Advanced Search
Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

FAN HaiJing, DENG HuCheng, FU MeiYan, LIU SiBing, YU HanZe, LI YiLin. Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019. doi: 10.14027/j.issn.1000-0550.2020.041
Citation: FAN HaiJing, DENG HuCheng, FU MeiYan, LIU SiBing, YU HanZe, LI YiLin. Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019. doi: 10.14027/j.issn.1000-0550.2020.041

Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction

doi: 10.14027/j.issn.1000-0550.2020.041
Funds:

National Science and Technology Major Project 2016ZX05036⁃003⁃007

  • Received Date: 2019-08-23
  • Publish Date: 2021-08-10
  • With the exploration and exploitation of shale oil and gas in the Sichuan Basin, the shale of Lower Cambrian Qiongzhusi Formation has received extensive attention. However, the deep burial depth and limited drilling data restricted the study of the sedimentary characteristics of the Qiongzhusi Formation. In this paper, a comprehensive study of the shale deposition was conducted by means of outcrop profile observation, core description, geochemical analyses of major, trace elements, and so on. Four lithological combinations in different structural regions of the Qiongzhusi Formation were classified by analyzing vertical variation and combination relationships. Moreover, the types of sedimentary facies in the Qiongzhusi Formation are summarized depend on the similarities and differences of lithological combinations in different structural regions. The tectonic settings of different structural regions in the Sichuan Basin during the Early Cambrian, affected by tectonic movement, have particular differences. Favorable area for shale with large thickness and rich organic matter are related to intracratonic sags, hot water deposition and location, such as the Chengkou area, the Mianyang⁃Changning area and the Shizhu area. The lithofacies and sedimentary cycles of the Qiongzhusi Formation in structural regions were divided and compared, and differences of the oxidation⁃reduction, climate and productivity were studied. Furthermore, the differences in sedimentary evolution under different tectonic settings during the Early Cambrian were clarified. This study established the sedimentary system of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin, including the shallow⁃water gentle⁃slope sedimentary system in northeastern Sichuan Basin, shallow⁃water shelf area sedimentary system in the southeastern Sichuan Basin, the coastal beach⁃shelf sedimentary system and the shelf⁃depression (extensional sags) sedimentary system. The re⁃division of the deposition system provides an evidence for the further exploration and exploitation of the marine shale of the Qiongzhusi Formation.
  • [1] 聂海宽,张金川,李玉喜. 四川盆地及其周缘下寒武统页岩气聚集条件[J]. 石油学报,2011,32(6):959-967.

    Nie Haikuan, Zhang Jinchuan, Li Yuxi. Accumulation conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Acta Petrolei Sinica, 2011, 32(6): 959-967.
    [2] 王庆波. 四川盆地及周缘下寒武统页岩气地质条件[J]. 内江科技,2015,36(11):63-64.

    Wang Qingbo. Geological conditions of the Lower Cambrian shale gas in the Sichuan Basin and its periphery[J]. Nei Jiang Science & Technology, 2015, 36(11): 63-64.
    [3] 江凯禧,彭丽,何文祥,等. 页岩气储层非均质性研究:以四川盆地下寒武统筇竹寺组为例[J]. 海洋地质前沿,2014,30(8):47-54.

    Jiang Kaixi, Peng Li, He Wenxiang, et al. Research of shale gas reservoir heterogeneity: A case of the Lower Cambrian Qiongzhusi Formation of the Sichuan Basin[J]. Marine Geology Frontiers, 2014, 30(8): 47-54.
    [4] 熊亮. 四川盆地及周缘下寒武统富有机质页岩孔隙发育特征[J]. 天然气地球科学,2019,30(9):1319-1331.

    Xiong Liang. The characteristics of pore development of the Lower Cambrian organic-rich shale in Sichuan Basin and its periphery[J]. Natural Gas Geoscience, 2019, 30(9): 1319-1331.
    [5] 程克明,王世谦,董大忠,等. 上扬子区下寒武统筇竹寺组页岩气成藏条件[J]. 天然气工业,2009,29(5):40-44.

    Cheng Keming, Wang Shiqian, Dong Dazhong, et al. Accumulation conditions of shale gas reservoirs in the Lower Cambrian Qiongzhusi Formation, the Upper Yangtze region[J]. Natural Gas Industry, 2009, 29(5): 40-44.
    [6] 燕继红,李启桂,朱祥. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向[J]. 石油实验地质,2016,38(4):445-452.

    Yan Jihong, Li Qigui, Zhu Xiang. Main factors controlling shale gas accumulation and exploration targets in the Lower Cambrian, Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 2016, 38(4): 445-452.
    [7] 蒋成平,雷应金,龚进,等. 页岩气成藏条件及我国页岩气分布与前景[J]. 内蒙古石油化工,2011(18):133-135.

    Jiang Chengping, Lei Yingjin, Gong Jin, et al. Shale gas accumulation conditions and the distribution and prospect of shale gas in China[J]. Inner Mongulia Petrochemical Industry, 2011(18): 133-135.
    [8] 李登华,张国生,黄金亮,等. 四川盆地下寒武统筇竹寺组页岩气储层特征与勘探潜力[M]//第八届中国含油气系统与油气藏学术会议论文摘要汇编. 杭州:中国石油学会石油地质专业委员会,北京石油学会,2015:153. [

    Li Denghua, Zhang Guosheng, Huang Jinliang, et al. Characteristics and exploration potential of shale gas reservoirs of the Lower Cambrian Qiongzhusi Formation in Sichuan Basin[M]//Proceedings of the 8th China petroleum system and oil and gas reservoirs abstract compilation of academic conference papers. Hangzhou: Petroleum Geology Committee of China Petroleum Society, Beijing Petroleum Society, 2015: 153.]
    [9] 刘红磊,熊炜,高应运,等. 方深1井页岩气藏特大型压裂技术[J]. 石油钻探技术,2011,39(3):46-52.

    Liu Honglei, Xiong Wei, Gao Yingyun, et al. Large scale fracturing technology of Fangshen 1 shale gas well[J]. Drilling Petroleum Techniques, 2011, 39(3): 46-52.
    [10] 林拓,张金川,包书景,等. 湘西北下寒武统牛蹄塘组页岩气井位优选及含气性特征:以常页1井为例[J]. 天然气地球科学,2015,26(2):312-319.

    Lin Tuo, Zhang Jinchuan, Bao Shujing, et al. The optimum selecting of shale gas well location and gas content of Lower Cambrian, Northwest Hunan: A case study of well Changye[J]. Natural Gas Geoscience, 2015, 26(2): 312-319.
    [11] 曾义金,陈作,卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业,2016,36(1):61-67.

    Zeng Yijin, Chen Zuo, Bian Xiaobing. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry, 2016, 36(1): 61-67.
    [12] 李海,刘安,罗胜元,等. 鄂西宜昌斜坡区寒武系页岩储层发育特征:以鄂宜页1井为例[J]. 石油实验地质,2019,41(1):76-82.

    Li Hai, Liu An, Liu Shengyuan, et al. Characteristics of the Cambrian Shuijingtuo shale reservoir on Yichang slope, western Hubei province: A case study of well EYY 1[J]. Petroleum Geology and Experiment, 2019, 41(1): 76-82.
    [13] 孙玮,刘树根,冉波,等. 四川盆地及周缘地区牛蹄塘组页岩气概况及前景评价[J]. 成都理工大学学报(自然科学版),2012,39(2):170-175.

    Sun Wei, Liu Shugen, Ran Bo, et al. General situation and prospect evaluation of the shale gas in Niutitang Formation of Sichuan Basin and its surrounding areas[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 170-175.
    [14] 王玉满,董大忠,程相志,等. 海相页岩有机质碳化的电性证据及其地质意义:以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业,2014,34(8):1-7.

    Wang Yuman, Dong Dazhong, Cheng Xiangzhi, et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance: A case of the Lower Cambrian Qiongzhusi shale in southern Sichuan Basin[J]. Natural Gas Industry, 2014, 34(8): 1-7.
    [15] 梁狄刚,郭彤楼,陈建平,等. 中国南方海相生烃成藏研究的若干新进展(一)南方四套区域性海相烃源岩的分布[J]. 海相油气地质,2008,13(2):1-16.

    Liang Digang, Guo Tonglou, Chen Jianping, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 1): Distribution of four suits of regional marine source rocks[J]. Marine Origin Petroleum Geology, 2008, 13(2): 1-16.
    [16] 王淑芳,董大忠,王玉满,等. 中美海相页岩气地质特征对比研究[J]. 天然气地球科学,2015,26(9):1666-1678.

    Wang Shufang, Dong Dazhong, Wang Yuman, et al. A comparative study of the geological feature of marine shale gas between China and the United States[J]. Natural Gas Geoscience, 2015, 26(9): 1666-1678.
    [17] 李建青,高玉巧,花彩霞,等. 北美页岩气勘探经验对建立中国南方海相页岩气选区评价体系的启示[J]. 油气地质与采收率,2014,21(4):23-27,32.

    Li Jianqing, Gao Yuqiao, Hua Caixia, et al. Marine shale gas evaluation system of regional selection in South China: Enlightenment from North American exploration experience[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(4): 23-27, 32.
    [18] 李延钧,赵圣贤,黄勇斌,等. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究[J]. 地质学报,2013,87(8):1136-1148.

    Li Yanjun, Zhao Shengxian, Huang Yongbin, et al. The sedimentary micro-facies study of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin[J]. Acta Geologica Sinica, 2013, 87(8): 1136-1148.
    [19] 赵文智,李建忠,杨涛,等. 中国南方海相页岩气成藏差异性比较与意义[J]. 石油勘探与开发,2016,43(4):499-510.

    Zhao Wenzhi, Li Jianzhong, Yang Tao, et al. Geological difference and its significance of marine shale gases in South China[J]. Petroleum Exploration and Development, 2016, 43(4): 499-510.
    [20] 王阳,陈洁,胡琳,等. 沉积环境对页岩气储层的控制作用:以中下扬子区下寒武统筇竹寺组为例[J]. 煤炭学报,2013,38(5):845-850.

    Wang Yang, Chen Jie, Hu Lin, et al. Sedimentary environment control on shale gas reservoir: A case study of Lower Cambrian Qiongzhusi Formation in the middle Lower Yangtze area[J]. Journal of China Coal Society, 2013, 38(5): 845-850.
    [21] 张聪,包书景,石砥石,等. 云南曲靖地区下寒武统筇竹寺组页岩气成藏地质条件及有利区预测[J]. 海相油气地质,2017,22(1):69-74.

    Zhang Cong, Bao Shujing, Shi Dishi, et al. Geological conditions for shale gas accumulation and favorable area prediction in Qujing of eastern Yunnan[J]. Marine Origin Petroleum Geology, 2017, 22(1): 69-74.
    [22] 王毅. 滇东曲靖地区筇竹寺组页岩气成藏地质特征分析[D]. 徐州:中国矿业大学,2015.

    Wang Yi. Geological characteristics analysis of shale gas reservoir formation of the Qiongzhusi Formation in Qujing area, eastern Yunnan[D]. Xuzhou: China University of Mining and Technology, 2015.
    [23] 孟宪武,田景春,张翔,等. 川西南井研地区筇竹寺组页岩气特征[J]. 矿物岩石,2014,34(2):96-105.

    Meng Xianwu, Tian Jingchun, Zhang Xiang, et al. Characteristics of shale gas of the Qiongzhusi Formation in Jingyan area of Southwest Sichuan[J]. Journal of Mineralogy and Petrology, 2014, 34(2): 96-105.
    [24] Potter P E, Maynard J B, Pryor W A. Sedimentology of shale: Study guide and reference source[M]. New York: Springer, 1980.
    [25] Macquaker J H S, Taylor K G, Gawthorpe R L. High-resolution Facies analyses of mudstones: Implications for Paleoenvironmental and sequence stratigraphic interpretations of offshore ancient mud-dominated successions[J]. Journal of Sedimentary Research, 2007, 77(4): 324-339.
    [26] 董大忠,程克明,王玉满,等. 中国上扬子区下古生界页岩气形成条件及特征[J]. 石油与天然气地质,2010,31(3):288-299,308.

    Dong Dazhong, Cheng Keming, Wang Yuman, et al. Forming conditions and characteristics of shale gas in the Lower Paleozoic of the Upper Yangtze region, China[J]. Oil & Gas Geology, 2010, 31(3): 288-299, 308.
    [27] 赵建华,金之钧,金振奎,等. 四川盆地五峰组—龙马溪组页岩岩相类型与沉积环境[J]. 石油学报,2016,37(5):572-586.

    Zhao Jianhua, Jin Zhijun, Jin Zhenkui, et al. Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(5): 572-586.
    [28] 刘忠宝,高波,张钰莹,等. 上扬子地区下寒武统页岩沉积相类型及分布特征[J]. 石油勘探与开发,2017,44(1):21-31.

    Liu Zhongbao, Gao Bo, Zhang Yuying, et al. Types and distribution of the shale sedimentary facies of the Lower Cambrian in Upper Yangtze area, South China[J]. Petroleum Exploration and Development, 2017, 44(1): 21-31.
    [29] 贾智彬,侯读杰,孙德强,等. 贵州地区下寒武统牛蹄塘组烃源岩热水沉积成因鉴别与强度评价[J]. 石油与天然气地质,2018,39(3):429-437.

    Jia Zhibin, Hou Dujie, Sun Deqiang, et al. Genesis and intensity of hydrothermal sedimentation in hydrocarbon source rocks in the Lower Cambrian Niutitang Formation, Guizhou area[J]. Oil & Gas Geology, 2018, 39(3): 429-437.
    [30] Zhang Y Y, He Z L, Jiang S, et al. Marine redox stratification during the early Cambrian (ca. 529‐509 Ma) and its control on the development of organic‐rich shales in Yangtze Platform[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(6): 2354-2369.
    [31] 牟传龙, 周恳恳, 梁薇,等. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 2011, 85(4):526-532.

    Mou Chuanlong, Zhou Kenken, Liang Wei, et al. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration [J]. Acta Geologica Sinica, 2011, 85 (4): 526-532.
    [32] 金之钧,郑和荣,蔡立国,等. 中国前中生代海相烃源岩发育的构造—沉积条件[J]. 沉积学报,2010,28(5):875-883.

    Jin Zhijun, Zheng Herong, Cai Liguo, et al. Tectonic-sedimentary conditions for development of Pre-Mesozoic marine source rocks in China[J]. Acta Sedimentologica Sinica, 2010, 28(5): 875-883.
    [33] 马永生, 陈洪德, 王国力. 中国南方层序地层与古地理(精)[M]. 科学出版社, 2009.

    Ma Yongsheng, Chen Hongde, Wang Guoli. Sequence stratigraphy and paleogeography (fine) in southern China [M]. Science Press, 2009.
    [34] 刘宝珺,许效松. 中国南方岩相古地理图集[M]. 北京:科学出版社,1994.

    Liu Baojun, Xu Xiaosong. Atlas of lithofacies and paleogeography of southern China[M]. Beijing: Science Press, 1994.
    [35] 梁狄刚,郭彤楼,边立曾,等. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质,2009,14(2):1-19.

    Liang Digang, Guo Tonglou, Bian Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, southern China (Part 3): Controlling factors on the sedimentary facies and development of Palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19.
    [36] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版),2013,40(5):511-520.

    Liu Shugen, Sun Wei, Luo Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520.
    [37] 刘宝珺,丘东洲. 中国南方岩相古地理与油气前景[J]. 南方油气地质,1995,2(1):4-7,3.

    Liu Baojun, Qiu Dongzhou. South China’s petoleum exploration (6): The lithofacies palaeogeography and petroleum exploration prospect in South China[J]. South China Petroleum Geology, 1995, 2(1): 4-7, 3.
    [38] 刘宝珺,周名魁,王汝植. 中国南方早古生代古地理轮廓及构造演化[J]. 中国地质科学院院报,1990,11(1):97-98.

    Liu Baojun, Zhou Mingkui, Wang Ruzhi. Early Palaeozoic palaeogeography and tectonic evolution of South China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1990, 11(1): 97-98.
    [39] 吉让寿,秦德余,高长林. 古东秦岭洋关闭和华北与扬子两地块拼合[J]. 石油实验地质,1990,12(4):353-365.

    Ji Rangshou, Qin Deyu, Gao Changlin. Closing of eastern Qinling palaeoocean and collaging between the North China and Yangtze blocks[J]. Experimental Petroleum Geology, 1990, 12(4): 353-365.
    [40] 魏国齐,杨威,杜金虎,等. 四川盆地震旦纪—早寒武世克拉通内裂陷地质特征[J]. 天然气工业,2015,35(1):24-35.

    Wei Guoqi, Yang Wei, Du Jinhu, et al. Geological characteristics of the Sinian-Early Cambrian intracratonic rift, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(1): 24-35.
    [41] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发,2014,41(3):305-312.

    Wang Zecheng, Jiang Hua, Wang Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312.
    [42] 李伟,刘静江,邓胜徽,等. 四川盆地及邻区震旦纪末—寒武纪早期构造运动性质与作用[J]. 石油学报,2015,36(5):546-556,563.

    Li Wei, Liu Jingjiang, Deng Shenghui, et al. The nature and role of Late Sinian-Early Cambrian tectonic movement in Sichuan Basin and its adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(5): 546-556, 563.
    [43] 张俊鹏,樊太亮,张金川,等. 露头层序地层学在上扬子地区页岩气初期勘探中的应用:以下寒武统牛蹄塘组为例[J]. 现代地质,2013,27(4):978-985.

    Zhang Junpeng, Fan Tailiang, Zhang Jinchuan, et al. Application of outcrop sequence stratigraphy on the initial exploration of shale gas in Upper Yangtze region: Taking Niutitang Formation in Lower Cambrian as an example[J]. Geoscience, 2013, 27(4): 978-985.
    [44] 杜金虎,汪泽成,邹才能,等. 上扬子克拉通内裂陷的发现及对安岳特大型气田形成的控制作用[J]. 石油学报,2016,37(1):1-16.

    Du Jinhu, Wang Zecheng, Zou Caineng, et al. Discovery of intra-cratonic rift in the Upper Yangtze and its coutrol effect on the formation of Anyue giant gas field[J]. Acta Petrolei Sinica, 2016, 37(1): 1-16.
    [45] 黄福喜,陈洪德,侯明才,等. 中上扬子克拉通加里东期(寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报,2011,27(8):2299-2317.

    Huang Fuxi, Chen Hongde, Hou Mingcai, et al. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica, 2011, 27(8): 2299-2317.
    [46] 杨家騄. 东秦岭寒武纪构造古地理概况[J]. 地球科学:中国地质大学学报,1988,13(5):473-480.

    Yang Jialu. A survey of Cambrian paleotectonogeography in East Qinling[J]. Earth Science:Journal of China University of Geosciences, 1988, 13(5): 473-480.
    [47] 贾智彬,侯读杰,孙德强,等. 热水沉积区黑色页岩稀土元素特征及其地质意义:以贵州中部和东部地区下寒武统牛蹄塘组页岩为例[J]. 天然气工业,2018,38(5):44-51.

    Jia Zhibin, Hou Dujie, Sun Deqiang, et al. Characteristics and geological implications of rare earth elements in black shale in hydrothermal sedimentation areas: A case study from the Lower Cambrian Niutitang Fm shale in central and eastern Guizhou[J]. Natural Gas Industry, 2018, 38(5): 44-51.
    [48] 刘树根,冉波,郭彤楼,等. 四川盆地及周缘下古生界富有机质黑色页岩:从优质烃源岩到页岩气产层[M]. 北京:科学出版社, 2015.

    Liu Shugen,Ran Bo,Guo Tonglou, et al. From oil-prone source rock to gas-producing shale reservoir - Lower Palaeozoic organic-matter-rich black shale in the Sichuan Basin and its periphery[M]. Beijing: Science Press, 2015.
    [49] 王崇武,朱隆光,阙竟成,等. 扬子西区早寒武世磷块岩矿床形成的地质背景[J]. 云南地质,1985,4(1):33-58.

    Wang Chongwu, Zhu Longguang, Que Jingcheng, et al. Geological setting in which Early Cambrian phosphorite deposits formed in the west region of the Yangtze Platform[J]. Yunnan Geology, 1985, 4(1): 33-58.
    [50] 钱逸, 陈孟莪, 何廷贵. 中国小壳化石分类与生物地层学[M].北京:科学出版社, 1999.

    Qian Yi, Chen Menge, He Tinggui. Taxonomy and biostratigraphy of small shell fossils in China [M]. Beijing: Science Press, 1999.
    [51] 薛耀松,周传明. 扬子区早寒武世早期磷质小壳化石的再沉积和地层对比问题[J]. 地层学杂志,2006,30(1):64-74.

    Xue Yaosong, Zhou Chuanming. Resedimentation of the Early Cambrian phosphatized small shell fossils and correlation of the Sinian-Cambrian boundary strata in the Yangtze region, southern China[J]. Journal of Stratigraphy, 2006, 30(1): 64-74.
    [52] Och L M, Shields-Zhou G A, Poulton S W, et al. Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan province, South China[J]. Precambrian Research, 2013, 225: 166-189.
    [53] Wang S F, Zou C N, Dong D Z, et al. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence[J]. Marine and Petroleum Geology, 2015, 66: 660-672.
    [54] Xu L G, Lehmann B, Mao J W, et al. Mo isotope and trace element patterns of Lower Cambrian black shales in South China: Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319: 45-59.
    [55] Guo G J, Shields G A, Liu C Q, et al. Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.
    [56] 贾亮亮,戴塔根,游先军,等. 湘西北下寒武统黑色岩系钒镍钼矿微量元素地球化学[J]. 地学前缘,2012,19(4):260-265.

    Jia Liangliang, Dai Tagen, You Xianjun, et al. Trace element geochemistry of V-Ni-Mo deposits from the Lower Cambrian black rock series of northwestern Hunan[J]. Earth Science Frontiers, 2012, 19(4): 260-265.
    [57] 伏美燕,李娜,黄茜,等. 滨岸—浅海混合沉积对海平面与气候变化的响应:以塔里木盆地巴麦地区石炭系为例[J]. 沉积学报,2017,35(6):1110-1120.

    Fu Meiyan, Li Na, Huang Qian, et al. Shoreline-neritic mixed sedimentation response to sea level change and paleoclimate: A case study from Carboniferous in Tarim Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1110-1120.
    [58] Dill H. Metallogenesis of Early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany)[J]. Economic Geology, 1986, 81(4): 889-903.
    [59] 梁文君,肖传桃,肖凯,等. 藏北安多晚侏罗世古环境、古气候与地球化学元素关系研究[J]. 中国地质,2015,42(4):1079-1091.

    Liang Wenjun, Xiao Chuantao, Xiao Kai, et al. The relationship of Late Jurassic paleoenvironment and paleoclimate with geochemical elements in Amdo country of northern Tibet[J]. Geology in China, 2015, 42(4): 1079-1091.
    [60] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405-414.

    Xiong Xiaohui, Xiao Jiafei. Geochemical indicators of sedimentary environments—a summary[J]. Earth and Environment, 2011, 39(3): 405-414.
    [61] 夏威,于炳松,王运海,等. 黔北牛蹄塘组和龙马溪组沉积环境及有机质富集机理:以RY1井和XY1井为例[J]. 矿物岩石,2017,37(3):77-89.

    Xia Wei, Yu Bingsong, Wang Yunhai, et al. Study on the depositional environment and organic accumulation mechanism in the Niutitang and Longmaxi Formation, North Guizhou province: A case study of well Renye 1 and well Xiye 1[J]. Journal of Mineralogy and Petrology, 2017, 37(3): 77-89.
    [62] 韦恒叶. 古海洋生产力与氧化还原指标:元素地球化学综述[J]. 沉积与特提斯地质,2012,32(2):76-88.

    Wei Hengye. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry[J]. Sedimentary Geology and Tethyan Geology, 2012, 32(2): 76-88.
    [63] 刘树根,王一刚,孙玮,等. 拉张槽对四川盆地海相油气分布的控制作用[J]. 成都理工大学学报(自然科学版),2016,43(1):1-23.

    Liu Shugen, Wang Yigang, Sun Wei, et al. Control of intracratonic sags on the hydrocarbon accumulations in the marine strata across the Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23.
    [64] 刘树根,邓宾,钟勇,等. 四川盆地及周缘下古生界页岩气深埋藏―强改造独特地质作用[J]. 地学前缘,2016,23(1):11-28.

    Liu Shugen, Deng Bin, Zhong Yong, et al. Unique geological features of burial and superimposition of the Lower Paleozoic shale gas across the Sichuan Basin and its periphery[J]. Earth Science Frontiers, 2016, 23(1): 11-28.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(2)

Article Metrics

Article views(779) PDF downloads(173) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-08-23
  • Published:  2021-08-10

Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction

doi: 10.14027/j.issn.1000-0550.2020.041
Funds:

National Science and Technology Major Project 2016ZX05036⁃003⁃007

Abstract: With the exploration and exploitation of shale oil and gas in the Sichuan Basin, the shale of Lower Cambrian Qiongzhusi Formation has received extensive attention. However, the deep burial depth and limited drilling data restricted the study of the sedimentary characteristics of the Qiongzhusi Formation. In this paper, a comprehensive study of the shale deposition was conducted by means of outcrop profile observation, core description, geochemical analyses of major, trace elements, and so on. Four lithological combinations in different structural regions of the Qiongzhusi Formation were classified by analyzing vertical variation and combination relationships. Moreover, the types of sedimentary facies in the Qiongzhusi Formation are summarized depend on the similarities and differences of lithological combinations in different structural regions. The tectonic settings of different structural regions in the Sichuan Basin during the Early Cambrian, affected by tectonic movement, have particular differences. Favorable area for shale with large thickness and rich organic matter are related to intracratonic sags, hot water deposition and location, such as the Chengkou area, the Mianyang⁃Changning area and the Shizhu area. The lithofacies and sedimentary cycles of the Qiongzhusi Formation in structural regions were divided and compared, and differences of the oxidation⁃reduction, climate and productivity were studied. Furthermore, the differences in sedimentary evolution under different tectonic settings during the Early Cambrian were clarified. This study established the sedimentary system of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin, including the shallow⁃water gentle⁃slope sedimentary system in northeastern Sichuan Basin, shallow⁃water shelf area sedimentary system in the southeastern Sichuan Basin, the coastal beach⁃shelf sedimentary system and the shelf⁃depression (extensional sags) sedimentary system. The re⁃division of the deposition system provides an evidence for the further exploration and exploitation of the marine shale of the Qiongzhusi Formation.

FAN HaiJing, DENG HuCheng, FU MeiYan, LIU SiBing, YU HanZe, LI YiLin. Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019. doi: 10.14027/j.issn.1000-0550.2020.041
Citation: FAN HaiJing, DENG HuCheng, FU MeiYan, LIU SiBing, YU HanZe, LI YiLin. Sedimentary Characteristics of the Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and Its Response to Construction[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1004-1019. doi: 10.14027/j.issn.1000-0550.2020.041
  • 四川盆地下寒武统筇竹寺组发育富有机质页岩,厚度可达100 m以上,TOC含量较高[14],具备发育页岩气藏的基础地质条件[1,57]。近年来四川盆地下寒武统筇竹寺组及其对应层位相继获得一些油气发现:如威远气田威5井、威远气田威201井、威远气田金石1井,黔西北大方县方深1井、湘西北常页1井、井研—犍为探区金页1HF井、宜昌地区鄂宜页1井的油气显示甚至获工业气流等[812],均显示了四川盆地下寒武统筇竹寺组具有较好的勘探前景。但是前期勘探开发结果表明四川盆地下寒武统筇竹寺页岩地质条件复杂[13],纵向上发育多套页岩,页岩非均质性较下志留统龙马溪组更强[3],页岩演化程度高[14],研究程度也较龙马溪组页岩更低,页岩气勘探开发一直未取得实质性进展。

    四川盆地下寒武统筇竹寺组下部沉积在全面海侵时期至海退时期缺氧的深水陆棚环境发育海相黑色页岩[1518],筇竹寺组中上部发育围绕古陆的浅水陆棚环境和滨岸海滩环境沉积的泥质粉砂岩、粉砂岩至细砂岩[5]。前人研究表明在四川盆地不同区域筇竹寺组的沉积厚度、黑色富有机质页岩厚度、岩性组合类型、沉积构造等沉积特征有显著差异[1823]。沉积物的搬运沉积过程及环境条件控制着富有机质页岩的形成,从而决定着页岩气储层的发育[2428],海相克拉通盆地背景下的陆棚沉积,富有机质页岩形成受控于氧化还原环境、古海洋生产力及古气候等多种因素[2931],区域大地构造背景对沉积起影响和控制作用[32],四川盆地不同地区筇竹寺组沉积受构造背景和沉积环境的差异性控制,页岩的品质和分布规律也存在很大差异。前人也通过对典型井、剖面的岩相和沉积微相识别,进行四川盆地寒武统沉积体系划分[28]。但由于四川盆地筇竹寺期复杂的地质条件,探井资料较少等导致了对四川盆地筇竹寺组沉积特征及沉积特征差异缺乏系统的认识。

    本文基于前人研究成果和认识,以岩性和地球化学参数等资料为基础,利用四川盆地内42口钻井资料,结合峨边葛村剖面、城口红坪村剖面、南江沙滩剖面、石柱县板凳沟等剖面资料,对筇竹寺组的沉积环境差异进行了对比研究,划分了沉积相,研究了各地区的沉积特征差异。通过连井对比分析,明确四川盆地不同构造背景下筇竹寺组的沉积特征,建立不同构造背景下的沉积体系,形成对四川盆地筇竹寺组沉积特征差异的系统认识并分析了沉积特征差异的构造意义。

  • 四川盆地震旦系和寒武系构造运动频繁,造成上震旦统灯影峡阶、下寒武统梅树村阶和筇竹寺阶沉积构造环境复杂,也造成了四川盆地寒武系至震旦系的构造—古地理格局复杂。四川盆地自震旦纪以来,以下陷接受沉积为主,在桐湾期上扬子地区整体抬升,四川盆地发育拉张断裂,灯影峡阶地层为海侵退积式的沉积序列,中国南方古陆地的范围减小,川西—川中、川东等地发展成广阔的台地,川北地区为台缘浅滩环境,川东北地区为台缘斜坡环境,南秦岭地区为被动大陆边缘盆地环境[3334]。早寒武世初期,上扬子地区开始灯影峡阶海退后的一次的大海侵背景,震旦系顶部灯影峡阶地层遭受剥蚀,梅树村阶和筇竹寺阶地层沉积在灯影组高低起伏的岩溶古地貌之上。

    四川盆地早寒武世筇竹阶各地区构造格局差异巨大,构造—古地理格局情况复杂。川北地区紧邻摩天岭古陆、汉南古陆,总体古地理格局为滨岸海滩—陆棚。川西地区紧邻泸定古陆、滇中古陆,总体古地理格局也为滨岸海滩—陆棚。四川盆地在西、北侧的古陆包围下,总体为浅水陆棚的古地理环境。但四川盆地内西部—中部地区发育南北向绵阳—长宁陆棚内凹陷[35](不同学者称其为此凹槽为“拉张槽”[36]、“陆内裂谷盆地”[37]、“克拉通内裂陷”[3640]、“侵蚀沟谷”等[4142]),凹陷内水深较大,发育深水陆棚[38]。中上扬子板块北缘在晚元古代—早古生代为被动大陆边缘[4344],板块边缘造山带和扬子克拉通之间发育前陆盆地,沉积环境水深明显增大[39,4546],而川东北城口地区所处的克拉通边缘,由浅水环境向前陆盆地深水环境突变,处于浅水缓斜坡环境[38]。川东南地区逐渐往东南方向,沉积环境逐渐由浅水环境,向川东—鄂西地区主要为陆棚内深水、陆棚边缘斜坡环境变化[4546],川东南遵义等地筇竹寺组处于与热水沉积有关的深水环境[47],但水深变化相较川东北地区更加平缓(图1)。

    Figure 1.  Lithofacies paleogeography of Cambrian Qiongzhusi period in and around Sichuan Basin(modified from references[31,34,48])

    四川盆地早寒武世筇竹寺阶地层沉积在灯影组高低起伏的岩溶古地貌之上,沉积地层情况复杂,同时期还有水井沱组、郭家坝组、牛蹄塘组、九老洞组等组别[4950]。筇竹寺组命名地在云南昆明以西的关山北坡的筇竹寺,指在早寒武世时期的一套海相泥沙质沉积,以绿色、灰色、黄色及黑色页岩为主的地层,夹薄层砂岩,本文研究的四川盆地下寒武统筇竹寺组包含同时期的筇竹寺阶的沉积及岩石组合(表1)。四川盆地下寒武统筇竹寺组与下伏灯影组白云岩或是麦地坪组含磷地层呈平行不整合接触,与上伏沧浪铺组紫红色砂质泥岩、泥质粉砂岩整合接触。四川盆地下寒武统筇竹寺组埋藏深度多在5 000 m以下,向四周埋藏深度变浅,在盆地北部、北东部、东南边缘有出露。四川盆地大部分地区下寒武统筇竹寺组沉积厚度变化大,盆地内大部分地区沉积厚度在200 m左右,但在部分地区沉积厚度大:盆地内陆棚内凹陷中部宜宾、长宁地区沉积厚度可达492 m;陆棚内凹陷凹陷北部南江、东溪河等地区沉积厚度可达666 m;川东北浅水缓斜坡城口、鸡心岭等地区沉积厚度可高达1 342 m;川东南石柱、黔江等地区沉积厚度可达300~500 m[31]。这些沉积厚度较大的区域出现与陆棚内凹陷、浅水缓斜坡、川东南浅水陆棚等特殊构造环境有着重要关联。

    Table 1.  Stratigraphic comparison from Meishucun to Qiongzhusi period in and around Sichuan Basin(modified from references[48⁃51])

    前人对四川盆地早寒武世构造特征及演化的大量研究表明,四川盆地各地区下寒武统筇竹寺组沉积特征差异巨大,其中各地区的构造环境差异是影响其构造—古地理格局的重要原因。川东北在被动大陆边缘及克拉通盆地影响下形成的浅水缓斜坡区、川东南向深部过渡的浅水陆棚区、川西—川中地区陆棚内凹陷区等是影响四川盆地早寒武世沉积的重要构造区域。需要对不同构造区域的下寒武统筇竹寺组沉积特征差异进行系统刻画和对比。

  • 本文通过对筇竹寺组岩性组合类型研究,认为四川盆地不同地区的岩性组合具有明显差异。主要识别出以下4种不同的岩性组合类型,其特征如下。

  • 非对称快速退积型岩性组合以下降半旋回远远大于上升半旋回的不对称性发育为特征,岩性主要为粉砂质泥岩、泥质粉砂岩、碳质页岩互层(图2a)。非对称快速退积型岩性组合在四川盆地陆棚内凹陷区、川东北浅水缓斜坡区、川东南浅水陆棚区筇竹寺组中均广泛发育。

    Figure 2.  Types of lithological assemblages of the Qiongzhusi Formation, Sichuan Basin

    非对称快速退积型反映沉积环境水体快速上升、缓慢(或持续)下降的变化过程,沉积物粒度由粗到细变化迅速。

  • 非对称快速进积型岩性组合以下降半旋回远远小于上升半旋回的不对称性发育为特征,岩性主要为含粉砂泥岩、泥灰岩与粉砂岩、粉砂质泥岩—灰岩(图2b)。非对称快速进积型岩性组合在川东北浅水缓斜坡区发育。

    非对称快速进积型岩性组合反映沉积环境水体缓慢(或持续)上升、快速下降的变化过程。

  • 对称退积—进积型岩性组合以上升半旋回和下降半旋回近对称发育为特征,岩性主要为碳质页岩、泥灰岩(图2c)。对称退积—进积型岩性组合在陆棚内凹陷区中部、川东南浅水陆棚区发育。

    对称退积—进积型岩性组合代表基准面持续上升之后又持续下降的沉积过程,反映了沉积环境水体浅—深—浅的变化过程。

  • 进积—进积型岩性组合以两个或两个以上的下降半旋回纵向叠置发育为特征,岩性主要为泥岩与泥质粉砂岩、粉砂岩互层,自下而上泥岩层厚度变小,泥质粉砂岩与粉砂岩层厚度变大、且砂质粒度变粗。进积—进积型岩性组合样式在四川盆地西部葛村滨岸海滩—陆棚环境的筇竹寺组下部发育。

    进积—进积型岩性组合通常反映沉积水体不断下降、水体持续变浅的沉积环境。

    对四川盆地筇竹寺组岩性组合识别及分布规律研究发现,四川盆地筇竹寺组岩性组合总体以非对称快速退积型岩性组合为主(图3),反映了早寒武世筇竹寺期四川盆地总体的快速海进—缓慢海退的沉积背景,富有机质页岩在岩性组合底部发育,全区可对比性强。但在各构造分区岩性组合及其反映的沉积环境也有一定差异:川东北浅水缓斜坡区紧邻古陆、前陆盆地及被动大陆边缘,水体深度变化大,本地区部分岩性组合表现为非对称快速进积型;而陆棚内凹陷区和川东南浅水陆棚区的部分区域岩性组合表现对称退积—进积型;川西滨岸海滩—陆棚地区靠近泸定古陆,受海侵影响较少,在海退时水体不断下降、水体持续变浅,本地区部分剖面显示筇竹寺组下部表现为进积—进积型的岩性组合。

    Figure 3.  Lithofacies assemblages and sedimentary cycle division of Qiongzhusi Formation in the shelf depression of Sichuan Basin

  • 整个四川盆地筇竹寺组岩性组合均以非对称快速退积型岩性组合为主,判断早寒武世四川盆地的重要沉积环境为全区域的快速海进—缓慢海退。在此沉积环境背景基础上,结合岩性、沉积构造等特征进行沉积相划分。

  • 滨岸相围绕古陆,在陆棚内凹陷区的西部、北部发育。根据其沉积环境和沉积物特征可划分近滨亚相和远滨亚相。滨岸相水动力较强,发育氧化—弱还原环境,发育灰绿色和紫红色粉砂岩、细砂岩(图4a),有机质含量低。障壁型滨岸也较为发育,钙质含量较高,盐度略高于广海地区。在障壁滨岸的局部闭塞环境也发育黑色页岩(图4b)。沉积构造表现为较强的水动力条件,可见波状层理、交错层理、平行层理,也可见砂纹层理。

    Figure 4.  Lithological indicators of sedimentary facies of the Qiongzhusi Formation, Sichuan Basin

  • 陆棚相主要在四川盆地广泛发育,由浅水陆棚亚相、半深水陆棚亚相、深水陆棚亚相、棚内裂谷亚相组成。浅水陆棚发育在低潮线以下至风暴浪基面附近的区域,具有明显的波浪改造特征,发育砂泥混坪和泥坪微相。岩性为绿灰色、灰绿色页岩,见砂质纹层、波状层理、交错层理(图4f,g)。

    半深水陆棚沉积为深水陆棚和浅水陆棚的过渡沉积环境,主要发育在风暴浪基面附近,基本不受波浪影响的静水环境,泥质含量比浅水陆棚高。半深水陆棚的岩性以灰黑色薄层粉砂质泥岩、泥页岩与泥灰岩的夹层为主。

    深水陆棚沉积发育在水体深度较大的陆棚上,风暴浪基面以下的静水环境,局部发育浊积砂,还原性较强,有机质丰度普遍较高,发育在海侵序列中。岩性为页岩、碳质页岩和粉砂质页岩,颜色为灰黑色至黑色,沉积构造以不发育明显层理的块状构造为主,局部可见水平层理、包卷层理,以及黄铁矿团块(图4)。

    棚内裂谷沉积主要发育在陆棚内凹陷区深水陆棚沉积之下,水体深,还原性强,有机质丰度高,岩性为黑色页岩、碳质页岩。

  • 不同构造区域沉积环境的差异能表现在主量元素、微量元素及稀土元素的含量上,因此沉积物中主量元素、微量元素、稀土元素的含量及其组合关系常用来进行古环境分析。前人在四川盆地南缘永善肖滩[52]、四川盆地中部威201井[53]、四川盆地南部宁206井[53]、四川盆地东南缘丁台剖面[54]、四川盆地东北部沙滩[55]等地进行了取样和主量元素、微量元素及稀土元素含量的测定。基于前人对筇竹寺组沉积物元素含量的实验测试资料和研究区资料井岩芯、实测剖面沉积特征,对四川盆地筇竹寺组典型钻井、剖面页岩古环境进行识别、对比,分析四川盆地筇竹寺组页岩发育的氧化—还原条件、古气候及古有机质生产力等古环境特征与构造区域的关系。

  • 筇竹寺组沉积环境的氧化还原条件可以依据V/(V+Ni)、V/Cr、Ni/Co等指标进行分析[2324],结合具体沉积环境,V/(V+Ni)能较好的反映氧化还原条件。岩石中V/(V+Ni)>0.57时,其沉积环境为静海和缺氧环境,而V/(V+Ni)<0.46时,其沉积环境为氧化环境[5658]图5)。

    Figure 5.  Comparison of redox characteristics of the Qiongzhusi period in each structural area of the Sichuan Basin(data from references [52⁃55])

    古气候控制着沉积作用,也一定程度上控制着沉积岩中微量元素的含量[59]。V在温暖潮湿的环境中更为富集,Sr/Cu也能较为准确的对古气候进行识别,Sr/Cu比值介于1.3~5.0指示温暖、潮湿气候,而Sr/Cu比值大于5.0则指示干旱、炎热气候[6061]图6)。

    Figure 6.  Comparison of paleoclimates in the structural regions of the Sichuan Basin(data from references [52⁃55])

    Mo是随有机质一起沉淀下来的,与水体的有机碳通量有关,受后期的变化影响较少,在黑色页岩和缺氧海相盆地沉积物中有机质含量与Mo浓度存在正相关关系,Mo能反映古生产力大小[62]图7)。

    Figure 7.  Comparison of paleoproductivity in the structural regions of the Sichuan Basin (data from references [52⁃55])

  • 川东北浅水缓斜坡区为非对称快速进积型岩性组合发育,长期发育深水陆棚沉积。由V/(V+Ni)指示的氧化还原条件显示总体上为由强变弱的还原环境,有5个氧化还原性变化的周期,但各周期比其他分区变化波动小;由Sr/Cu指示的古气候显示早期为稳定的潮湿、温暖气候,在晚期迅速变得干旱、炎热;由Mo指示的古生产力显示前期激增后迅速衰竭到极低。

  • 川东南浅水陆棚区以非对称快速退积型岩性组合为主,水体较深且变化较小。由V/(V+Ni)指示的氧化还原条件显示克拉通盆地区筇竹寺时期长期处于缺氧的强还原环境中;由V指示的古气候显示从早期稳定的潮湿、温暖气候,向干旱、炎热周期性变化;由Mo指示的古生产力显示前期古生产力较高,后期减少到较低水平。

  • 陆棚内凹陷区西外侧以滨岸相为主,发育持续进积型岩性组合,水体深浅变化大,氧化—还原性波动大,古生产力水平较低。

    陆棚内凹陷区岩性组合主要以非对称快速退积型为主,部分地区也发育对称退积—进积型岩性组合,快速退积时期为深水陆棚沉积,沉积较厚的黑色页岩,水体较深,处于贫氧环境,古生产力水平较高,而进积时期则发育半深水陆棚和浅水陆棚。

  • 对研究区不同分区的钻井及野外剖面的沉积亚相对比研究(表2),结合不同构造区域岩性组合、古环境特征差异,对四川盆地不同构造背景下沉积体系进行划分。四川盆地筇竹寺组发育陆棚内凹陷区沉积体系、滨岸海滩—陆棚沉积体系、川东南浅水陆棚区沉积体系、川东北浅水缓斜坡区沉积体系4种类型。

    亚相 沉积体系 岩石颜色 岩石类型 沉积特征 深、浅水沉积物 厚度之比
    滨海 陆棚内凹陷区滨岸 灰绿色、紫红色 粉砂岩、细砂岩 平行层理、交错层理 小于1∶2
    浅水陆棚 陆棚内凹陷区滨岸 灰色、灰黑色 泥页岩、粉砂质泥页岩、粉砂岩 水平层理、波状层理 小于1∶2
    陆棚内凹陷区 灰色、深灰色 砂泥质泥岩、泥质粉砂岩 水平层理、波状层理 1∶1~1∶2
    陆棚内凹陷区 灰色、灰黑色 泥页岩、粉砂质泥页岩、粉砂岩 水平层理、波状层理 小于1∶2
    川东北浅水斜坡区 灰色、灰黑色 泥页岩、粉砂质泥页岩、粉砂岩 水平层理、波状层理 大于1∶1
    深水陆棚 滨岸海滩—陆棚 黑色、灰黑色 泥页岩、碳质泥页岩 水平层理、块状层理 小于1∶2
    陆棚内凹陷区 黑色、灰黑色 泥页岩、碳质泥页岩、粉砂质泥页岩、粉砂岩 小型浊积、冲刷面、水平层理、波状层理、块状层理 1∶2左右
    川东南浅水陆棚区 黑色、灰黑色 泥页岩、碳质泥页岩 水平层理,块状层理 小于1∶2
    川东北浅水斜坡区 黑色、灰黑色 泥页岩、碳质泥页岩 水平层理,块状层理 大于1∶1

    Table 2.  Subfacies characteristics of each sedimentary system

  • 早寒武世筇竹寺组沉积时期,由于四川盆地中西部绵阳—长宁陆棚内凹陷(拉张槽)的存在,发育陆棚内凹陷为主的沉积。该沉积体系发育滨岸相和陆棚相,以及近滨、远滨、浅水陆棚、半深水陆棚、深水陆棚、棚内裂谷6类沉积亚相(图8)。陆棚内凹陷区有快速海侵、缓慢海退的特征,海侵时期陆棚内凹陷区内发育厚层黑色页岩,水体深且贫氧,古生产力高。

    Figure 8.  Typical well/profile correlation of depositional system in coastal beach shelf area and shelf depression area of the Qiongzhusi Formation, Sichuan Basin

    该区内筇竹寺组岩性组合常为泥页岩—泥质粉砂岩—泥页岩—泥质粉砂岩(泥质灰岩),靠近绵阳—长宁陆棚内凹陷中心的泥页岩厚度和泥页岩占比明显增大(表2图8)。在川西至川中地区,陆棚内凹陷是影响筇竹寺组沉积环境的重要因素。在此构造区域,根据岩性组合对比,显示经历两次海侵,海平面周期变化,发育两个完整的中期旋回。陆棚内凹陷区内筇竹寺组沉积厚度可达500 m。陆棚内凹陷区深水沉积与浅水沉积厚度比例可达1∶1,陆棚内凹陷区西内侧深水沉积与浅水沉积厚度比例在1∶2左右。陆棚内凹陷区东侧深水沉积物较少,与浅水沉积物厚度之比小于1∶2。

  • 早寒武世筇竹寺组沉积时期,四川盆地西侧由于临近四川盆地西缘、北缘古陆,有物源供给时间长、沉积物以粒度较粗的砂岩为主、持续海退、氧化—还原性波动大、水动力变化频繁、古生产力水平低等特征。

    滨岸海滩—陆棚沉积体系分布区位于四川盆地西部、绵阳—长宁陆棚内凹陷(拉张槽)西侧和北侧,该沉积体系下发育滨岸、浅水陆棚、深水陆棚3类亚相。除障壁滨岸含钙质外,此沉积体系的浅水陆棚相也普遍含灰质,并且从四川盆地东北地区向盆地外缘,灰质占比增高,泥页岩占比减小(图8)。

  • 在早寒武世筇竹寺组沉积时期,四川盆地东南部浅水陆棚区与川东鄂西、湘黔深水陆棚相接,以非对称快速退积型岩性组合为主,水体较深且变化较小,处于缺氧环境,有机质保存条件好,气候由潮湿、温暖变为干旱、炎热,古生产力迅速增大后变小,筇竹寺组沉积厚度较小,平均厚度为150 m(图9)。

    Figure 9.  Comparison of typical wells/sections in shallow⁃water shelf area in southeastern Sichuan, Qiongzhusi Formation, Sichuan Basin

    川东南浅水陆棚区沉积体系分布区域在四川盆地川东、川东南克拉通盆地边缘区,在此体系下主要发育浅水陆棚和深水陆棚亚相。本区域浅水陆棚亚相发育灰黑色泥页岩、粉砂质泥页岩,具水平层理、波状层理,有机质丰度相比陆棚内凹陷和滨岸沉积体系的浅水亚相均要高;本区域深水陆棚亚相发育黑色水平层理、块状层理碳质泥页岩。

  • 在早寒武世筇竹寺沉积时期,四川盆地东北部临近被动大陆边缘,水体较深且变化小,长期发育深水陆棚沉积,气候干旱、炎热逐渐变为温暖、潮湿,古生产力迅速增大后变小,长期处于缺氧的强还原环境,有机质保存条件好,临近古陆,沉积物粒度大,筇竹寺组沉积厚度大,普遍厚度可达400 m,同时此地区深水沉积的黑色页岩的比例也较大。

    川东北浅水缓斜坡区沉积体系分布区域在川东北地区,在此体系下主要发育浅水陆棚和深水陆棚亚相(图10)。浅水陆棚亚相分布范围较小,发育灰黑色泥页岩、粉砂质泥页岩,具水平层理、波状层理;深水陆棚在本区域分布广泛,稳定发育较厚的黑色水平层理、块状层理碳质泥页岩。

    Figure 10.  Comparison of typical wells/sections in the shallow⁃water gentle⁃slope area of northeastern Sichuan, Qiongzhusi Formation, Sichuan Basin

  • 四川盆地受震旦纪和寒武纪多幕桐湾运动的影响,灯影峡阶、梅树村阶、筇竹寺阶常遭受不同程度剥蚀。同时早寒武世四川盆地具有的特殊的古陆环绕、处于被动大陆边缘、发育陆棚内凹陷等特殊构造位置,在不同构造区域的筇竹寺组沉积特征差异清晰的记录了构造位置对其的影响。

    陆棚内凹陷是对四川盆地中部地区筇竹寺沉积最大的构造,前人成功揭示川中绵阳—长宁陆棚内凹陷(拉张槽)的存在[37,6364],很好的解释四川盆地中部筇竹寺组厚度在南北向增大且远远超过四川盆地内筇竹寺组平均厚度,也很好的解释了在陆棚内凹陷的东西侧斜坡部位富有机质页岩的发育环境更有利。本次研究中,陆棚内凹陷区域各井剖面均显示岩性组合以非对称快速退积型为主,沉积物粒度由粗到细变化迅速,反映了快速海侵,故陆棚内凹陷区经受了快速海侵、缓慢海退的水体变化过程,符合陆棚凹陷区这一构造低部位的特征。陆棚内凹陷区由于处于四川盆地内部,水体环境更为局限,因此对于古气候、古生产力的变化均较为敏感,这在本地区沉积物中古环境替代指标的元素含量得到体现。

    在川东北地区,筇竹寺组发育受控于古陆与前陆盆地,本地区水体深度由浅水环境到深水环境的突变,处在浅水缓斜坡区北东部的落人洞剖面筇竹寺组厚度116 m,处在浅水缓斜坡区中部的城口红坪村剖面厚度624 m,而浅水缓斜坡区南西部的鸡心岭剖面筇竹寺组厚度1 342 m,是斜坡构造位置下沉积厚度显著变化的直接显示。在川东北由于临近汉南古陆,有机质来源广,保存条件好,沉积物粒度大,富有机质页岩在整个筇竹寺组占比较大。

    在川东南地区浅水陆棚地区,筇竹寺沉积物厚度小幅度增加,氧化还原性显示本地区长期处于强缺氧环境。本地区古生产力水平较高、有机质更为富集,这与川东南地区浅水陆棚临近热水沉积区密切相关,在本地区沉积物中元素含量的变化中得到体现。

    在川西地区,筇竹寺组发育受控于古陆,同时长期处于滨岸海滩—浅水陆棚环境,筇竹寺组下部岩性段常常不发育,筇竹寺组沉积厚度仅有200 m左右。有机质富集程度相较川中陆棚内凹陷区和川东北地区均较低。同时本地区沉积物中元素含量的变化,指示了在海退时,水体深度降低,古生产力水平下降比较明显。这些沉积特征差异均与川西地区受古陆和陆棚内凹陷影响,长期处于滨岸海滩—浅水陆棚沉积环境的构造位置密切相关。

  • (1) 四川盆地筇竹寺时期川东北浅水缓斜坡区发育非对称快速退积型岩性组合为主;川东南浅水陆棚区发育非对称快速退积型岩性组合为主,部分地区发育对称退积—进积型岩性组合;陆棚内凹陷区也以发育非对称快速退积型岩性组合为主,同时也在陆棚内凹陷区中部发育对称退积—进积型岩性组合;川西滨岸岩性组合也以非对称快速退积型岩性组合为主,部分地区底部筇竹寺组发育进积—进积型岩性组合。

    (2) 四川盆地筇竹寺时期川东北浅水缓斜坡区古环境演化特征为临近大洋,水体较深且变化小,长期发育深水陆棚沉积,处于缺氧的强还原环境,气候干旱、炎热,生产力急剧增大后衰竭;川东南浅水陆棚区水体较深且变化较小,处于缺氧环境,气候由潮湿逐渐干旱,生产力逐渐降低;陆棚内凹陷区中部快速退积时期为深水陆棚沉积,水体较深,处于贫氧环境,古生产力水平较高,沉积黑色页岩,而进积时期则发育半深水陆棚和浅水陆棚;陆棚内凹陷区西部水体不断变浅,发育持续进积型岩性组合,氧化—还原性波动大,生产力水平较低。

    (3) 依据对四川盆地筇竹寺组岩性组合及古环境演化分析,建立了在滨岸、川东北浅水缓斜坡、川东南浅水陆棚、陆棚内凹陷等特殊构造位置背景下的沉积体系,不同沉积体系下筇竹寺组的沉积特征差异均是其构造差异的体现。川东北主要发育川东北浅水缓斜坡沉积体系,川南—川东主要发育川东南浅水陆棚区沉积体系,川西地区主要发育滨岸海滩—陆棚沉积体系,川中地区主要发育陆棚内凹陷沉积体系。在此4种沉积体系下发育近滨亚相、远滨亚相、浅水陆棚、半深水陆棚、深水陆棚、棚内裂谷6种沉积亚相类型。

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return