Advanced Search
Volume 39 Issue 4
Aug.  2021
Turn off MathJax
Article Contents

SHANG JianXia, ZHANG QiaoLiang, LI Hua, KONG LingHui, LUO Jiao, YE Miao. Characterization Method and Application of Seepage Units Based on Reservoir Configuration: A case study of the Wenchang C oilfield in the Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1020-1030. doi: 10.14027/j.issn.1000-0550.2020.031
Citation: SHANG JianXia, ZHANG QiaoLiang, LI Hua, KONG LingHui, LUO Jiao, YE Miao. Characterization Method and Application of Seepage Units Based on Reservoir Configuration: A case study of the Wenchang C oilfield in the Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1020-1030. doi: 10.14027/j.issn.1000-0550.2020.031

Characterization Method and Application of Seepage Units Based on Reservoir Configuration: A case study of the Wenchang C oilfield in the Pearl River Mouth Basin

doi: 10.14027/j.issn.1000-0550.2020.031
Funds:

CNOOC China Limited Major Project CNOOC⁃KJ135 ZDXM 38 ZJ 01 ZJ

  • Received Date: 2019-12-27
  • Publish Date: 2021-08-10
  • In the Wenchang C oilfield, the second member and first member of the Zhuhai Formation, and the vertical multi⁃phase sandbodies, all overlap. The internal structure is complex, and the heterogeneity is strong. At present, production has entered the “double height” stage, and the distribution of the remaining oil is unknown. Influenced by the fault distribution and reservoir quality of different configuration units on the plane of thick reservoirs, the water⁃flooding stratum phenomenon is clearly divided longitudinally into zones controlled by the complex internal structure of the sandbody and the distribution of interlayers. The unclear water⁃flooding mechanism restricts the oilfield’s next step of adjusting potential. Based on a detailed description of the structure of the sandbody, the percolation units were described by combining the micropore throat parameters (e.g., capillary pressure) from structural research, which made up for the problem that the traditional flow zone indicator (FZI) division of the flow unit was not fine enough, and more closely matched the production dynamics. It is clear that there are two remaining oil control modes: first, seepage⁃level differential oil control; second, configuration interface oil control. The results show that the study area is divided into five well areas and 15 single layers vertically. The combination of plane and section indicates a total of 60 oil⁃bearing units. Combined with production dynamics, the production degree and remaining oil distribution in each seepage unit are obtained. Seven targeted measures are proposed, which will effectively improve the development of this oilfield. At the same time, the results provide experience and references for tapping the remaining oil potential of similar complex thick sandstone reservoirs.
  • [1] Hearn C L, Ebanks Jr W J, Tye R S, et al. Geological factors influencing reservoir performance of the Hartzog draw field, Wyoming[J]. Journal of Petroleum Technology, 1984, 36(8): 1335-1344.
    [2] 冯晓宏,刘学峰,岳清山,等. 厚油层非均质特征描述的新方法:水力(渗流)单元分析[J]. 石油学报,1994,15(增刊1):149-158.

    Feng Xiaohong, Liu Xuefeng, Yue Qingshan, et al. A new method for heterogentity description of thick reservoir: Hydraulic (Flow) units analysis[J]. Acta Petrolei Sinica, 1994, 15(Suppl. l): 149-158.
    [3] 姚光庆,李联五,孙尚如. 砂岩储层构成定量化分析研究思路与方法[J]. 地质科技情报,2001,20(1):35-38.

    Yao Guangqing, Li Lianwu, Sun Shangru. Studying idea and methods of quantitative analysis on sandstone reservoir architecture[J]. Geological Science and Technology information, 2001, 20(1): 35-38.
    [4] 吕晓光,赵永胜,王世勇. 储层流动单元的概念及研究方法评述[J]. 世界石油工业,1998,5(6):38-43.

    Xiaoguang Lü, Zhao Yongsheng, Wang Shiyong. Review on the concept and research methods of reservoir flow units[J]. World Oil Industry, 1998, 5(6): 38-43.
    [5] 吴胜和,王仲林. 陆相储层流动单元研究的新思路[J]. 沉积学报,1999,17(2):252-257.

    Wu Shenghe, Wang Zhonglin. A new method of non -marine reservoir flow unit study[J]. Acta Sedimentologica Sinica, 1999, 17(2): 252-257.
    [6] 彭仕宓,尹志军,常学军,等. 陆相储集层流动单元定量研究新方法[J]. 石油勘探与开发,2001,28(5):68-70.

    Peng Shimi, Yin Zhijun, Chang Xuejun, et al. A new quantitative method to study flow unit of non-marine reservoir[J]. Petroleum Exploration and Development, 2001, 28(5): 68-70.
    [7] 姚合法,林承焰,靳秀菊,等. 多参数判别流动单元的方法探讨[J]. 沉积学报,2006,24(1):90-95.

    Yao Hefa, Lin Chengyan, Jin Xiuju, et al. Study on multi-parameters discrimination method for flow units[J]. Acta Sedimentologica Sinica, 2006, 24(1): 90-95.
    [8] 雷霄,胡余,梁文锋,等. 文昌19-1油田珠江组二段I油组沉积相研究[J]. 西南石油大学学报(自然科学版),2015,37(4):1-12.

    Lei Xiao, Hu Yu, Liang Wenfeng, et al. A study on sedimentary facies of oil group I in member 2 of Zhujiang Formation in Wenchang 19-1 oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(4): 1-12.
    [9] 蒋平,吕明胜,王国亭. 基于储层构型的流动单元划分:以扶余油田东5-9区块扶杨油层为例[J]. 石油实验地质,2013,35(2):213-219.

    Jiang Ping, Mingsheng Lü, Wang Guoting. Flow unit division based on reservoir architecture: Taking Fuyu-Yangdachengzi Formation in blocks Dong 5-9 of Fuyu oilfield as an example[J]. Petroleum Geology & Experiment, 2013, 35(2): 213-219.
    [10] 万琼华,吴胜和,陈亮,等. 基于深水浊积水道构型的流动单元分布规律[J]. 石油与天然气地质,2015,36(2):306-313.

    Wan Qionghua, Wu Shenghe, Chen Liang, et al. Analysis of flow unit distribution based on architecture of deep-water turbidite channel systems[J]. Oil & Gas Geology, 2015, 36(2): 306-313.
    [11] Miall A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308.
    [12] Miall A D. The geology of fluvial deposits: Sedimentary facies, basin analysis, and petroleum geology[M]. Heidelberg: Springer-Verlag, 1996: 1-178.
    [13] Miall A D. Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: A reality check[J]. AAPG Bulletin, 2006, 90(7): 989-1002.
    [14] 吴胜和,翟瑞,李宇鹏. 地下储层构型表征:现状与展望[J]. 地学前缘,2012,19(2):15-23.

    Wu Shenghe, Zhai Rui, Li Yupeng. Subsurface reservoir architecture characterization: Current status and prospects[J]. Earth Science Frontiers, 2012, 19(2): 15-23.
    [15] 吴胜和,岳大力,刘建民,等. 地下古河道储层构型的层次建模研究[J]. 中国科学(D辑):地球科学,2008,38(增刊I):111-121.

    Wu Shenghe, Yue Dali, Liu Jianmin, et al. Hierarchy modeling of subsurface palaeochannel reservoir architecture[J]. Science China (Seri. D): Earth Sciences, 2008, 38(Suppl. 1): 111-121.
    [16] 袁静,梁绘媛,宋璠,等. 韦5断块三角洲前缘储层构型及剩余油分布[J]. 西南石油大学学报(自然科学版),2015,37(6):1-11.

    Yuan Jing, Liang Huiyuan, Song Fan, et al. Delta front reservoir architectural characteristics and its relations with remained oil distribution in Wei-5 Fault Block, Gaoyou Sag, Subei Basin[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(6): 1-11.
    [17] 林煜,吴胜和,岳大力,等. 扇三角洲前缘储层构型精细解剖:以辽河油田曙2-6-6区块杜家台油层为例[J]. 天然气地球科学,2013,24(2):335-344.

    Lin Yu, Wu Shenghe, Yue Dali, et al. Fine anatomizing reservoir architecture of fan-delta front: A case study on Dujiatai reservoir in Shu 2-6-6 block, Liaohe oilfield[J]. Natural Gas Geoscience, 2013, 24(2): 335-344.
    [18] 赵红兵,申本科. 特高含水期三角洲前缘储层建筑结构分析与剩余油分布[M]. 北京:石油工业出版社,2011.

    Zhao Hongbing, Shen Benke. Structural analysis and remaining oil distribution of delta front reservoir in extra high water cut[M]. Beijing:Petroleum Industry Press,2011.
    [19] 吴胜和. 储层表征与建模[M]. 北京:石油工业出版社,2010.

    Wu Shenghe. Reservoir characterization & modeling[M]. Beijing: Petroleum Industry Press, 2010.
    [20] 胡荣强,马迪,马世忠,等. 点坝建筑结构控渗流单元划分及剩余油分布研究[J]. 中国矿业大学学报,2016,45(1):133-140,156.

    Hu Rongqiang, Ma Di, Ma Shizhong, et al. Identification of flow units and distribution of remaining oil controlled by the architectural structure of point bar[J]. Journal of China University of Mining & Technology, 2016, 45(1): 133-140, 156.
    [21] 吕端川,林承焰,任丽华,等. 杏六区东部分流河道砂体渗流单元组合及水淹模式[J]. 岩性油气藏,2018,30(5):103-108.

    Duanchuan Lü, Lin Chengyan, Ren Lihua, et al. Flow unit combination and water flooding model of distributary channel sand body in eastern Xing-6 block[J]. Lithologic Reservoirs, 2018, 30(5): 103-108.
    [22] 万琼华,罗伟,梁杰,等. 基于储层构型的流动单元渗流屏障级次研究[J]. 西南石油大学学报(自然科学版),2019,41(1):77-84.

    Wan Qionghua, Luo Wei, Liang Jie, et al. Reservoir architecture-based classification of seepage barriers of flow unit[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(1): 77-84.
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(2)

Article Metrics

Article views(327) PDF downloads(81) Cited by()

Proportional views
Related
Publishing history
  • Received:  2019-12-27
  • Published:  2021-08-10

Characterization Method and Application of Seepage Units Based on Reservoir Configuration: A case study of the Wenchang C oilfield in the Pearl River Mouth Basin

doi: 10.14027/j.issn.1000-0550.2020.031
Funds:

CNOOC China Limited Major Project CNOOC⁃KJ135 ZDXM 38 ZJ 01 ZJ

Abstract: In the Wenchang C oilfield, the second member and first member of the Zhuhai Formation, and the vertical multi⁃phase sandbodies, all overlap. The internal structure is complex, and the heterogeneity is strong. At present, production has entered the “double height” stage, and the distribution of the remaining oil is unknown. Influenced by the fault distribution and reservoir quality of different configuration units on the plane of thick reservoirs, the water⁃flooding stratum phenomenon is clearly divided longitudinally into zones controlled by the complex internal structure of the sandbody and the distribution of interlayers. The unclear water⁃flooding mechanism restricts the oilfield’s next step of adjusting potential. Based on a detailed description of the structure of the sandbody, the percolation units were described by combining the micropore throat parameters (e.g., capillary pressure) from structural research, which made up for the problem that the traditional flow zone indicator (FZI) division of the flow unit was not fine enough, and more closely matched the production dynamics. It is clear that there are two remaining oil control modes: first, seepage⁃level differential oil control; second, configuration interface oil control. The results show that the study area is divided into five well areas and 15 single layers vertically. The combination of plane and section indicates a total of 60 oil⁃bearing units. Combined with production dynamics, the production degree and remaining oil distribution in each seepage unit are obtained. Seven targeted measures are proposed, which will effectively improve the development of this oilfield. At the same time, the results provide experience and references for tapping the remaining oil potential of similar complex thick sandstone reservoirs.

SHANG JianXia, ZHANG QiaoLiang, LI Hua, KONG LingHui, LUO Jiao, YE Miao. Characterization Method and Application of Seepage Units Based on Reservoir Configuration: A case study of the Wenchang C oilfield in the Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1020-1030. doi: 10.14027/j.issn.1000-0550.2020.031
Citation: SHANG JianXia, ZHANG QiaoLiang, LI Hua, KONG LingHui, LUO Jiao, YE Miao. Characterization Method and Application of Seepage Units Based on Reservoir Configuration: A case study of the Wenchang C oilfield in the Pearl River Mouth Basin[J]. Acta Sedimentologica Sinica, 2021, 39(4): 1020-1030. doi: 10.14027/j.issn.1000-0550.2020.031
  • 南海西部海域大部分在生产油田已进入“高含水、高采出程度”的双高阶段,加之地下储层非均质性及开采不均匀性,剩余油分布十分复杂,挖潜难度愈来愈大。储层内部不同层次的复杂非均质性是导致高含水期油藏剩余油高度分散的主要地质因素,因此,必须系统地厘清储层的非均质体系,描述砂体内部结构并有效评价其渗流品质,为改善高含水期油藏开发效果提供有效的技术支持。

    当前,储层流动单元刻画是描述油藏非均质性及评价储层渗流性能行之有效的手段之一,它是指在垂向上和横向上连续的储集带且内部具有相似的岩性及岩石物理性质[1]。自1984年Hearn et al.[1]首次提出流动单元的概念以来,国内外学者提出了多种流动单元划分的方法:冯晓宏等[2]、姚光庆等[3]、吕晓光等[4]提出利用流动层段指标FZI方法,吴胜和等[5]提出了以地质研究为主的储层层次分析法,彭仕宓等[6]、姚合法等[7]提出了采用粒度中值、孔隙度及流动层段指标FZI方法等多参数判别法,每种方法都有自身的适用条件和优缺点,国内目前比较常用的是利用FZI的方式进行流动单元划分,但是该方法主要反映岩石的孔隙度和渗透率,据此划分精度不够,划分结果与生产动态吻合度不高,无法满足高含水油田精细研究的需要,本次以研究区珠江口盆地C油田珠海组二段一油组(简称“ZH2Ⅰ油组”)为例,在构型研究基础上,结合毛管压力曲线等微观孔喉参数提出了一种全新的流动单元划分方法——基于构型的渗流单元刻画新技术,有效评价了储层的渗流品质,并据此将研究区划分60个渗流单元,提高了剩余油预测精度,为高含水油田调整挖潜提供关键的技术支持。

  • 文昌C油田位于南海珠江口盆地西部珠三坳陷的文昌B凹陷中部东侧(图1)。油田所在的珠三坳陷发育了完整的新生界地层。油田内所钻遇油层属新近系中新统韩江组、珠江组和古近系渐新统珠海组、恩平组地层,其中ZH2Ⅰ油组是油田主力油组之一。珠海组含油范围内断层较为发育,主断层断距大,延伸较长,且次一级小断层相对发育,对珠海组的油水分布具有控制作用。ZH2Ⅰ油组属于扇三角洲前缘沉积,扇三角洲前缘亚相,以水下分流河道微相为主,油藏类型属于受断层遮挡的边水油藏。由于纵向多期砂体相互叠置,内部结构复杂、非均质性强,经过近十年的有效开发,目前已进入高含水、高采出程度的“双高”开发阶段,剩余油分布十分复杂。

    Figure 1.  Geotectonic map of the western Pearl River Mouth Basin and location of the study area[8]

  • 储层构型研究是渗流单元研究的基础,通过开展构型研究可以明确连通体及渗流屏障的分布关系,进而在连通体内部开展渗流单元的划分,构型单元界面级次与储层渗流屏障的分级也有较好的对应关系[910]

    研究区ZH2Ⅰ油组为扇三角洲前缘沉积,构型单元包括前缘水下分流河道主体、分下分流河道侧缘、河口坝、席状砂以及分流河道间5种,沉积微相与储层构型具有成因联系。物源来自东部的神狐隆起,受物源供给及古地形影响,水下分流河道砂体主要在研究区中东部连片分布,沿物源方向过渡为河口坝及席状砂,沉积微相控制储层构型平面分布特征(图2)。纵向剖面上水下分流河道发育区由于多期河道侧向迁移,呈相互切割叠置接触,砂体之间连通性好;远离物源方向席状砂砂体处呈孤立分布特点,剖面沉积微相控制储层构型剖面分布特征(图3)。

    Figure 2.  Planar distribution of two small⁃layer/one single⁃layer configuration of ZH2 I oil group

    Figure 3.  Vertical distribution of two small⁃layer/one single⁃layer configuration of ZH2 I oil group

    依据Miall[1113]提出的界面划分原则,结合用岩心、地震、测井等资料,采用井震结合、相控约束、模式指导的方法[1417],将目的层构型界面按正序由大到小从7级划分到3级构型界面(表1图4)。

    沉积体系 构型 级次 构型 单元 构型界面识别 成因
    岩相组合 测井相
    扇 三 角 洲 前 缘 七级 复合朵叶体 厚层暗色泥岩 自然伽马高值、电阻低值 扇三角洲复合朵叶体之间的界面,对应中期基准面或转换界面
    六级 朵叶体 厚层暗色泥岩 自然伽马高值、电阻低值 有相同的物源、水动力条件等的水流形成的成因单元之间界面
    五级 复合砂体 中等厚度泥岩夹层 高自然伽马、高声波时差、电阻相对低值 一系列的相似水动力条件下形成的时间上相关联的水流形成的成因单元之间界面
    四级 单砂体 薄层泥岩、泥质粉砂岩、粉砂质泥岩 自然伽马回返明显,电阻率曲线幅差小 水动力相对稳定的水流形成的成因单元之间界面
    三级 单砂体内夹层 薄层、砂砾岩、粉砂质泥岩、泥质粉砂岩 自然伽马曲线回返微弱,电阻率曲线幅差小 由一期短期内水动力变化较明显的水流形成底部滞留沉积、顶部漫流细粒沉积

    Table 1.  Structural interface division of ZH2 I oil group

    Figure 4.  Area configurations of the ZH2 I oil group in the study area

    7级构型界面主要为扇三角洲前缘复合朵叶体之间的界面,对应7级渗流屏障界面,主要发育厚层泥岩,厚度在2 m左右,分布相对稳定,具有较强的阻隔作用,该级次界面对应的是油层组界面。6级构型界面为扇三角洲前缘不同朵叶体之间界面,对应6级渗流屏障界面,成因类型主要为几个复合水下分流河道顶部的泥质隔层,厚度大于1.5 m。从地震反射特征上,可以看出垂直物源方向三期朵叶砂体形态均呈顶平底凸,自下而上,砂体延伸范围变小,表明随着水体的加深,扇三角洲发育规模缩小,该级次界面对应的是砂层组界面。5级构型界面为多期水下分流河道复合体的顶界面,对应5级渗流屏障界面,成因类型为水下分流河道叠置体间泥岩,厚度约1.5 m左右,与小层组的界面相对应。4级构型界面为单一水下分流河道砂体的顶界面,在单井上表现为泥岩夹层或者较大程度的曲线回返面,对应4级渗流屏障界面,在岩心上对应厚度较薄的砂泥过渡段,物性差,且延伸短,厚度大于1 m。3级界面为单一河道内部增生体的分界面,成因类型有两种,一是河道内顶部静水沉积形成泥质夹层,二是底部滞留沉积形成砂砾混杂物性差的夹层[1819],对应3级渗流屏障界面,厚度较薄,大多小于1 m。

    在构型界面划分的基础上,进行构型单元的解剖,结果表明ZH2Ⅰ油组自下而上由于水下分流河道的不断迁移摆动,形成了纵向上多期河道相互切割叠置,平面上连片分布的空间格局。油组内部进一步分为7个复合砂体、26个单砂体,单砂体宽度100~450 m,厚度1.5~6 m,宽厚比为40~80。

  • 流动单元与渗流单元既有联系又有区别,实际上,它们都是不同尺度储层非均质单元,主要用于油田不同开发阶段;二者的区别在于:前者以孔隙结构、孔隙度和渗透率等静态特征为主,结合流体流动的动态特征进行划分;而后者则以储层内部动态渗流性能为主,强调渗流动用状态,结合储层构型静态特征进行划分。由于研究区已进入开发中后期,因此本次在储层构型划分的基础上,在最小构型单元内部,开展了基于构型的渗流单元的研究。

  • 传统的流动单元划分往往采用流动分层指标(FZI)进行划分。理论上,FZI是把结构和矿物地质特征、孔喉特征结合起来判定孔隙几何相的一个参数,实际上FZI计算方法过于理想化,弱化了孔隙结构非均质性的影响,实际上决定因素仅有孔隙度和渗透率两个参数,根据FZI划分流动单元精度不够,在同一单元内部仍然存在水驱不均的现象,因此,仅用FZI一个参数划分流动单元的方法无法满足开发后期对渗流单元划分精细的需要[2022]。考虑到C油田层内非均质性强,流动单元划分难度较大,仅仅依靠孔渗参数不能反映流动单元的全部特征,因此,本次在充分考虑研究区储层地质特征、流体特征基础上,综合考虑构型成果(构型要素、渗流屏障、砂体叠置关系等)、岩性参数(岩性、粒度中值、泥质含量)、岩心物性参数(孔隙度、渗透率)、孔喉参数(毛管压力曲线、启动压力、中值压力、均质半径)四大类评价参数。

  • 依据四类评价参数将目的层分为优质、次优、差三类渗流单元,具体的划分标准见图5所示。

    Figure 5.  Classifications of seepage unit of ZH2 I oil formation

    ①优质渗流单元 此类构型要素主要为水下分流河道主体,砂体叠置样式为叠置式、渗流屏障发育特点以无夹层式为主。岩性以含砾中—细砂岩为主,粒度中值为9.92 μm,平均泥质含量为2.26%。岩心孔隙度平均26%,岩心渗透率平均为1 560×10-3 μm2。毛管压力曲线以I类为主,启动压力为0.003 MPa,中值压力小于0.1 MPa,均质半径大于20 μm。

    ②次优渗流单元 此类构型要素为水下分流河道侧缘、河口坝,砂体叠置样式为对接式为主、渗流屏障发育特点以半遮挡型夹层为主。岩性以中—细砂岩为主,粒度中值为1.03 μm,平均泥质含量为9.1%。岩心孔隙度平均23%,岩心渗透率平均为564×10-3 μm2。毛管压力曲线以II类为主,启动压力为0.003~0.007 MPa,中值压力0.1~0.15 MPa,均质半径大于15~20 μm。

    ③差渗流单元 此类构型要素为席状砂、溢岸砂,砂体叠置样式以孤立式为主,渗流屏障发育特点以全遮挡型夹层为主。岩性以粉砂岩为主,粒度中值为0.05 μm,平均泥质含量为10.46%。岩心孔隙度平均19%,岩心渗透率平均为115×10-3 μm2。毛管压力曲线以III类为主,启动压力为0.07~0.02 MPa,中值压力0.2~0.5 MPa,均质半径大于5~15 μm。

  • 结合上述分类标准对取心井C8井进行渗流单元的刻画,建立取心井不同类别渗流单元的电性参数区间(表2),比传统方法更加精细(图6),与生产动态更加匹配,优质渗流单元水淹严重,而次优、差的渗流单元弱水淹—未水淹。

    类型 自然伽马/API 中子/% 密度/(g/cm3 泥质含量/% 孔隙度/% 渗透率/×10-3 μm2
    优质 44~215 7~25 2.15~2.24 1.5~8.3 >23 >560
    次优 82~221 13~21 2.18~2.35 8.3~25.5 17~23 97~550
    121~220 17~25 2.35~2.46 3.2~17 <21 21~97

    Table 2.  Distribution of electrical parameters of percolation unit in coring well

    Figure 6.  Comparisons of core well seepage unit divisions

  • 假设G个总体t 1t 2,…,t g是由m个变量a 1a 2,…,a m组成,假设已知每个总体的密度函数为 f g ( a ) 和先验概率为 P g 。如果把t 1t 2,…,t g视为总体样本空间的一个划分,依据Bayes公式可以求得样品a属于t gt=1,2,…,G)的条件概率:

    P ( t i / a ) = P g f g ( a ) i = 1 G P i f i ( a ) - 1 (1)

    式中:P(t i/a)为a的条件概率; P g 为每个总体的先验概率; f g ( a ) 为每个样品的密度函数; P i 为第i个变量概率值; f i a 为第i个变量a的函数。

    研究区共划分优质、次优、差三类渗流单元,可视为三个总体G = 1,2,3。选取了六条测井曲线为变量,经过标准化之后对非取心井进行判别分析,建立判别函数如下:

    优质渗流单元:

    Y(优)=4.1×GR+4624.9×DEN-366.2×CNC+189.2×VSH+1227.1×Por+0.37×Perm-4061.1 (2)

    次优渗流单元:

    Y(次优)=3.9×GR+4555.5×DEN-365.16×CNC+188.8×VSH+1220.8×Por+0.28×Perm-3083.2 (3)

    差渗流单元:

    Y(差)=4.3×GR+4461.1×DEN362.1×CNC+187.6×VSH+1207.8×Por+0.32×Perm-2688.1 (4)

    式中:GR为伽马值(API);CNC为中子值(%);DEN为密度值(g/cm3);VSH为泥质含量(%);Por为孔隙度值(%);Perm为渗透率(10-3 μm2)。

    依据判别函数划分单井渗流单元划分结果与动态监测资料匹配分析结果表明:渗流单元划分结果与实际水淹情况具有较好的相关性(图7),优质和次优渗流单元产出高(17.1%~28.4%)、含水率高(82%~97.6%),而次优、差储层产出少(4.7%~10.3%),含水率低(47.6%)。

    Figure 7.  Comparison of seepage unit division and dynamic monitoring

  • 在储层构型单元内部,依据由单井渗流单元划分—平面渗流单元划分—剖面渗流单元划分的多维互动研究思路,完成对渗流单元分布特征研究,结果表明,横向上,靠近物源区,以优质和次优储层为主,远离物源区,次优和差储层比例增加,优势渗流单元主要分布于水下分流河道主体处(图8)。纵向上,席状砂、水下分流河道侧缘以及水下分流河道顶部及底部次优、差储层为主,水下分流河道主体中部以优质储层为主,从而说明了构型单元的展布对渗流单元分布具有一定的控制作用(图9)。

    Figure 8.  Planar seepage cell division distribution of two small⁃layer/one single⁃layer configuration of ZH2 I oil group

    Figure 9.  Vertical seepage cell division distribution of two small⁃layer/one single⁃layer configuration of ZH2 I oil group

    结合构型成果及渗流单元划分,对整个ZH2Ⅰ油组进行了渗流单元的划分,纵向上15个单层、平面5个井区,一共划分75个单元,其中位于油水界面以上含油的是60个单元。其中优质单元29个,储量占55.6%;次优单元20个,储量占30.2%;差单元11个,储量占14.2%。

  • 根据动态监测结果,将产量劈分到所在的单元,得到各单元的采出程度(图10),采出程度相对较低的渗流单元即剩余油富集区,通过分析总结控油模式有两种类型:渗流单元差异平面控油模式、渗流屏障遮挡垂向控油模式。

    Figure 10.  Three⁃dimensional histogram of recovery percent of different seepage units

  • 由于看似连片的砂体内部存在渗流差异性,边水在驱替过程中会优先选择物性好的优质、次优渗流单元推进,而物性差的差渗流单元储层难以波及,水驱程度弱,剩余油相对富集。研究区内优质、次优渗流单元砂体成因类型多为水下分流河道、河口坝砂体,储层物性好, 内部往往水淹严重,剩余油潜力小;而差渗流单元例如席状砂、溢岸砂等砂体,水驱程度弱,剩余油富集,比如ZH2Ⅰ⁃1⁃1⁃1单层内部5个席状砂成因的差渗流单元采出程度低,剩余潜力大。

  • 渗流屏障也即夹层,对油水垂向运移起到一定的阻挡作用。垂向上,在渗流单元间或渗流单元内部夹层发育时,往往造成界面上下储层水淹程度不同,导致夹层下部单元或该单元内部剩余油富集。例如研究区四级构型单元河道内部存在两种夹层类型,分别是顶部静水细粒沉积物与底部滞留沉积物,若该类型夹层发育会导致河道内部水洗程度较轻;流动单元间隔层的存在同样对流体垂向运移起到明显的阻隔作用,在研究区分布均比较稳定夹层主要为三级或四级界面,厚度大于1 m,在研究区分布均比较稳定,造成界面上下储层水驱程度的不均匀,剩余油富集。该类型剩余油主要分布在B3井区、B5井区ZH2Ⅰ⁃2⁃2~ZH2Ⅰ⁃3⁃2共10个单元。

  • 针对渗流差异控制的剩余油富集区,由于储层物性相对较差,本次暂不调整;受渗流屏障控制的剩余油富集区,其储层品质主要为优质、次优,潜力相对较大,因此作为本次挖潜主要目标,分别实施调整井、补孔共七项措施,平均单井增油3.7万方,累积增油26万方,提高采收率5%。

  • (1) 流动单元与渗流单元属于不同尺度储层非均质单元,适用于不同开发阶段。前者以储层静态特征为主,结合流体流动的动态特征进行划分;而后者则以储层内部动态渗流性能为主,结合储层构型静态特征进行划分。文昌C油田ZH2Ⅰ油组的研究成果应用表明,油田进入开发中后期之后,在成因单元内部开展渗流单元研究能有效指导剩余油分布预测以及油田开发调整策略。

    (2) 依据储层构型理论,将研究区构型界面按正序由大到小从7级划分至3级构型界面,7级界面主要为扇三角洲前缘复合朵叶体之间界面,6级界面为不同朵叶体之间界面,5级界面为水下分流河道复合体的顶界面,4级界面为单一水下分流河道砂体的顶界面,3级界面为单一河道内部增生体的分界面,其中4、5级界面对开发有较大影响。在沉积微相认知基础上,识别出5种构型单元。

    (3) 在构型单元内部,选取构型成果、岩性参数、岩心物性参数、孔喉参数四大类评价参数,将取心井储层划分为优质、次优、差三类渗流单元,并运用神经网络的方式运用到非取心井进行渗流单元的划分。优质渗流单元主要分布在水下分流河道主体,次优渗流单元主要分布于水下分流河道侧缘、河口坝处,而差渗流单元主要集中于水下分流河道顶部漫溢细粒沉积和底部滞留沉积段、席状砂、溢岸砂处。

    (4) 受构型及渗流品质的影响,剩余油富集模式有两类:渗流单元差异平面控油模式、渗流屏障遮挡垂向控油模式。渗流单元与剩余油分布具有较好的相关关系,无渗流屏障遮挡的优质渗流单元水淹严重,次优渗流单元、差渗流单元、受渗流屏障遮挡的下部优质单元水淹程度弱,剩余油富集,本次调整挖潜选取受渗流屏障控制的优质、次优剩余油富集单元进行挖潜,累积增油26万方,提高采收率5%。

Reference (22)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return