Advanced Search
Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

JIN Xin, SONG JinMin, LIU ShuGen, SUN Wei, DING Yi, DENG ShuangLin, XU ZhiXiong, XU HongYuan, LI LiJi, LI ZhangChang, LANG YueZhu, FENG MengYuan, XIE GuoLiang. Characteristics and Geological Significance of Tempestites in the Daqing Formation, Xinjigu Area, Xichang Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 908-918. doi: 10.14027/j.issn.1000-0550.2020.034
Citation: JIN Xin, SONG JinMin, LIU ShuGen, SUN Wei, DING Yi, DENG ShuangLin, XU ZhiXiong, XU HongYuan, LI LiJi, LI ZhangChang, LANG YueZhu, FENG MengYuan, XIE GuoLiang. Characteristics and Geological Significance of Tempestites in the Daqing Formation, Xinjigu Area, Xichang Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 908-918. doi: 10.14027/j.issn.1000-0550.2020.034

Characteristics and Geological Significance of Tempestites in the Daqing Formation, Xinjigu Area, Xichang Basin

doi: 10.14027/j.issn.1000-0550.2020.034
Funds:

National Natural Science Foundation of China 41872150

Key Project of Sichuan Science & Technology Bureau 2018JZ0078

  • Received Date: 2020-02-21
  • Publish Date: 2021-08-10
  • Tempestite deposits are found in the Ordovician Daqing Formation, Xinjigu area, Xichang Basin. Major storm⁃sediment indicators include scouring⁃fill structures, storm⁃generated gravelstones and hummocky cross⁃stratifications (HCS), etc. Three types of storm depositional sequences were developed: Type I is mostly composed of thin⁃layered muddy dolomite with yellow⁃grey and extremely thin layers of mudstone; this is a distal storm deposit below the storm wave base, located in the E1 section of the tempestite sequence in the deep ramp. Type II sequence consists of a storm gravelstone member (A), a parallel lamination member (C) and an HCS (D), which is deposited at the highest part of the slope near the fine⁃weather wave base in the deep ramp. Type III sequence comprises a storm gravelstone member (A) and a graded member (B) in the middle ramp. The sequences transition from Type I to Type III (bottom to top of the storm segment), and the sedimentary environment of the storm sequence from bottom to top has evolved from the lower part to the upper part of the deep ramp, and from the deep ramp to the middle ramp, in a process of shallowing upwards. The discovery of the tempestites provides a basis for the paleogeography and palaeoplate evolution of the study area, indicating that the Upper Yangtze Block was located at low latitudes in the Ordovician. Integrated with the regional geological background, it is speculated that the Ordovician Daqing Formation is dominated on the western margin of the Yangtze Platform by mid⁃to⁃outer ramp facies east of Xinjigu, and by inner⁃ramp facies to the west. This implies many geological possibilities for high⁃quality shoal reservoirs in the Ordovician Daqing Formation in the Xichang Basin to the west of Xinjigu.
  • [1] Ager D V. The nature of the stratigraphic record[M]. London: MacMillan, 1973: 114.
    [2] Kelling G, Mullin P R. Graded limestones and limestone-quartzite couplets: Possible storm-deposits from the Moroccan Carboniferous[J]. Sedimentary Geology, 1975, 13(3): 161-190.
    [3] Kumar N, Sanders J E. Characteristics of shoreface storm deposits: Modern and ancient examples[J]. Journal of Sedimentary Research, 1976, 46(1): 145-162.
    [4] Aigner T. Schill-tempestite in oberen muschelkalk (Trias, SW-Deutschland)[J]. Neues Jahrbuch Geology and Palaontologie Abhandlungen, 1979, 157(2): 326-343.
    [5] Aigner T. Calcareous tempestites: Storm-dominated stratification in upper Muschelkalk limestones (Middle Trias, SW-Germany)[M]//Einsele G, Seilacher A. Cyclic and event stratification. Berlin, Heidelberg: Springer-Verlag, 1982: 180-198.
    [6] 孟祥化,乔秀夫,葛铭. 华北古浅海碳酸盐风暴沉积和丁家滩相序模式[J]. 沉积学报,1986,4(2):1-18.

    Meng Xianghua, Qiao Xiufu, Ge Ming. Study on ancient shallow sea carbonate storm deposits (Tempestite) in North China and Dingjiatan model of facies sequences[J]. Acta Sedimentologica Sinica, 1986, 4(2): 1-18.
    [7] 刘宝珺,张继庆,许效松. 四川兴文四龙下二叠统碳酸盐风暴岩[J]. 地质学报,1986,60(1):55-67.

    Liu Baojun, Zhang Jiqing, Xu Xiaosong. On the calcareous tempestites in the Lower Permian of Silong, Xingwen, Sichuan[J]. Acta Geologica Sinica, 1986, 60(1): 55-67.
    [8] 宋金民,杨迪,李朋威,等. 中国碳酸盐风暴岩发育特征及其地质意义[J]. 现代地质,2012,26(3):589-600.

    Song Jinmin, Yang Di, Li Pengwei, et al. Development characteristics and geological significance of carbonate tempestites in China[J]. Geoscience, 2012, 26(3): 589-600.
    [9] 刘明博,林晋炎,高硒,等. 陕西宁强胡家坝地区震旦系灯影组风暴沉积特征[J]. 城市地质,2018,13(2):57-63.

    Liu Mingbo, Lin Jinyan, Gao Xi, et al. The characteristics of storm deposit about Dengying Formation of Sinian System in Hujiaba, Ningqiang county, Shaanxi[J]. Urban Geology, 2018, 13(2): 57-63.
    [10] 赵灿,陈孝红,李旭兵,等. 峡东地区埃迪卡拉系灯影组风暴岩的发现及其环境意义[J]. 地质学报,2013,87(12):1901-1912.

    Zhao Can, Chen Xiaohong, Li Xubing, et al. Characteristics of Tempestite of Ediacaran Dengying Formation, in the eastern Yangtze gorges area and its geological significance[J]. Acta Geologica Sinica, 2013, 87(12): 1901-1912.
    [11] 宋金民,刘树根,赵异华,等. 川中地区中下寒武统风暴岩特征及沉积地质意义[J]. 石油学报,2016,37(1):30-42.

    Song Jinmin, Liu Shugen, Zhao Yihua, et al. Characteristics and sedimentary geological significances of Lower-Middle Cambrian tempestites in central Sichuan Basin[J]. Acta Petrolei Sinica, 2016, 37(1): 30-42.
    [12] 王瀚,李智武,刘树根,等. 扬子地台北缘城口地区上寒武统洗象池组风暴沉积特征及其地质意义[J]. 石油实验地质,2019,41(2):176-184.

    Wang Han, Li Zhiwu, Liu Shugen, et al. Sedimentary characteristics and geological significance of tempestites in the Upper Cambrian Xixiangchi Formation, Chengkou area, northern margin of the Yangtze Platform[J]. Petroleum Geology & Experiment, 2019, 41(2): 176-184.
    [13] 黄乐清,刘伟. 湘西北龙山地区下奥陶统桐梓组潮坪风暴岩的发现及其意义[J]. 沉积学报,2016,34(5):830-841.

    Huang Leqing, Liu Wei. Characteristics of tempestite of Lower Ordovician Tongzi Formation, in the Longshan area, northwestern Hunan and its geological significance[J]. Acta Sedimentologica Sinica, 2016, 34(5): 830-841.
    [14] 李维锋,肖传桃,孟宪富. 湖北刘家场下奥陶统碳酸盐岩风暴沉积[J]. 江汉石油学院学报,1993,15(2):9-14.

    Li Weifeng, Xiao Chuantao, Meng Xianfu. The carbonate tempestites within the Lower Ordovician in Songzi, western Hubei[J]. Journal of Jianghan Petroleum Institute, 1993, 15(2): 9-14.
    [15] 蒙锡龙,杨积琴. 贵阳乌当地区奥陶系湄潭组风暴岩特征[J]. 贵州地质,1988,5(2):143-146.

    Meng Xilong, Yang Jiqin. The characteristics of tempestites in the Meitan Formation of Ordovician in Wudang, Guiyang[J]. Geology of Guizhou, 1988, 5(2): 143-146.
    [16] 陈世悦,张鹏飞,杨怀宇. 湘西北江坪地区志留系风暴沉积特征及意义[J]. 古地理学报,2009,11(1):51-57.

    Chen Shiyue, Zhang Pengfei, Yang Huaiyu. Silurian storm deposits in Jiangping area, northwestern Hunan province: Characteristics and geological significances[J]. Journal of Palaeogeography, 2009, 11(1): 51-57.
    [17] 张廷山,侯方浩,高卫东,等. 川西北地区早志留世风暴岩及其环境与古生态意义[J]. 沉积学报,1993,11(2):66-74.

    Zhang Tingshan, Hou Fanghao, Gao Weidong, et al. Tempestites and the environmental paleoecological significance of Early Silurian, NW Sichuan area[J]. Acta Sedimentologica Sinica, 1993, 11(2): 66-74.
    [18] 魏钦廉,郑荣才,周刚,等. 龙门山甘溪组谢家湾段风暴岩沉积特征及其意义[J]. 中国地质,2011,38(5):1282-1288.

    Wei Qinlian, Zheng Rongcai, Zhou Gang, et al. Clastic tempestite in Xiejiawan member of Ganxi Formation within Longmenshan area and its significance[J]. Geology in China, 2011, 38(5): 1282-1288.
    [19] 许安涛,李凤杰,刘奎,等. 北川甘溪下泥盆统风暴岩沉积特征及其沉积模式[J]. 中国地质,2018,45(5):1049-1061.

    Xu Antao, Li Fengjie, Liu Kui, et al. The characteristics and sedimentary model of storm deposits in the Lower Devonian Strata of Beichuan[J]. Geology in China, 2018, 45(5): 1049-1061.
    [20] 屈雪林. 四川北川甘溪地区下泥盆统风暴沉积研究及其地质意义[D]. 成都: 成都理工大学,2017.

    Qu Xuelin. The research of storm deposits in the Lower Devonian of Ganxi, Beichuan, Sichuan and its geological significance[D]. Chengdu: ChengduUniversity of Technology, 2017.
    [21] 张昊,李凤杰,沈凡,等. 四川盆地龙门山区甘溪石沟里泥盆系养马坝组风暴沉积特征及其地质意义[J]. 古地理学报,2019,21(3):441-450.

    Zhang Hao, Li Fengjie, Shen Fan, et al. Storm deposits characteristics and its geological significance in the Devonian Yangmaba Formation from Shigouli section, Longmenshan area, Sichuan Basin[J]. Journal of Palaeogeography, 2019, 21(3): 441-450.
    [22] 徐锦龙,洪天求,贾志海,等. 川西北江油马角坝地区黄龙组下部风暴沉积特征[J]. 地质科学,2012,47(2):422-439.

    Xu Jinlong, Hong Tianqiu, Jia Zhihai, et al. The characteristics of storm deposits in the Lower Huanglong Formatiom of Majiaoba area, northwestern Sichuan province[J]. Chinese Journal of Geology, 2012, 47(2): 422-439.
    [23] 林彤,刘树根,宋金民,等. 川北南江地区下三叠统飞一段风暴沉积特征及地质意义[J]. 沉积学报,2015,33(5):899-908.

    Lin Tong, Liu Shugen, Song Jinmin, et al. The sedimentary characteristics and geological significances of carbonate tempestites near the boundary of Late Permian to Early Triassic at Nanjiang section, north of Sichuan Basin[J]. Acta Sedimentologica Sinica, 2015, 33(5): 899-908.
    [24] 李振宇. 川西北地区下三叠统印度阶风暴沉积特征[D]. 成都: 成都理工大学,2018.

    Li Zhenyu. The tempestite sedimentary characters of Early Triassic Induan Formation in northwestern Sichuan area[J]. Chengdu: Chengdu University of Technology, 2018.
    [25] 彭靖淞,刘树根,赵霞飞,等. 川西中三叠统天井山组风暴沉积的发现及古地理意义[J]. 岩性油气藏,2009,21(1):83-88, 111.

    Peng Jingsong, Liu Shugen, Zhao Xiafei, et al. Discovery of tempestite in Middle Triassic Tianjingshan Formation in western Sichuan and its paleogeographic significance[J]. Lithologic Reservoirs, 2009, 21(1): 83-88, 111.
    [26] 曾德勇,时志强,张华,等. 广元上寺剖面下三叠统飞仙关组风暴岩:巨型季风体制下的极端气候事件?[J]. 沉积学报,2011,29(3):440-448.

    Zeng Deyong, Shi Zhiqiang, Zhang Hua, et al. Tempestite of Early Triassic Feixianguan Formation in Shangsi section, Guangyuan: Are they extreme climatic event under Megamonsoon system?[J]. Acta Sedimentologica Sinica, 2011, 29(3): 440-448.
    [27] 李华启,姜在兴,邢焕清,等. 四川盆地西部上三叠统须家河组二段风暴岩沉积特征[J]. 石油与天然气地质,2003,24(1):81-86.

    Li Huaqi, Jiang Zaixing, Xing Huanqing, et al. Characteristics of storm deposits in Upper Triassic Xujiahe Formation, Sichuan Basin[J]. Oil & Gas Geology, 2003, 24(1): 81-86.
    [28] 赵聪,刘树根,宋金民,等. 川西汉旺地区雷口坡组四段风暴岩特征及地质意义[J]. 沉积学报,2019,37(1):94-103.

    Zhao Cong, Liu Shugen, Song Jinmin, et al. Sedimentary characteristics and geological significance of tempestites in the Fourth member of the Leikoupo Formation at the Hanwang section, western Sichuan Basin[J]. Acta Sedimentologica Sinica, 2019, 37(1): 94-103.
    [29] 吴长江,陈双玲,张禄权,等. 西昌盆地奥陶系大箐组油气成藏地质条件评价[J]. 天然气勘探与开发,2019,42(1):8-14.

    Wu Changjiang, Chen Shuangling, Zhang Luquan, et al. Reservoir-forming conditions of Ordovician Daqing Formation, Xichang Basin[J]. Natural Gas Exploration and Development, 2019, 42(1): 8-14.
    [30] 王运生,李云岗. 西昌盆地的形成与演化[J]. 成都理工学院学报,1996,23(1):85-90.

    Wang Yunsheng, Li Yungang. Formation and evolution of the Xichang Basin[J]. Journal of Chengdu Institute of Technology, 1996, 23(1): 85-90.
    [31] 伏明珠,覃建雄. 四川西昌盆地沉积演化史研究[J]. 四川地质学报,2011,31(1):1-5.

    Fu Mingzhu, Qin Jianxiong. Study of sedimentary evolution of the Xichang Basin[J]. Acta Geologica Sichuan, 2011, 31(1): 1-5.
    [32] 陈旭,田海芹,王向东. 中国海相地层岩石地层单元对比表(暂行方案) 及简要说明[M]. 中国石化股份公司海相前瞻性项目报告, 2007:72-84.

    Chen Xu, Tian Haiqin, Wang Xiangdong. The tentative division and its brief description of stratagraphical units for marine stratum in China [R]. Internal material of Prospective Study Projec from SINOPEC, 2007:72-84.
    [33] 李皎,何登发,梅庆华. 四川盆地及邻区奥陶纪构造—沉积环境与原型盆地演化[J]. 石油学报,2015,36(4):427-445.

    Li Jiao, He Dengfa, Mei Qinghua. Tectonic-depositional environment and proto-type basins evolution of the Ordovician in Sichuan Basin and adjacent areas[J]. Acta Petrolei Sinica, 2015, 36(4): 427-445.
    [34] 牟传龙,葛祥英,许效松,等. 中上扬子地区晚奥陶世岩相古地理及其油气地质意义[J]. 古地理学报,2014,16(4):427-440.

    Mou Chuanlong, Ge Xiangying, Xu Xiaosong, et al. Lithofacies palaeogeography of the Late Ordovician and its petroleum geological significance in Middle-Upper Yangtze region[J]. Journal of Palaeogeography, 2014, 16(4): 427-440.
    [35] 李壮福,郭英海. 徐州地区震旦系贾园组的风暴沉积[J]. 古地理学报,2000,2(2):19-27.

    Li Zhuangfu, Guo Yinghai. Storm deposits in the Sinian Jiayuan Formation of Xuzhou area[J]. Journal of Palaeogeography, 2000, 2(2): 19-27.
    [36] Finkl Jr C W. Sedimentary structures: Their character and physical basis. J.R.L. Allen, 1982. Vols. I, II. Developments in Sedimentology, 30A and 30B. Elsevier, Amsterdam, Vol. I: xvii + 593 pp., US$98.00, Dfl.245.00; Vol. II: xiii + 663 pp., US$104.00, Dfl.260.00[J]. Earth-Science Reviews, 1983, 19(4): 362-363.
    [37] Charvet J, Shu L S, Shi Y S, et al. The building of South China: Collision of Yangzi and Cathaysia blocks, problems and tentative answers[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(3/4/5): 223-235.
    [38] Marsaglia K M, Klein G D V. The paleogeography of Paleozoic and Mesozoic storm depositional systems[J]. The Journal of Geology, 1983, 91(2): 117-142.
    [39] 贾承造,李本亮,张兴阳,等. 中国海相盆地的形成与演化[J]. 科学通报,2007,52(增刊1):1-8.

    Jia Chengzao, Li Benliang, Zhang Xingyang, et al. Formation and evolution of the Chinese marine basins[J]. Chinese Science Bulletin, 2007, 52(Suppl. 1): 1-8.
    [40] 李江海,姜洪福. 全球古板块再造、岩相古地理及古环境图集[M]. 北京:地质出版社,2013.

    Li Jianghai, Jiang Hongfu. World atlas of plate tectonic reconstruction, lithofacies paleogeography and plaeoenvironment[M]. Beijing: Geological Publishing House, 2013.
    [41] 骆耀南. 康滇构造带的古板块历史演化[J]. 地球科学:武汉地质学院学报,1983,22(03): 93-102.

    Luo Yaonan. The evolution of paleoplates in the Kang-Dian tectonic zone[J]. Earth Science:Journal of Wuhan University of Geosciences, 1983, 22(03): 93-102.
    [42] Flügel E. Microfacies of carbonate rocks: Analysis, interpretation, and application[M]. 2nd ed. Berlin: Springer, 2010.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(1)

Article Metrics

Article views(825) PDF downloads(77) Cited by()

Proportional views
Related
Publishing history
  • Received:  2020-02-21
  • Published:  2021-08-10

Characteristics and Geological Significance of Tempestites in the Daqing Formation, Xinjigu Area, Xichang Basin

doi: 10.14027/j.issn.1000-0550.2020.034
Funds:

National Natural Science Foundation of China 41872150

Key Project of Sichuan Science & Technology Bureau 2018JZ0078

Abstract: Tempestite deposits are found in the Ordovician Daqing Formation, Xinjigu area, Xichang Basin. Major storm⁃sediment indicators include scouring⁃fill structures, storm⁃generated gravelstones and hummocky cross⁃stratifications (HCS), etc. Three types of storm depositional sequences were developed: Type I is mostly composed of thin⁃layered muddy dolomite with yellow⁃grey and extremely thin layers of mudstone; this is a distal storm deposit below the storm wave base, located in the E1 section of the tempestite sequence in the deep ramp. Type II sequence consists of a storm gravelstone member (A), a parallel lamination member (C) and an HCS (D), which is deposited at the highest part of the slope near the fine⁃weather wave base in the deep ramp. Type III sequence comprises a storm gravelstone member (A) and a graded member (B) in the middle ramp. The sequences transition from Type I to Type III (bottom to top of the storm segment), and the sedimentary environment of the storm sequence from bottom to top has evolved from the lower part to the upper part of the deep ramp, and from the deep ramp to the middle ramp, in a process of shallowing upwards. The discovery of the tempestites provides a basis for the paleogeography and palaeoplate evolution of the study area, indicating that the Upper Yangtze Block was located at low latitudes in the Ordovician. Integrated with the regional geological background, it is speculated that the Ordovician Daqing Formation is dominated on the western margin of the Yangtze Platform by mid⁃to⁃outer ramp facies east of Xinjigu, and by inner⁃ramp facies to the west. This implies many geological possibilities for high⁃quality shoal reservoirs in the Ordovician Daqing Formation in the Xichang Basin to the west of Xinjigu.

JIN Xin, SONG JinMin, LIU ShuGen, SUN Wei, DING Yi, DENG ShuangLin, XU ZhiXiong, XU HongYuan, LI LiJi, LI ZhangChang, LANG YueZhu, FENG MengYuan, XIE GuoLiang. Characteristics and Geological Significance of Tempestites in the Daqing Formation, Xinjigu Area, Xichang Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 908-918. doi: 10.14027/j.issn.1000-0550.2020.034
Citation: JIN Xin, SONG JinMin, LIU ShuGen, SUN Wei, DING Yi, DENG ShuangLin, XU ZhiXiong, XU HongYuan, LI LiJi, LI ZhangChang, LANG YueZhu, FENG MengYuan, XIE GuoLiang. Characteristics and Geological Significance of Tempestites in the Daqing Formation, Xinjigu Area, Xichang Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 908-918. doi: 10.14027/j.issn.1000-0550.2020.034
  • 风暴岩相关研究在上世纪50年代末期和60年代初期才开始兴起,其主要理论在随后的10年中逐渐完善。Ager [1]和Kelling et al.[2]最早将风暴岩定义为由风暴扰动后再沉积而形成的一套沉积组合。随着对风暴岩研究进一步的深入,Kumar et al.[3]和Aigner [45]认为风暴岩是由于风暴作用对沉积物的进行扰动从而产生的一系列沉积物,并将其称为“风暴沉积”。20世纪80年代,孟祥化等[6]和刘宝珺等[7]开始引进国外对碳酸盐风暴岩的研究成果,并分别建立了华北地台寒武系和四川盆地二叠系的风暴沉积模式。从此,碳酸盐风暴岩的研究在国内兴起,在20世纪90年代国内对风暴岩和风暴沉积的研究进入了高潮,并取得了诸多进展[8]

    近年来,关于扬子板块的风暴岩研究较多,在震旦纪[910]、寒武纪[1112]、奥陶纪[1315]、志留纪[1617]、泥盆纪[1821]、石炭纪[22]和三叠纪[2328]均发现有风暴沉积。扬子地台在早奥陶世时为正常浅海环境,主要发育灰岩沉积;中、晚奥陶世,随着台地隆升海水退去,到晚奥陶世末,南部形成古陆,北部形成海湾[8]。目前,已报道的扬子地块奥陶系风暴岩主要发现于早奥陶世,发育在黔西北、湘西北和鄂西南等地区,对上扬子地台中上奥陶统的风暴岩的研究目前较为薄弱。

    西昌盆地上奥陶统大箐组白云岩厚度大,分布面积广,镜下多见溶蚀孔洞,周边野外露头可见沥青,井下取芯多段见气泡冒出,表明大箐组具有一定油气勘探潜力。前人通过对西昌盆地大箐组进行分析,认为缓坡高能相带的颗粒滩亚相是优质的储集相带,颗粒滩纵向上厚度大,平面上呈带状连片分布,主要分布于西昌盆地西部[29]。但目前对西昌盆地大箐组的沉积特征、古地理特征、储层特征及勘探前景等方面的研究工作较为薄弱。笔者通过对西昌盆地凉山州甘洛县新基姑剖面的实测和镜下薄片观察,发现该剖面中上奥陶统大箐组发育风暴岩。这对西昌盆地在晚奥陶世的沉积环境、古海洋条件、古纬度和古地理等的研究具有重要意义。本文在剖面详测和镜下鉴定基础上,阐明了西昌盆地新基姑地区中上奥陶统风暴岩特征,揭示风暴沉积构造和风暴沉积模式,分析了其地质意义。

  • 西昌盆地位于四川盆地西南,西昌盆地西界为安宁河断裂,东界为峨边断裂,南界为则木河断裂,北至大渡河,大地构造位置属扬子板块的西缘[30],面积约为1.4×104 km2。区内奥陶系为红石崖组、巧家组、大箐组。西昌盆地在晚奥陶世时,由于康滇古陆的隆升和东侧台地的下降造成了西昌盆地在东部形成南北向阶梯状断裂[31]。受此影响,在盆地中部的海水较浅,发育了碳酸盐缓坡沉积。西昌盆地大箐组与四川盆地宝塔组为同期异相关系(表1),大箐组以白云岩为主,宝塔组则以发育龟裂纹灰岩为特征。

    Table 1.  Subdivision and correlation of the Middle⁃Upper Ordovician in Sichuan Basin and peripheral regions (modified from reference[32])

    大箐组总体沉积背景西高东低,自西向东依次发育潮坪—砂屑滩—外陆棚—盆地等沉积相类型[29]图1)。新基姑剖面位于四川省凉山州甘洛县西南约32 km,剖面奥陶系发育较齐全,大箐组出露清楚。通过对该剖面的实测发现剖面厚449 m,为整体向上变浅的碳酸盐岩缓坡沉积;顶底分别与下志留统龙马溪组、中奥陶统巧家组呈不整合接触,下部主要岩性为砂屑粉—细晶白云岩,发育有明显的风暴沉积,含有珊瑚、介壳、腹足和层孔虫等生物化石;中上部主要岩性为薄层状粉—细砂屑泥晶白云岩,含有少量笔石和三叶虫等生物化石;顶部主要岩性为砂质白云岩夹薄层状含砾砂岩。在剖面上发育3套典型的风暴岩沉积(图2),其厚度分别为7.0 m、4.7 m和8.6 m。

    Figure 1.  Tectonic⁃depositional environment of Upper Ordovician Daqing Formation in Xichang Basin (modified from references[33⁃34])

    Figure 2.  Composite column of Daqing Formation, Xinjigu section in the Xichang Basin

  • 风暴流通常发生在浅海陆棚区,是以风暴为驱动力的密度流。风暴流的运动方式为震荡运动和水平运动,具有波浪和流动的双重性质,运动方向向海。它能够搬运、掏蚀、簸选和悬浮颗粒,并冲击和改造异地和原地沉积物[35]。西昌盆地新基姑剖面发育典型的风暴沉积,如底冲刷、风暴砾屑段及丘状交错层理等沉积构造。

  • 底冲刷构造主要是由于风暴在高峰期时能量较大,对风暴浪基面以上已有的未固结成岩的沉积物进行强烈的冲刷和淘洗,由此在风暴序列底部形成一个与下伏地层突变接触的凹凸不平面[35]。研究区风暴岩底冲刷构造较为明显,冲刷面构造呈不规则平缓波状起伏(图3a,b),起伏幅度2~6 cm,宽度20~30 cm,冲刷、侵蚀能力较弱,形成于风暴衰减期。

    Figure 3.  Storm sedimentary structures in the Daqing Formation, Xichang Basin

  • 风暴砾屑层是识别风暴岩的主要标志之一。新基姑剖面奥陶系大箐组每一期风暴作用产生的风暴砾屑层的厚度为30~50 cm。砾屑成分主要为竹叶状或扁平状白云岩(图3c),分选中等,磨圆度较差,泥晶支撑为主。砾屑层下部主要为扁平状和竹叶状砾屑,长度在3~5 cm,以叠瓦状排列为主;砾屑层中部较下部更为扁平,大小在1~2 cm,以杂乱状或放射状排列为主,呈现出典型的放射状组构(图3d),放射状组构顺层分布在粒序层中,杂乱排列。

    扁平状砾屑(图3c)主要是由于已经沉积的半固结地层在风暴的作用下破碎、卷起、撕裂,虽然大部分砾屑被带走,但是仍有少量砾屑在原地堆积。放射状组构表现为竹叶状砾屑呈放射状、倒“小”字型排列(图3d)。

  • 风暴流在运动过程中触及海底时会对海底已有沉积物进行扰动、再沉积,从而形成丘状交错层理、平行层理和水平层理等各种层理构造[35]。新基姑剖面主要发育丘状交错层理(图3e)和平行层理(图3f)。丘状交错层理的形态表现为上凸的圆丘状,纹层倾角呈四周收敛,丘状交错层理丘高约10~15 cm,波长20~35 cm。平行层理,主要为粉屑白云岩沉积,主要表现为纹层呈平直状。平行层理的形成是由于在风暴进入衰减期后,风暴流能量随风暴减弱,逐渐演变为低密度浊流而形成的沉积构造。

  • 风暴沉积主要划分为3个阶段:高峰期、衰减期、停息期[36]。Aigner[5]建立了一个从下到上依次由侵蚀面、粒序段、平行层理段、交错层理段、泥岩段组成的比较完整的风暴沉积序列。一个理想风暴岩序列由五个沉积单元组成的,由下至上分别为:A侵蚀底面及砾屑段、B粒序段、C平行层理段、D丘状交错层理段、E1远源风暴浊流和E2水平层理泥岩和泥晶灰岩段[8]

    一般情况下,风暴岩序列不可能完整的出现在剖面上,会随着风暴的能量以及沉积物沉积的位置发生不同的序列组合(图4)。在新基姑剖面可以划分为以下几种组合。

  • 该序列主要由远源风暴浊流沉积E1构成,厚度较薄,单层厚1~2 cm,总厚度约6~7 m。主要岩性为深灰色薄层瘤状泥晶白云岩夹黄灰色极薄层状泥岩(图4),其特征主要为厘米级递变层理(图3g),其下部地层岩性主要为中深灰色密细纹层状泥晶白云岩。

  • 该序列为典型的风暴远源沉积,由底冲刷面A、平行层理段C、丘状交错层理段D组成(图4), 底冲刷不发育,仅局部可见,发育小型沟模(图3b),底冲刷面起伏幅度约5~10 cm,主要岩性为中灰色薄到极薄层状粉屑泥晶白云岩,发育纹层,纹层内整体为一个下粗上细的正粒序旋回(图3h)。上部由平行层理段(图3i)和丘状交错层理(图3e)组成,主要岩性为薄层状泥晶白云岩,总厚10~15 cm。

  • 序列Ⅲ主要由底冲刷和砾屑段(A段)、粒序段(B段)组成(图4)。该段的背景沉积物主要为中深灰色薄层状粉屑泥晶白云岩,发育有三套风暴砾屑,砾屑呈竹叶状或扁平状(图3j),砾屑层厚30~50 cm,砾屑层之上发育正粒序层,由若干个厘米级次级小旋回组成,见同生变形构造和放射状组构(图3d)。

    Figure 4.  Types of tempestite sequences in the Daqing Formation, Xichang Basin

    Ⅰ、Ⅱ型层序结构发育在研究区剖面下部,以Ⅱ型层序结构为主,往上过渡为Ⅲ型层序结构,其中Ⅰ型层序结构的发育规模较小、层序厚度较薄,约80~120 cm;Ⅱ型层序结构普遍规模较大、厚度较厚,约300~400 cm;Ⅲ型层序结构发育三期风暴、厚度中等,约200~300 cm。剖面沉积结构上,序列Ⅰ底部为深灰色薄层瘤状泥晶白云岩,向上逐渐转变为黄灰色极薄层状泥岩;序列Ⅰ与序列Ⅱ之间为含粉屑瘤状灰岩,向上粉屑含量增加;序列Ⅱ主要为中灰色粉屑泥晶白云岩;序列Ⅱ与序列Ⅲ之间岩性变化为粉屑泥晶白云岩—砂屑白云岩—泥晶白云岩—含粉屑瘤状泥晶白云岩,沉积水体环境为浅—深—浅变化;序列Ⅲ主要岩性为中深灰色薄层状粉屑泥晶白云岩,序列由下到上粒度变细。沉积环境由外缓坡向中缓坡变化,粒度向上变粗,粉屑含量增加,风暴序列厚度逐渐增加,构成向上变浅的沉积环境(图2),其中以外缓坡沉积为主体。从风暴岩的整体发育来看,该时期风暴强度逐渐增强,而海平面处于逐渐下降的过程。

  • 综合西昌盆地奥陶系主要为碳酸盐岩缓坡沉积模式、风暴岩序列段的类型差异以及背景沉积物特征,归纳出西昌盆地新基姑地区大箐组风暴沉积模式(图5)。

    Figure 5.  Depositional model of carbonate tempestites in the Daqing Formation, Xichang Basin

    序列Ⅰ粒度较细,表明该沉积处于受风暴回流的影响很小,风暴搬运作用很弱,水体能量较弱,重力分异较为明显,为风暴浪基面以下的远源风暴浊流沉积,为外缓坡下部沉积。

    序列Ⅱ仅发育局部冲刷面,说明风暴在该段的能量较弱,搬运作用较弱,主要为重力差异沉积,因而发育粉屑颗粒为主的正粒序结构,表明距离风暴中心较远,水体较深;平行层理段具有层理为小型,岩性较细,层厚较薄的特点;丘状交错层理段为风暴涡流、风暴浪和摆动水流相互作用的产物。所以该序列为风暴浪基面以下的远源风暴浊流沉积,但其颗粒粒度较序列Ⅰ粗,所以水体环境较序列Ⅰ变浅,更加靠近风暴浪基面,为外缓坡上部沉积。

    序列Ⅲ底冲刷构造明显,且较平缓,说明风暴侵蚀能力较弱,以风暴回流的搬运沉积为主,重力分异沉积为辅,从而发育粒序段,有砾屑和大量粉屑沉积,表明该区域受到陆源碎屑影响,风暴涡流对陆源碎屑进行了较长距离的搬运,在镜下可以观察到砾屑、砂屑(图3k,l)都具有一定的磨圆,分选一般;同时产生的同生变形构造、放射状组构和正粒序,一定程度上反映了风暴沉积随风暴回流的演变过程。该风暴序列形成于风暴浪基面之上,正常浪基面之下,可以判断序列Ⅲ风暴岩主要沉积于中缓坡相带。

    从剖面纵向上来看,风暴层序自下而上的沉积环境演化为外缓坡下部→外缓坡上部→中缓坡,形成一个在纵向上变浅的沉积特征。序列Ⅰ、Ⅱ为风暴浪基面以下的风暴远源沉积:序列Ⅰ粒度较细,以泥级颗粒为主,厚度较薄,无冲刷面;序列Ⅱ粒度以粉—泥级颗粒为主,发育有底冲刷面、平行层理段、丘状交错层理段,发育规模较小,整体厚度较薄。序列Ⅰ、Ⅱ类型远源风暴岩的发现,完善了远源型风暴岩在外缓坡的序列组合和沉积模式。序列Ⅲ为风暴浪基面以上的风暴近源沉积,发育有底冲刷面和砾屑段、粒序段,砾屑、砂屑具有一定的磨圆,分选一般,砾屑段较发育。序列Ⅲ类型近源风暴岩的发现,完善了近源型风暴岩在中缓坡的序列组合和沉积模式。

  • 在新元古代时期,扬子板块和华夏板块沿江绍断裂带拼合成华南板块[37]。通过对现代飓风的研究,飓风多发生在中低纬度地区,一般为5°~45°范围之内[38],地质历史时期内发生的风暴都应该在此范围之内。西昌盆地新基姑地区大箐组剖面内风暴岩在剖面上多次出现,虽然规模较小,但出现次数和期次较为频繁,反映出研究区晚奥陶世处于风暴发生较频繁的热带或亚热带低纬度地区。通过与此前已经在贵阳乌当下奥陶统湄潭组和湖北松滋刘家场下奥陶统红花园组发现的风暴岩综合分析,进一步证实了西昌盆地(扬子板块)在奥陶纪一直处于赤道以南1°~3°附近[39]图6)。

    Figure 6.  Global Upper Ordovician paleogeographic reconstruction map (modified from reference [40])

  • 西昌盆地在晚奥陶世时由于断裂的影响造成差异沉降,在盆地中部为水体较浅的大箐组白云岩沉积,东部则为沉积水体较深的临湘组灰岩。前人将西昌盆地大箐组沉积环境自西向东依次划分为潮坪、砂屑滩、外陆棚[40]。风暴岩、滑塌沉积的出现说明当时的新基姑地区大箐组剖面处于向海一侧的碳酸盐岩缓坡环境。

    大箐组沉积时期,扬子地块由于早期加里东运动的影响,康滇古陆持续上隆,扬子地台呈现为西高、东低的碳酸盐岩缓坡沉积,且由西至东方向发生海退[41]图7),这就决定了风暴侵蚀作用主要发育于新基姑以西的内缓坡相,并向新基姑以东的中—外缓坡相搬运。结合区域地质背景,认为平面上大箐组在扬子地台西缘新基姑以东地区为中—外缓坡沉积,而新基姑以西地区则主要为内缓坡沉积,这为扬子地台北缘晚奥陶世岩相古地理的恢复提供了重要约束。

    Figure 7.  Paleogeological conditions of Upper Ordovician tempestites in the Daqing Formation, Xichang Basin (modified from reference[41])

  • 西昌盆地大箐组有效储集层优势相带在波浪、潮汐等水动力作用下发育大规模滩体,主要发育于西昌盆地西侧的缓坡高能相带[29]。而根据上述风暴沉积对岩相古地理的约束,新基姑以西的内缓坡相,处于正常浪基面之上,为颗粒滩发育的有利相带[42],具备发育优质储层的基本地质条件。从而认为,西昌盆地大箐组在新基姑以西的方向具备发育大规模优质颗粒滩型储层的古地理背景。

  • (1) 西昌盆地新基姑剖面大箐组发育了三个期次的风暴岩,可以具体划分出三种风暴沉积序列:序列Ⅰ为远源风暴浊流沉积(E1),发育于外缓坡相带下部;序列Ⅱ也为典型的远源风暴沉积,局部见底冲刷面(A段)、平行层理段(C段)、丘状交错层理段(D段),主要发育于外缓坡相带上部,序列Ⅱ相较于序列Ⅰ更加靠近风暴浪基面;序列Ⅲ主要由底冲刷和砾屑段(A段)、粒序段(B段)组成,主要沉积于中缓坡相带。

    (2) 风暴层序自下而上的沉积环境演化为外缓坡下部→外缓坡上部→中缓坡,形成一个在纵向上变浅的沉积特征。

    (3) 新基姑地区大箐组剖面风暴岩的发现说明了西昌盆地在晚奥陶世处于低纬度风暴发育地区。风暴岩、滑塌沉积的出现说明当时研究区处于向海一侧的碳酸盐岩缓坡环境。

    (4) 西昌盆地大箐组在新基姑以东地区处于中—外缓坡地带,而在新基姑以西地区为内缓坡地带。因此,推测大箐组在新基姑以西的方向具备发育大规模优质颗粒滩型储层的古地理背景。

Reference (42)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return