Advanced Search
Volume 39 Issue 1
Feb.  2021
Turn off MathJax
Article Contents

MENG QiAn, ZHAO Bo, CHEN ShuMin, LIN TieFeng, ZHOU YongBing, QIAO Wei. Sedimentary Enrichment Mode and Effect Analysis of Exploration and Development: A case study of Fuyu reservoir tight oil in northern Songliao Basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 112-125. doi: 10.14027/j.issn.1000-0550.2020.057
Citation: MENG QiAn, ZHAO Bo, CHEN ShuMin, LIN TieFeng, ZHOU YongBing, QIAO Wei. Sedimentary Enrichment Mode and Effect Analysis of Exploration and Development: A case study of Fuyu reservoir tight oil in northern Songliao Basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 112-125. doi: 10.14027/j.issn.1000-0550.2020.057

Sedimentary Enrichment Mode and Effect Analysis of Exploration and Development: A case study of Fuyu reservoir tight oil in northern Songliao Basin

doi: 10.14027/j.issn.1000-0550.2020.057
Funds:

National Science and Technology Major Project 2016ZX05046-006-002

  • Received Date: 2020-05-06
  • Publish Date: 2021-02-06
  • Taking the Fuyu reservoir in northern Songliao Basin as an example, this paper discusses the sedimentary enrichment mode and exploration and development effect for tight oil. The characteristics of the tight sandstone reservoir in the Fuyu oil layer (e.g., many longitudinal small layers, large interlayer span, plane sand body staggered distribution, thin single layer thickness, poor continuity and strong heterogeneity), the fine geological anatomy of the development test area was investigated using abundant drilling and three-dimensional seismic data. The development characteristics of the small-level stacked dense channel sandbody in the Fuyu oil layer, and a prediction technology for the stacked sandbodies, are proposed. This provides a scientific basis for large-scale geology and engineering of multiple “sweet spots” in tight oil. The results show that there are three types of superimposed sandbodies developed in the Fuyu oil layer: the main channel, the main thin channel, and the thin distributary channel. The pre-stack time migration technology applied to a viscoelastic medium achieved high-resolution interpretation of the thin layers in the FI and FII reservoir groups, and improved the vertical resolution of imaging. High-resolution seismic imaging and Z-inversion technology improves the ability to predict 3⁃5 m channel sandstone reservoirs. The plane distribution and vertical position of the superimposed sandbodies are clearly described, which effectively guides well location for exploration and development of terrestrial tight oil in the Fuyu reservoir. The development technology may be selected depending on the differences between the superimposed sandbodies and maximize the production rate of tight oil. Daqing Oilfield has achieved good exploration and development results over many years of developing greater geological understanding, sandbody identification and exploration technology.
  • [1] 孙赞东,贾承造,李相方,等. 非常规油气勘探与开发(上册)[M]. 北京:石油工业出版社,2011:1-150.

    Sun Zandong, Jia Chengzao, Li Xiangfang, et al. Unconventional oil & gas exploration and development (upper volume)[M]. Beijing: Petroleum Industry Press, 2011: 1-150.
    [2] 邹才能,陶士振,侯连华,等. 非常规油气地质[M]. 北京:地质出版社,2011:1-310.

    Zou Caineng, Tao Shizhen, Hou Lianhua, et al. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2011: 1-310.
    [3] 梁狄刚,冉隆辉,戴弹申,等. 四川盆地中北部侏罗系大面积非常规石油勘探潜力的再认识[J]. 石油学报,2011,32(1):8-17.

    Liang Digang, Ran Longhui, Dai Danshen, et al. A re-recognition of the prospecting potential of Jurassic large-area and non-conventional oils in the central- northern Sichuan Basin[J]. Acta Petrolei Sinica, 2011, 32(1): 8-17.
    [4] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129-136.

    Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136.
    [5] 林森虎,邹才能,袁选俊,等. 美国致密油开发现状及启示[J]. 岩性油气藏,2011,23(4):25-30,64.

    Lin Senhu, Zou Caineng, Yuan Xuanjun, et al. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30, 64.
    [6] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653.

    Zou Caineng, Dong Dazhong, Wang Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653.
    [7] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187.

    Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
    [8] 付丽,梁江平,白雪峰,等. 松辽盆地北部扶余油层致密油资源评价[J]. 大庆石油地质与开发,2016,35(4):168-174.

    Fu Li, Liang Jiangping, Bai Xuefeng, et al. Resources evaluations of the tight oil in Fuyu reservoirs of North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2016, 35(4): 168-174.
    [9] 崔宝文,蒙启安,白雪峰,等. 松辽盆地北部石油勘探进展与建议[J]. 大庆石油地质与开发,2018,37(3):1-9.

    Cui Baowen, Meng Qi’an, Bai Xuefeng, et al. Petroleum exploration progress and suggestions for North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2018, 37(3): 1-9.
    [10] 王玉华. 大庆油田勘探形势与对策[J]. 大庆石油地质与开发,2019,38(5):23-33.

    Wang Yuhua. Analysis and countermeasure on the exploration situation of Daqing oilfield[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 23-33.
    [11] 金成志. 松辽盆地北部陆相非均质致密油整体勘探开发“2+3”模式[J]. 大庆石油地质与开发,2014,33(5):9-15.

    Jin Chengzhi. Overall exploration and development “2+3” model of the continental heterogeneous tight oil in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2014, 33(5): 9-15.
    [12] 王玉华,蒙启安,梁江平,等. 松辽盆地北部致密油勘探[J]. 中国石油勘探,2015,20(4):44-53.

    Wang Yuhua, Meng Qi’an, Liang Jiangping, et al. Tight oil exploration in northern Songliao Basin[J]. China Petroleum Exploration, 2015, 20(4): 44-53.
    [13] 邱振,邹才能. 非常规油气沉积学:内涵与展望[J]. 沉积学报,2020,38(1):1-29.

    Qiu Zhen, Zou Caineng. Unconventional petroleum sedimentology: Connotation and prospect[J]. Acta Sedimentologica Sinica, 2020, 38(1): 1-29.
    [14] 黄薇,梁江平,赵波,等. 松辽盆地北部白垩系泉头组扶余油层致密油成藏主控因素[J]. 古地理学报,2013,15(5):635-644.

    Huang Wei, Liang Jiangping, Zhao Bo, et al. Main controlling factors of tight oil accumulations in the Fuyu layer of Cretaceous Quantou Formation in northern Songliao Basin[J]. Journal of Palaeogeography, 2013, 15(5): 635-644.
    [15] 林铁锋,康德江. 松辽盆地三肇凹陷扶余油层致密储层分类精细评价[J]. 石油实验地质,2017,39(5):686-693.

    Lin Tiefeng, Kang Dejiang. Classification and evaluation of tight reservoirs in Fuyu oil layer, Sanzhao Sag, Songliao Basin[J]. Petroleum Geology & Experiment, 2017, 39(5): 686-693.
    [16] 冯志强,张顺,冯子辉. 在松辽盆地发现“油气超压运移包络面”的意义及油气运移和成藏机理探讨[J]. 中国科学(D辑):地球科学,2011,41(12):1872-1883.

    Feng Zhiqiang, Zhang Shun, Feng Zihui. Discovery of "Enveloping Surface of Oil and Gas Overpressure Migration" in the Songliao Basin and its bearings on hydrocarbon migration and accumulation mechanisms[J]. Science China (Seri. D): Earth Sciences, 2011, 41(12): 1872-1883.
    [17] 林铁锋,康德江,姜丽娜. 松辽盆地北部扶余油层致密油地质特征及勘探潜力[J]. 大庆石油地质与开发,2019,38(5):94-100.

    Lin Tiefeng, Kang Dejiang, Jiang Lina. Geological characteristics and exploration potential of the tight oil in Fuyu oil reservoirs of North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 94-100.
    [18] 梁江平,赵波,陈均亮,等. 松辽盆地北部断裂系统及其对油气分布的控制作用[J]. 大庆石油地质与开发,2019,38(5):126-134.

    Liang Jiangping, Zhao Bo, Chen Junliang, et al. Fault systems and their controlling actions on the petroleum distribution in North Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 126-134.
    [19] 姜丽娜,夏丹,朱政源. 致密砂岩储层与常规砂岩储层成藏动力学特征的差异性:以松辽盆地北部三肇地区扶余油层砂岩储层为例[J]. 世界地质,2018,37(1):199-206.

    Jiang Lina, Xia Dan, Zhu Zhengyuan. Differences in reservoir-forming dynamic characteristics of tight sandstone reservoir and conventional sandstone reservoir: A case from Fuyu sandstone reservoir of Sanzhao area in northern Songliao Basin[J]. Global Geology, 2018, 37(1): 199-206.
    [20] 邹才能,杨智,陶士振,等. 纳米油气与源储共生型油气聚集[J]. 石油勘探与开发,2012,39(1):13-26.

    Zou Caineng, Yang Zhi, Tao Shizhen, et al. Nano-hydrocarbon and the accumulation in coexisting source and reservoir[J]. Petroleum Exploration and Development, 2012, 39(1): 13-26.
    [21] 孙同文,吕延舫,刘宗堡,等. 大庆长垣以东地区扶余油层油气运移与富集[J]. 石油勘探与开发,2011,38(6):700-707.

    Sun Tongwen, Yanfang Lü, Liu Zongbao, et al. Hydrocarbon migration and enrichment features of the Fuyu oil layer to the east of the Daqing placanticline[J]. Petroleum Exploration and Development, 2011, 38(6): 700-707.
    [22] 冯军,张博为,冯子辉,等. 松辽盆地北部致密砂岩储集层原油可动性影响因素[J]. 石油勘探与开发,2019,46(2):312-321.

    Feng Jun, Zhang Bowei, Feng Zihui, et al. Crude oil mobility and its controlling factors in tight sand reservoirs in northern Songliao Basin, China[J]. Petroleum Exploration and Development, 2019, 46(2): 312-321.
    [23] 闫建萍,刘池阳,马艳萍. 成岩作用与油气侵位对松辽盆地齐家—古龙凹陷扶杨油层物性的影响[J]. 沉积学报,2009,27(2):212-220.

    Yan Jianping, Liu Chiyang, Ma Yanping. Influence of diagenesis and hydrocarbon emplacement on the quality of the Fuyang reservoir in Songliao Basin[J]. Acta Sedimentologica Sinica, 2009, 27(2): 212-220.
    [24] 侯启军,冯志强,冯子辉,等. 松辽盆地陆相石油地质学[M]. 北京:石油工业出版社,2009.

    Hou Qijun, Feng Zhiqiang, Feng Zihui, et al. Continental petroleum geology in Songliao Basin[M]. Beijing: Petroleum Industry Press, 2009.
    [25] 朱筱敏,刘媛,方庆,等. 大型坳陷湖盆浅水三角洲形成条件和沉积模式:以松辽盆地三肇凹陷扶余油层为例[J]. 地学前缘,2012,19(1):89-99.

    Zhu Xiaomin, Liu Yuan, Fang Qing, et al. Formation and sedimentary model of shallow delta in large-scale lake: Example from cretaceous Quantou Formation in Sanzhao Sag, Songliao Basin[J]. Earth Science Frontiers, 2012, 19(1): 89-99.
    [26] 邓庆杰,胡明毅,胡忠贵,等. 浅水三角洲分流河道砂体沉积特征:以松辽盆地三肇凹陷扶II—I组为例[J]. 石油与天然气地质,2015,36(1):118-127.

    Deng Qingjie, Hu Mingyi, Hu Zhonggui, et al. Sedimentary characteristics of shallow-water delta distributary channel sand bodies: A case from II-I Formation of Fuyu oil layer in the Sanzhao Depression, Songliao Basin[J]. Oil & Gas Geology, 2015, 36(1): 118-127.
    [27] 孙雨,邓明,马世忠,等. 松辽盆地大安地区扶余油层致密砂岩油分布特征及控制因素[J]. 石油勘探与开发,2015,42(5):589-597.

    Sun Yu, Deng Ming, Ma Shizhong, et al. Distribution and controlling factors of tight sandstone oil in Fuyu oil layers of Da’an area, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2015, 42(5): 589-597.
    [28] 周永炳,徐启,樊晓东,等. 大庆外围油田致密油层叠置组合分类与开发实践[J]. 大庆石油地质与开发,2019,38(5):195-203.

    Zhou Yongbing, Xu Qi, Fan Xiaodong, et al. Overlap classification and development practice of the tight reservoirs in Daqing peripheral oilfields[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 195-203.
    [29] 陈树民,裴江云,赵忠华,等. 松辽盆地三肇凹陷扶余油层叠置砂体高分辨率地震成像技术及其应用[J]. 大庆石油地质与开发,2019,38(5):69-77.

    Chen Shumin, Pei Jiangyun, Zhao Zhonghua, et al. High-resolution imaging technique for the superposed Sandbody and its application in Fuyu oil layers of Sanzhao Sag in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 69-77.
    [30] 张尔华,宋永忠,陈树民,等. 松辽盆地扶杨油层河道砂体地震识别方法[J]. 大庆石油地质与开发,2004,23(5):113-114,117.

    Zhang Erhua, Song Yongzhong, Chen Shumin, et al. Seismic recognition method of channel sand body of Fuyang pay zone in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2004, 23(5): 113-114, 117.
    [31] 陈志德,赵忠华,王成. 黏滞声学介质地震波吸收补偿叠前时间偏移方法[J]. 石油地球物理勘探,2016,51(2):325-333.

    Chen Zhide, Zhao Zhonghua, Wang Cheng. Prestack time migration with compensation for absorption of viscous-elastic media[J]. Oil Geophysical Prospecting, 2016, 51(2): 325-333.
    [32] 陈志德,初海红. 黏滞介质吸收补偿叠前时间偏移的倾角道集孔径优选[J]. 石油地球物理勘探,2016,51(3):444-451.

    Chen Zhide, Chu Haihong. Optimization of variable migration aperture in dipangle gathers for prestack time migration with absorption compensation in viscous elastic media[J]. Oil Geophysical Prospecting, 2016, 51(3): 444-451.
    [33] 朱筱敏,李顺利,潘荣,等. 沉积学研究热点与进展:第32届国际沉积学会议综述[J]. 古地理学报,2016,18(5):699-716.

    Zhu Xiaomin, Li Shunli, Pan Rong, et al. Current hot topics and advances of sedimentology: A summary from 32nd IAS meeting of sedimentology[J]. Journal of Palaeogeography, 2016, 18(5): 699-716.
    [34] 朱筱敏,谈明轩,董艳蕾,等. 当今沉积学研究热点讨论:第20届国际沉积学大会评论[J]. 沉积学报,2019,37(1):1-16.

    Zhu Xiaomin, Tan Mingxuan, Dong Yanlei, et al. Current hot topics of sedimentology: Comment on the 20th international sedimentological congress[J]. Acta Sedimentologica Sinica, 2019, 37(1): 1-16.
    [35] 高有峰,张立斌,陈桐,等. 中国沉积学发展战略:沉积学教育现状与展望[J]. 沉积学报,2017,35(5):1078-1085.

    Gao Youfeng, Zhang Libin, Chen Tong, et al. The future of sedimentology in China: A review and look forward to education of sedimentology[J]. Acta Sedimentologica Sinica, 2017, 35(5): 1078-1085.
    [36] Law B E, Curtis J B. Introduction to unconventional petroleum systems[J]. AAPG Bulletin, 2002, 86(11):1851⁃1852.
    [37] 顾家裕,张兴阳. 油气沉积学发展回顾和应用现状[J]. 沉积学报,2003,21(1):137-141.

    Gu Jiayu, Zhang Xingyang. Developmentreview and current application of petroleum sedimentology[J]. Acta Sedimentologica Sinica, 2003, 21(1): 137-141.
    [38] 孙龙德,方朝亮,李峰,等. 中国沉积盆地油气勘探开发实践与沉积学研究进展[J]. 石油勘探与开发,2010,37(4):385-396.

    Sun Longde, Fang Chaoliang, Li Feng, et al. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology[J]. Petroleum Exploration and Development, 2010, 37(4): 385-396.
    [39] 付金华,邓秀芹,张晓磊,等. 鄂尔多斯盆地三叠系延长组深水砂岩与致密油的关系[J]. 古地理学报,2013,,15(5):624-634.

    Fu Jinhua, Deng Xiuqin, Zhang Xiaolei, et al. Relationship between deepwater sandstone and tight oil of the Triassic Yanchang Formation in Ordos Basin[J]. Journal of Palaeogeography, 2013, 15(5): 624-634.
    [40] 邹才能. 非常规油气地质学[M]. 北京:地质出版社,2014:1-463.

    Zou Caineng. Unconventional petroleum geology[M]. Beijing: Geological Publishing House, 2014: 1-463.
    [41] Egenhoff S O, Fishman N S. Traces in the dark: Sedimentary processes and facies gradients in the upper shale member of the Upper Devonian-Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U. S. A.[J]. Journal of Sedimentary Research, 2014, 83(9): 803-824.
    [42] 施立志,王卓卓,张革,等. 松辽盆地齐家地区致密油形成条件与分布规律[J]. 石油勘探与开发,2015,42(1):44-50.

    Shi Lizhi, Wang Zhuozhuo, Zhang Ge, et al. Distribution and formation of tight oil in Qijia area, Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2015, 42(1): 44-50.
    [43] 贾承造. 论非常规油气对经典石油天然气地质学理论的突破及意义[J]. 石油勘探与开发,2017,44(1):1-11.

    Jia Chengzao. Breakthrough and significance of unconventional oil and gas to classical petroleum geological theory[J]. Petroleum Exploration and Development, 2017, 44(1): 1-11.
    [44] 杜金虎. 松辽盆地中央古隆起带(北部)天然气成藏条件分析及勘探前景[J]. 中国石油勘探,2017,22(5):1-14.

    Du Jinhu. Analysis of natural gas accumulation conditions and exploration perspective in the central paleo-uplift belt (north), Songliao Basin[J]. China Petroleum Exploration, 2017, 22(5): 1-14.
    [45] 邹才能,杨智,张国生,等. 非常规油气地质学建立及实践[J]. 地质学报,2019,93(1):12-23.

    Zou Caineng, Yang Zhi, Zhang Guosheng, et al. Establishment and practice of unconventional oil and gas geology[J]. Acta Geologica Sinica, 2019, 93(1): 12-23.
    [46] 蒲秀刚,金凤鸣,韩文中,等.陆相页岩油甜点地质特征与勘探关键技术:以沧东凹陷孔店组二段为例[J]. 石油学报,2019,40(8):997-1012.

    Pu Xiugang, Jin Fengming, Han Wenzhong, et al. Sweet spots geological characteristics and key exploration technologies of continental shale oil:A case study of Member 2 of Kongdian Fornation in Cangdong Sag[J]. Acta Petrolei Sinica, 2019,40(8): 997-1012.
    [47] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534.

    Zhi Dongming, Tang Yong, Yang Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin[J]]. Oil & Gas Geology, 2019, 40(3): 524-534.
    [48] 付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601-614.

    Fu Jinhua, Niu Xiaobing, Weidong Dan, et al. The geological characteristics and the progress on exploaration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601-614.
    [49] 吴河勇,林铁锋,白云风,等. 松辽盆地北部泥(页)岩油勘探潜力分析[J]. 大庆石油地质与开发,2019,38(5):78-86.

    Wu Heyong, Lin Tiefeng, Bai Yunfeng, et al. Analyses of the mudstone(shale) oil exploration potential in north Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(5): 78-86.
    [50] Hu SY, Tao SZ, Yan WP, et al. Advances on enrichment law and key technologies of exploration and development of continental tight oil in China (2016-2018)[J]. Journal of Natural Gas Geoscience, 2019, 4: 297-307.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)  / Tables(3)

Article Metrics

Article views(536) PDF downloads(155) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-05-06
  • Published:  2021-02-06

Sedimentary Enrichment Mode and Effect Analysis of Exploration and Development: A case study of Fuyu reservoir tight oil in northern Songliao Basin

doi: 10.14027/j.issn.1000-0550.2020.057
Funds:

National Science and Technology Major Project 2016ZX05046-006-002

Abstract: Taking the Fuyu reservoir in northern Songliao Basin as an example, this paper discusses the sedimentary enrichment mode and exploration and development effect for tight oil. The characteristics of the tight sandstone reservoir in the Fuyu oil layer (e.g., many longitudinal small layers, large interlayer span, plane sand body staggered distribution, thin single layer thickness, poor continuity and strong heterogeneity), the fine geological anatomy of the development test area was investigated using abundant drilling and three-dimensional seismic data. The development characteristics of the small-level stacked dense channel sandbody in the Fuyu oil layer, and a prediction technology for the stacked sandbodies, are proposed. This provides a scientific basis for large-scale geology and engineering of multiple “sweet spots” in tight oil. The results show that there are three types of superimposed sandbodies developed in the Fuyu oil layer: the main channel, the main thin channel, and the thin distributary channel. The pre-stack time migration technology applied to a viscoelastic medium achieved high-resolution interpretation of the thin layers in the FI and FII reservoir groups, and improved the vertical resolution of imaging. High-resolution seismic imaging and Z-inversion technology improves the ability to predict 3⁃5 m channel sandstone reservoirs. The plane distribution and vertical position of the superimposed sandbodies are clearly described, which effectively guides well location for exploration and development of terrestrial tight oil in the Fuyu reservoir. The development technology may be selected depending on the differences between the superimposed sandbodies and maximize the production rate of tight oil. Daqing Oilfield has achieved good exploration and development results over many years of developing greater geological understanding, sandbody identification and exploration technology.

MENG QiAn, ZHAO Bo, CHEN ShuMin, LIN TieFeng, ZHOU YongBing, QIAO Wei. Sedimentary Enrichment Mode and Effect Analysis of Exploration and Development: A case study of Fuyu reservoir tight oil in northern Songliao Basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 112-125. doi: 10.14027/j.issn.1000-0550.2020.057
Citation: MENG QiAn, ZHAO Bo, CHEN ShuMin, LIN TieFeng, ZHOU YongBing, QIAO Wei. Sedimentary Enrichment Mode and Effect Analysis of Exploration and Development: A case study of Fuyu reservoir tight oil in northern Songliao Basin[J]. Acta Sedimentologica Sinica, 2021, 39(1): 112-125. doi: 10.14027/j.issn.1000-0550.2020.057
  • 致密油是继页岩气之后全球非常规油气勘探开发的又一新热点[1-4],鄂尔多斯盆地上三叠统长7段致密油的规模开发,标志中国致密油勘探开发获得成功[4]。目前,针对致密油最佳提产方式是水平井+大规模体积改造,为了提高水平井砂岩(或油层)钻遇率,准确识别“甜点”是致密油勘探开发过程中重中之重,也是难点。由于沉积相带控制砂体分布特征及组合类型,松辽盆地北部扶余油层属于陆相河流沉积环境,具有单层砂体厚度薄、层间跨度大、纵向不集中、砂体错叠分布、横向不连续和非均质性强的特点,给油田致密油开发带来巨大挑战,其难点不能照搬美国海相Bakken和国内其它盆地致密油勘探开发技术[5-7]。大庆油田经历近10 年持续攻关,资源规模认识清楚,形成了配套技术系列[8-12]。但由于松辽盆地北部扶余油层“甜点”的规模区识别难度大,导致致密油规模动用、整体效益相对较差。

    随着非常规油气勘探开发事业的快速发展[13],想必按照构造、岩性型油气藏地质认识及技术业已满足不了非常规油气勘探开发的需求。松辽盆地北部扶余油层致密油属于上生下储型油藏,而且有利区储集层形成于河流相大背景环境下的浅水三角洲沉积相带内,造就了致密储集砂体具有单砂体厚度薄、纵向错叠不集中、横向连续性差等特点,导致平面和纵向 “甜点”识别难。针对这一难题,试图从沉积学角度开展浅水三角洲相带的精细地质解剖,认清砂体纵向、横向展布规律,进而配合高分辨率地震处理、解释及反演技术,提高扶余油层“甜点”的规模区预测精度,有效指导勘探开发井位部署工作。因此,本文在前人致密油成藏主控因素、富集规律认识、资源潜力评价等基础上,通过开发区的沉积微相研究入手,进行精细地质解剖,认识了扶余油层致密砂体纵横向叠置关系及分布规律,初步建立了致密油层沉积富集模式,深化了“甜点”区富集因素的认识。利用黏滞介质叠前时间偏移和地层倾角道集偏移孔径优选为核心的叠置砂体高分辨率地震处理技术及反演技术,平面上优选规模“甜点”区、纵向精准识别“甜点”砂体,为勘探水平井和开发立体水平井、平台直井钻探提供地质认识和技术支撑,有效指导其勘探与开发。

  • 松辽盆地北部白垩系泉头组扶余油层发育河流—浅水三角洲沉积环境下形成的低—特低渗透性致密砂岩储集层,2011 年以前提交的石油探明地质储量中,储集层孔隙度平均为11.8%,渗透率平均为2.3×10-3 μm2,以岩性油藏为主,2011年以来剩余勘探目标以赋存于孔隙度小于10%,渗透率小于1×10-3 μm2储集层中的致密油为主(图1)。

    Figure 1.  Superposition of controlling factors of Fuyu reservoir in northern Songliao Basin

  • 前人已从烃源岩、构造、断裂和储层物性4个方面宏观阐述了扶余油层河流相致密油成藏主控因素[14-15],致密油分布在有效烃源岩控制范围内的局部构造高部位的河道砂体发育区(图1)。

    一是青山口组成熟烃源岩广覆式分布,控制扶余油层致密油藏分布范围。扶余油层在地质层位上下伏于青山口组一段成熟烃源岩,已发现的致密油工业油流井和致密储量均分布在烃源岩R o≥0.75%范围内,说明成熟烃源岩控制致密油的分布范围。

    二是构造高部位是致密油运聚指向区。松辽盆地明水组沉积末期以后的构造反转,使得地层收缩,导致已处于超压状态的青山口组一段烃源岩过剩压力进一步增加,最终超过岩石破裂极限,在扶余油层顶面诱发形成断裂,高压流体沿断裂向下注入到扶余油层,有利于正向构造部位聚集成藏。已发现的储量和工业油流探井多位于二级构造单元内构造高部位和斜坡地垒块,因此,构造高部位是致密油运聚指向区。

    三是北西向断裂带控制致密油富集。扶余油层的NW向正断裂受NW向区域挤压应力场作用,主要表现为张扭性,上覆烃源岩生成的油气沿通源断裂运移至储集层中聚集成藏。扶余油层河道砂体与NW向断裂互相切割构成了油气优势运移通道,因此NW向反向断裂控制致密油富集。

    四是储层物性控制致密油“甜点”区。利用松辽盆地北部扶余油层2 500 余口探井资料,开展储层物性分析工作,将已发现储量与扶余油层物性叠合分析,发现绝大部分储量分布在孔隙度大于10%的储集层中,只有零星储量分布在孔隙度8%~10%的储集层中(图1),这可能与目前提交储量标准要求有关。另外,统计储集层孔隙度小于9%的地区的探井含油性,发现工业、低产油流井也占60%以上,而且研究也证实了孔隙度在3%~5%的泥质粉砂岩中含油饱和度可达70%[16],这也充分说明了不同物性条件的砂体均可含油,只是富集程度不同而已。因此,在有效烃源岩范围内的有利构造位置、断裂发育地区,储层物性控制致密油的“甜点”区富集。

  • 松辽盆地北部扶余油层的沉积环境与烃源岩配置关系,决定了致密油藏具有以下典型特征[17-22]

    一是超压驱动,近源短距离成藏。青山口组烃源岩生烃造成的过剩压力普遍在10~20 Mpa[18],因强超压的存在,在超压的驱动下,油气直接或经由大量通源断裂从烃源岩向下充注到微—纳米级砂岩储集层中[17-18,23]。由于扶余油层属于上生下储型油藏,油气运移过程中超压是唯一动力,而且在油气运聚过程中压力是不断消耗的,同时储集岩致密横向渗透性差,因此油气侧向充注的距离相对较短,所以扶余油层致密油藏多分布在近源的凹陷主体部位。

    二是非浮力聚集,无统一油水界面。致密油藏的储层纳米级孔隙是主要的储集空间(图2),纳米级喉道为主要的渗流通道,喉道半径主要在30~800 nm;束缚水主要分布在<50 nm的孔喉内,而可动流体主要分布在>100 nm的孔喉内。纳米级孔喉限制浮力的作用,故油气在超压驱动力下运移至致密砂岩储层中属于非浮力聚集,难以形成重力分异效应[19-20],因此扶余油层致密油区油水分布复杂无明显规律,而且不存在明确的统一的油水边界。

    Figure 2.  Micro characteristics of tight reservoir in Fuyu oil layer, northern Songliao Basin

    三是连续油气充注,形成“甜点”区富集。对于致密油藏,油气受超压驱动连续充注及致密储集层横向渗透性和连续性差,致使局部聚集,形成“甜点”区[17,19],扶余油层致密油含油边界除受构造控制外,还受岩性和物性控制。

  • 通过扶余油层致密油成藏主控因素分析,有效源岩分布、局部构造和断裂在致密油勘探开发过程中的井位署时可以宏观把控。针对单层砂体厚度薄、层间跨度大、砂体错叠分布等特点,在“甜点”区优选和井位部署过程中,有效把控砂体空间展布是勘探开发中的重点。本文从精细解剖开发试验区地质特征入手,对“甜点”区沉积富集因素进行深化认识。

  • 松辽盆地北部白垩系扶余油层沉积时期为一大型坳陷湖盆,地形平坦,讷河—依安水系、拜泉—青岗水系和怀德—长春3大水系,控制其沉积作用,发育曲流河、网状河、浅水三角洲及浅水湖泊4种沉积类型,形成满盆含砂沉积充填特征[24-26]。在宏观物源方向确定的基础上,依据开发井录井岩性和测井资料,结合区域沉积相类型,开展开发区块扶余油层解剖,揭示沉积微相演化规律,进而认识不同相带砂体组合类型,为致密油开发提供科学依据。

    在砂泥岩剖面中,自然电位(SP)、自然伽马(GR)测井与泥质含量关系密切,泥质含量越低自然伽马与自然电位响应程度越高,在曲线上表现为幅值趋于负异常;深浅侧向电阻率(LLD与LLS)测井与砂岩也有较好响应,但表现为正异常高幅值特征。根据沉积时古环境特征及其持续时间,测井曲线会显现不同形态,具体形态有箱型、钟型、漏斗型、指型。箱型可指示沉积物供给稳定,环境能量变化小,一般指示分流河道、点坝沉积微相等;钟型以物源稳定,水动力强为始,顶部结束于安静水体的泥岩沉积,一般指示分流河道沉积微相等;漏斗型与钟型相反,表现为反韵律响应,一般指示决口扇、河口坝沉积微相等;指型可指示水体环境相对稳定,表现为复合韵律,一般指示天然堤沉积微相等。

    本文主要采用SP、GR、LLD与LLS曲线幅度差及曲线形态,建立扶余油层沉积微相岩性—测井响应特征,进而识别出分流河道、天然堤、决口扇和分流间湾等4种沉积微相类型,并建立了单井沉积微相图版(图3)。

    Figure 3.  Sedimentary microfacies mark and single well sedimentary microfacies map in Fuyu reservoir, northern Songliao Basin

  • 分流河道是浅水三角洲中最重要的沉积微相类型,是储集油气的优质储层之一。在向深水推进时,河水能量减弱动量下降,河道发生进一步分流沉积砂岩或粉砂岩。研究区分流河道岩性为粉砂岩、粉细砂岩构成骨架砂体,垂向上粒度变化不明显,少数可见正旋回,砂体厚度一般为3~5 m,连续性差,与天然堤组合成多期旋回。SP、GR曲线表现为明显的负异常,LLS、LLD深浅电阻率为高异常,曲线模式以箱型、钟型为主要特征,底部为突变接触特征(图3a)。

  • 天然堤主要发育在河道的两侧,由于泥质含量的增加,其自然伽马值相对变高,曲线属于中低幅度,底部与河道沉积出现突变尖峰特征,LLS和LLD电阻率曲线也呈中低幅度,具有指型的齿化现象(图3b)。

  • 决口扇是由于河道流量过大时,河水冲出河道,在平原上形成扇状沉积体,曲线具有反韵律特征。底部常见冲刷面,砂体厚度一般为2~4 m。决口扇测井响应为中低幅反韵律漏斗型,其SP、GR值均较低,LLS和LLD深浅电阻率呈中高异常幅值,幅度差也较小(图3c)。

  • 分流间湾水体较为安静,物源匮乏,多为泥质沉积,砂体不发育。常与生物扰动相伴,垂向以加积为主。分流间湾测井曲线形态较为平缓,SP与GR曲线值较高、LLS和LLD深浅电阻率曲线较低,曲线幅度差较小,整体表现为平缓的曲线特征(图3d)。

  • 为了推进扶余油层致密油勘探开发一体化工作,在宏观沉积体系控制下,通过编制了开发试验区新一轮扶余油层细分小层的沉积微相大比例尺工业制图[27-28],证实研究区北部、东北部沉积体系能量较弱,小层延伸短、宽条带河道砂,平面沉积微相迁移快;南部、东部、东南部沉积体系能量较强,条带状河道砂延伸较远,小层发育规模河道砂体;西部沉积体系为短物源,能量强,窄条带、断续条带分流河道砂体分布狭窄[28]。目前,松辽盆地北部扶余油层开发试验区块已有18 个(图1),本文以M2开发试验区为例,认识扶余油层单砂体沉积微相演化特征,进而为深化扶余油层小层砂体分布特征及认识提供科学依据。

    解剖区为浅水三角洲沉积,物源方向为南东方向,分流河道、决口扇与天然堤为主要沉积微相(图4)。鉴于开发层系较多,本文以FI3小层沉积微相为例,描述沉积微相平面演化规律(图5)。平面上,分流河道较窄,宽度在500~1 000 m,平均700 m,且河流多次分叉、改道,决口扇微相在解剖区内普遍发育,由于多条分流河道叠合现象,导致叠合分流河道宽度较大。纵向上,因砂体侧向相变快,决口扇发育,多期河道叠加。

    Figure 4.  Sedimentary microfacies profile of Fuyu reservoir in M2 development and test area, northern Songliao Basin (section in Fig.5)

    Figure 5.  Sedimentary microfacies map of FI2, FI3, FII1 of M2 development and test area in Fuyu reservoir, northern Songliao Basin

  • 通过开发试验区沉积微相演化规律分析可知,不同沉积体系的能量强弱,影响小层河道砂体平面上的延伸长度和宽度、纵向上的叠置砂体厚度大小。基于小层沉积微相,进行开发井区扶余油层单砂体精细刻画,其中,FI油层组河道宽度为220~720 m,单砂体厚度为1.6~5.5 m,平均4.3 m;FII油层组河道宽度为320~1 200 m,单砂体厚度为2.2~6.4 m,平均5.7 m。依据扶余油层砂层组中单层含油砂岩发育规模,划分出主力层河道砂体(单层含油砂岩厚度2.5 m以上、层数<3 层)、主力层薄层河道砂体(单层含油砂岩厚度2.0 m以上、层数≤3 层)和薄层分流河道砂体(单层含油砂岩厚度1.5 m以上、层数>3 层),致密油储层砂体特征见表1,进一步提出了小层级河道型致密砂体3种叠置类型(图6),为扶余油层纵向叠置的致密砂体在地震上识别与预测提供科学依据。

    砂体类型 宽度/m 厚度/m 岩性特征 电性特征 R LLD/(Ω·m) DEN/(g·cm-3) 物性特征
    孔隙度/% 渗透率 /×10-3μm2 含油性
    主力层河道砂体 600~1 200 4.0~10.6 细砂岩、粉砂岩 R LLD≥25 DEN≤2.4 10.1~13.0 0.38~2.29 含油、油浸,含水饱和度≤60%
    主力层薄层河道砂体 240~500 2.2~5.0 粉砂岩、含泥粉砂岩 R LLD≥20 DEN≤2.48 8.2~10.2 0.22~1.33 油浸、油斑,含水饱和度45%~70%
    薄层分流河道砂体 220~400 1.6~4.6 粉砂岩、泥质粉砂岩、含钙粉砂岩 R LLD<20 DEN>2.48 5.4~8.3 0.01~1.07 油斑、油迹,含水饱和度50%~75%

    Table 1.  Characteristics of tight oil reservoir sandbody in Fuyu oil layer, northern Songliao Basin

    Figure 6.  Superposed channel⁃type dense sandbodies in the Fuyu oil layer, northern Songliao Basin (section in Fig.1)

  • 三肇凹陷宋芳屯油田南部、肇州及肇源油田发育主力层河道砂体,整体上FI油层组中FI3和FI7小层发育河道砂体,有效厚度大于2.5 m,单砂体厚度大,物性好,但平面沉积微相迁移频繁,主力层河道砂体呈宽条带状分布。

  • 三肇凹陷宋芳屯油田北部、葡萄花油田东翼发育主力层薄层河道砂体,整体上FI、FII油层组各小层均发育1~2 层有效厚度大于2.5 m主力层河道砂体,与其他小层分流河道砂体纵向错叠,平面呈条带、断续条带分布,局部富集。

  • 三肇凹陷葡萄花油田,齐家—古龙凹陷龙虎泡、他啦哈油田致密油层集中在FII2油层组以上,发育窄条带、断续条带状分流河道砂体,为薄层分流河道砂体叠置区,其纵向砂体层数多、单层厚度薄,油层连续、局部富集的特点。

    总之,松辽盆地北部扶余油层河流相砂体受多物源沉积体系影响,其不同期次的河道砂体、分流河道砂体在沉积过程中形成复杂的组合类型。通过深化砂体类型,明确了扶余油层致密油剩余储量平面和纵向分布特征,进而可有效指导其勘探开发进程,为下步尽快建产提供科学支撑。

  • 大庆油田在有效烃源岩分布范围内、优选局部构造有利部位,结合区域沉积微相,应用砂体识别技术,近几年取得较好的勘探开发成效。

  • 由于沉积环境控制,松辽盆地北部扶余油层整体表现为薄互层,单层砂岩厚度小于2 m的砂体占总数50%以上,致使储层厚度小于1/4 λ地震波长。对于这种窄小河道、纵向薄互层叠置砂体,在地震识别上,首先应根据钻井揭示的砂岩厚度和砂体组合类型,模拟真实的河道特征,进行正演模拟,建立叠置河道砂体的地震识别模型[29]

    为了能真实反映复杂地质特征,建立了薄互层叠置砂体正演模型(图7a),设置河道砂岩厚度在2~3 m,最小厚度1 m,最大厚度8 m。正演为垂直入射、自激自收的褶积模型,子波为45 Hz的雷克子波,未掺入噪声。

    Figure 7.  Geology and forward model of thin interbedded channel sand body

    从正演结果(图7b)可以看到,同向轴为岩性反射界面,不同砂体组合类型具有相应的发射特征;砂体组合模式复杂处,薄、过渡岩性叠加处存在不确定性或多解性。

    通过正演模拟可以确定,单期河道砂体振幅强度为中强,一般标定在波峰下半部,地震识别比较容易;两期河道砂体振幅强度中强,一般标定在波峰下半部或波谷,地震识别比较容易;多期河道砂体叠加时振幅强度中强,砂体和波峰相对位置复杂,预测砂体时应借助钻井信息进行识别。

  • 通过扶余油层砂体空间展布规律认识,为了有效指导勘探开发井位部署,“精准”刻画有利勘探目标区和开发区块砂体平面展布规模和纵向准确位置是关键,大庆油田在原有的地震保幅高分辨率处理技术基础上[30],利用黏滞介质叠前时间偏移、地层倾角道集偏移孔径优选技术[29,31-32],发展了地震保幅高分辨率处理技术。应用该技术可以拓宽地震频带20 Hz(图8),新处理成果振幅属性对钻井符合率明显提高,有效刻画扶余油层河流相叠置砂体。

    Figure 8.  Seismic profile comparisons for well intersecting (a) conventional, and (b) viscoelastic pre⁃stack time migration in Fuyu reservoir, northern Songliao Basin

    以三肇凹陷宋芳屯油田的三维地震资料应用新地震保幅高分辨率处理技术进行重新处理为例,测井解释FI、FII油层组发育4个河道砂体(图8)。在常规叠前时间偏移处理成果剖面上(图8a),FI、FII两个油层组对应T2层之下3个波峰,在解释上由于FI1局部反射能量弱,识别困难,FII1无法进行横向追踪解释。在黏弹叠前时间偏移处理成果剖面上(图8b),FI、FII两个油层组在T2层下出现5个波峰,同向轴能量强、波形横向变化自然、合理,能够提高成像效果的垂向分辨率,可满足垂向高分辨率解释。但对于开发的小层和薄互叠置层解释,由于地震采集频宽有限,实际工作解释中进一步利用钻井小层数据进行对应解释。

  • 近年来,大庆油田形成了基于黏滞介质叠前时间偏移、地层倾角道集偏移孔径优选的高分辨率地震成像技术及振幅属性、地质统计学反演、SMI反演、Z反演技术,进行不同类型砂体井—震结合的“甜点”预测(表2)。在松辽盆地北部17个三维地震工区进行推广应用,地震资料品质提高了15 Hz,大于3 m的砂体识别准确率在75%以上,很好地刻画了叠置砂体平面展布和纵向位置,指导部署完钻多口水平井(图9表3),油层综合钻遇率85%以上,误差由原来的10%~20%降低到1%~2%,提高了3~5 m河道砂岩储层预测能力,有效支撑了致密油试验区产能建设。

    层位 沉积相带 砂体类型 地震模式及特点 典型井 典型井地震反射特征 地震反射特征描述 地震砂体刻画技术
    扶 余 油 层 曲流河 分流河道 单期 河道 单期河道 单一振幅 ZP1 中强或强振幅,砂岩位于正相位,砂体横向变化快 保幅高分辨率处理(黏弹偏)、地震沉积学解释、地质统计学反演
    三角洲平原、三角洲前缘 分流河道、水下分流河道、窄小河道 多期 河道 两期河道 相邻叠加 ZP5 中强或强振幅,砂岩位于正向位或负相位,砂体横向变化较快 保幅高分辨率处理(黏弹偏)、去砂实验、振幅补偿属性分析、地震沉积学解释、Z反演
    多期河道 相邻叠加 ZP6 中强振幅,波形复杂,多数砂岩位于正相位,砂体横向变化快 保幅高分辨率处理(黏弹偏)、谱反演解释性提频及振幅属性分析、Z反演
    三角洲 前缘 水下分流河道 T2屏蔽 砂体位于T2波峰内 ZP3 砂体横向变化快,砂体特征被T2强反射屏蔽 保幅高分辨率处理(黏弹偏)、子波分解重构与振幅属性分析、波形指示反演
    砂体位于T2波谷内 ZP25 砂体横向变化快,砂体特征被T2强反射屏蔽,振幅或波形有一定变化 保幅高分辨率处理(黏弹偏)、子波旁瓣压缩+谱反演提频与振幅属性分析、波形指示反演
    砂体位于T2下弱波峰 ZP15 砂体横向变化快,砂体特征被T2强反射部分屏蔽,振幅反射特征较明显 保幅高分辨率处理(黏弹偏)、振幅属性分析、波形指示反演

    Table 2.  Seismic response characteristics of different types of sandbodies and comparison of characterization techniques in Fuyu oil layer, northern Songliao Basin

    Figure 9.  Seismic and inversion profile of well F in Fuyu reservoir based on new technology, northern Songliao Basin

    井号 水平段长度/m 砂岩厚度/m 油层厚度/m 砂岩钻遇率/% 油层钻遇率/%
    ZP22 1 123 1 123 1 090 100 97.06
    ZP22-P1 1 177 1 112 1 099 94.5 93.4
    ZP22-P2 1 135 1 135 1 135 100 100
    ZP22-P3 913 913 834 100 91.3
    ZP22-P4 837 817 761 97.6 90.9
    ZP23 1 234 1 024 934 83.0 75.7
    ZP23-P1 705 533 504 71.5 75.6
    ZP24 1 453 1 279 1 035 88.0 71.2
    ZP24-P1 726 688 542 94.7 78.8
    ZP24-P2 2 472 2 096 1 974 84.8 79.9
    ZP26 1 370 1 274 1 131 93.0 82.6
    平均 1 195 1 090.4 1 003.5 91.6 85.1

    Table 3.  Statistical table of drilling effect on tight oil layer in Fuyu oil layer, northern Songliao Basin

  • 2011 年以来,大庆油田按照“先易后难、先好后差”的原则,针对松辽盆地扶余油层致密油非均质特性,形成了“预探先行,探索技术提产量;评价跟进,控投降本增效益”的总体工作思路,多区带均获突破,实现了增储上产同步[9,11],打破了勘探开发工作界限,创建了“预探评价一体化、整体部署”工作模式(图10),取得很好的勘探成效。

    Figure 10.  Integrated work mode of tight oil geological engineering in Fuyu reservoir, northern Songliao Basin

    随着精细勘探需求,近年来,通过技术攻关,形成了以黏弹偏处理技术为主,以Z等反演储层预测技术为核心的不同类型砂体井—震结合的多属性“甜点”预测技术,地震资料品质提高15~20 Hz,大于3 m砂层识别准确率在75%以上(表3),建立了“甜点”精细刻画和水平井轨迹精细控制技术,水平井钻探保持高水平推进。通过储层物性、单砂体厚度及油层层数等参数,井—震结合优选规模“甜点”区23 个,面积5 464 km2,估算资源量7.8×108 t,为致密油试验区开发提供优质资源。

  • 继预探先行之后,评价开发创新形成了“平台化、立体式开发一体化”优化设计技术,初步实现致密油“三最”目标[10-11]。同时,以地质和工程“双甜点”刻画、压裂渗吸开采机理为基础,发展完善了扶余油层薄互层“斜直井组缝网压裂弹性开发”和主体河道“立体水平井体积压裂”一体化优化设计技术。以储量动用率最大、改造效果最佳、经济效益最优为目标,形成了“多层位、多井型、平台式、工厂化”的直井缝网压裂、立体水平井体积压裂、直—平联合立体动用开发模式(图11),控制产能建设综合投资,提高管理和施工效率。最终,实现了新评价区块“当年布井,当年钻井,当年投产”工作目标。

    Figure 11.  Tight oil development mode of Fuyu reservoir, northern Songliao Basin

    截止2019 年底,针对松辽盆地北部扶余油层致密油,开展先导和工业化试验区18 个(图1),动用储量8 288×104 t。已建成YP1-Y211、L26、F198-133和平台化直井T21-4等4个国家示范工程试验区,取得很好的开发成效。

  • 近几年国际沉积学会议(IMS, International Meeting of Sedimentology)论文发表情况[33-34],分析指出当前国内外沉积研究热点主要包括:人类世沉积学;湖相沉积环境;深水沉积过程;“源—汇”系统;微生物岩沉积和沉积过程模拟。随着人类社会发展对能源、资源、全球变化和居住环境等方面的需求[35],大大地推动了沉积学向综合、交叉学科方向发展。由于我国综合实力的增强及对能源矿产的需求不断提升,尤其近些年全球致密油气、页岩油气和深水油气勘探开发的蓬勃发展及我国油气资源战略需求不断攀升,极大地推动了非常规油气沉积学的快速发展,并已有明确的定义[13],使得以“生、储、盖、圈、运、保”为核心要素的常规油气沉积学,逐步向超低渗透的致密砂砾岩、碳酸盐岩、火山岩、变质岩及泥页岩等非常规油气沉积学跨越,理论上取得一系列创新认识、勘探开发取得显著成效 [1-8,11-15,17,1920,22,27,36-50]。鉴于非常规油气沉积学的沉积环境与沉积模式及非常规油气“甜点”区(段)等核心研究内容[13],本文建立了河流—浅水三角洲沉积环境下形成的单砂体厚度薄、层间跨度大、纵向不集中、砂体错叠分布、横向不连续为特征的叠置型砂体致密油层沉积富集模式,为丰富、完善非常规油气沉积学研究内容之一的沉积模式提供基础素材和样例。同时,针对该叠置型砂体创建了高分辨率地震成像处理技术及储层预测技术,能够准确识别致密油“甜点”富集区,大大提高了水平井砂岩(或油层)钻遇率,取得良好的勘探开发成效,为完善非常规油气沉积学研究内容之一的非常规油气“甜点”区(段)识别或预测方法和技术提供实例,也为国内陆相沉积环境的致密油“甜点”富集区识别或预测提供借鉴意义。

  • (1) 松辽盆地北部扶余油层致密油藏分布主要受有效烃源岩、构造、断裂、储层物性宏观控制;油藏具有超压驱动,近源短距离成藏;非浮力聚集,无统一油水界面和连续油气充注,形成“甜点”区富集特征。

    (2) 松辽盆地北部扶余油层砂体具有单层砂体厚度薄、层间跨度大、纵向不集中、砂体错叠分布、横向不连续和非均质性强的特点,开发区精细地质解剖得知,扶余油层小层级河道型致密砂体发育主力层河道、主力层薄层河道、薄层分流河道等3种叠置类型砂体。

    (3) 基于黏滞介质叠前时间偏移、地层倾角道集偏移孔径优选、T2屏蔽处理技术为主及地质统计学反演、SMI反演、Z反演技术,能够很好地刻画了叠置砂体平面展布和纵向位置,指导部署完钻多口水平井,有效支撑了致密油试验区产能建设。

    (4) 通过“甜点”区地质深化认识和砂体识别及开采技术攻关,勘探上优选规模“甜点”区23 个,面积5 464 km2,估算资源量7.8×108 t,实现“预探评价一体化、整体部署”工作模式,取得很好的勘探成效;开发上开展先导和工业化试验区18 个,动用储量8 288×104 t,已建成YP1-Y211、L26、F198-133和平台化直井T21-4等4 个国家示范工程试验区,取得很好的开发成效。

Reference (50)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return