐岩等脆性矿物包围(图7)。石英质地坚硬,不易被压实,粒间孔隙保存相对较好,因此成为液态烃类重要储集空间。这些液态烃类后期经历了高温热蚀变,生成大量天然气和纳米孔隙发育的固体沥青[25],这些固体沥青颗粒实际构成“纳米级气藏”,是页岩气重要储集空间。

    非优质产层富含黏土矿物和碳酸盐岩,黏土矿物塑性较好,易于遭受压实,因此其内部纳米孔隙不甚发育。黏土矿物颗粒内部往往充填方解石和白云石,而这些碳酸盐岩本身并不发育纳米孔隙(图7),这就使得黏土矿物内部纳米孔隙不连续,对以黏土矿物为主要载体的“纳米级气藏”起到有效封闭或阻隔效应,非优质产层实为一套有效盖层。聂海宽等[5]曾通过宏观层面上的地质—地球化学分析指出龙马溪组底部龙一1小层的直接盖层是龙马溪组一段中—上部页岩。本研究通过微观层面系统分析将优质产层的上覆盖层进一步拓展至黏土矿物和碳酸盐岩含量较高的龙二段。

    四川盆地曾经历了多期构造运动,因此,页岩气保存条件是四川盆地下志留统龙马溪组页岩气富集成藏的关键[1-2,5,8,25-26]。该套页岩下部龙一1小层发育以有机质颗粒为主要载体的“纳米级气藏”,其被脆性矿物包围,易于被水力压裂改造,一旦实施该工艺,这些“纳米级气藏”将会相互沟通连接,形成气体运移高速公路”,宏观上表现为页岩气高产。上部龙一2小层和龙二段非优质产层实际扮演着下伏优质产层有效盖层的角色,它可能直接决定了下伏龙一1小层的含气性和勘探开发潜力。因此,研究区页岩气选区的过程中,在重视龙一1小层的储集能力同时,还需关注龙一2小层和龙二段等上覆地层的封闭能力。

  • 本文以川南长宁页岩气示范区A井龙一1小层页岩气优质产层和龙一2小层及龙二段非优质产层为研究对象,从TOC、矿物组成和纳米孔隙发育特征、主控因素及其赋存载体组合样式等微观层面开展了系统对比分析,得到如下几点认识:

    (1) 优质产层龙一1小层富含有机质、石英和黄铁矿,非优质产层龙一2小层和龙二段非优质产层相对富含黏土矿物和碳酸盐岩。

    (2) 龙马溪组页岩孔径分布在对数微分孔隙体积与孔径分布交汇图中呈前峰型、双峰型和后峰型三类。优质产层以前峰型为主,非优质产层以后峰型为主。优质产层页岩孔隙体积明显比非优质产层页岩孔隙体积大。

    (3) 优质产层纳米孔隙发育主要受TOC含量控制,有机孔是纳米孔隙的主要类型;非优质产层纳米孔隙发育主要受黏土矿物含量控制,黏土矿物粒间孔/层间孔是纳米孔隙的主要类型。

    (4) 优质产层内有机质充填于矿物粒间孔内,被石英和碳酸盐岩等脆性矿物包围,构成纳米级气藏”;非优质产层内黏土矿物颗粒内部被纳米孔隙并不发育的方解石和白云石充填,阻滞了其中纳米孔隙内气体运移,是一套有效盖层。

    (5) 川南下志留统龙马溪组页岩气选区过程中需同时关注优质产层龙一1小层的储集能力与非优质产层龙一2小层和龙二段等上覆地层的封闭能力。

Reference (26)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return